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Abstract - This paper presents a refinement 9f existing data flow testing criteria through the
notion of the output-influence in a program. Previous data flowtesting criteria considered exercis-
ing a definition-use (def-use) pair in a successful test case as sufficient evidence of its correctness.
We argue that the correctness is not demonstrated unless exercising the deE-use pair has an
influence on the computation of at least one correctly produced output value. We refine existing
data flow criteria by requiring that an exercised def-use pair must be output-influencing to be con-
sidered tested by a test case. By incorporating the notion of output-influence into existing criteria,
we present a more rigorous testing strategy while still relying on the efficiency of data flow
analysis based approaches to testing. We have developed several techniques that are based on the
concept of static and dynamic program slicing to efficiently compute the output-influencing def-
use pairs in a test case. By utilizing the concept of a dynamic slice, we effectively detennine the
data flow coverage of programs with pointer and array references.

1. Introduction

Various data flow testing criteria have been developed to detennine when a program is sufficiently
tested. In data flow testing [5,9,14,20], a variable assignment at a point in a program is tested by select-
ing test cases that execute subpaths from the assignment (Le., definition) to points where the variable's
value is used (i.e, use). Definition-use (def-use) pairs are computed using data flow analysis techniques,
and data flow testing criteria are used to select a particular set of def-use pairs to test. A data flow cri-
terion is satisfied if each selected def-use pair has been covered, i.e., tested, by at least one test case. One
criterion, 'All-du' (all def-use pairs), for example, is satisfied when each def-use pair in a program has
been tested. A critical issue for uncovering program errors during testing is the effectiveness of a testing
criterion. The effectiveness of a criterion is measured as the likelihood that errors, if they exist, are

revealed by the execution of paths selected under the criterion.

The effectiveness of existing data flow criteria is limited due to their common assumption that
merely exercising def-use pairs provides sufficient evidence of their correctness. However, exercising a
def-use pair does not necessarily demonstrate its correctness or incorrectness. Typically, an incorrect
def-use pair is detected by the programmer if its erroneous effect is reflected in the computed output
values. Thus, exercising def-use pairs does not aid in revealing program errors unless the exercised
definitions have an influence on the computed output values. Consider, for example, the task of testing an
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optimizing compiler. Optimizers analyze the input program and perfonn optimizations on program code
based on the results of the analysis. The analysis portion of the optimizer is exercised in every test run
independent of whether the optimizations are actually applied. However, an error in the analysis ponion
is unlikely to be revealed unless the error had some influence on an incorrect output (e.g., by the applica-
tion of incorrect optimizations or the lack of applying correct ones). Thus, for a particular test case that
produces correct output values, only those components of the program should be considered tested that
have actually contributed to the correct output computation.

In this paper, we introduce the notion of output-influencing (OJ) def-use pairs as a novel approach
to more rigorous and effective data flow testing. Our approach is based on the notion that a program
component to be considered tested must have demonstrated evidence of correctness through its contribu-
tion to the produced program output. Output-influence is used to refine previous data flow testing criteria
by requiring that an exercised def-use pair influences the computation of at least one correct output value
to be considered tested. We restrict the discussion in this paper to the refinement of the All-du criterion

to an output-influencing-AII-du (OI-All-du) criterion, although other existing data flow criteria can also
be refined using output-influence.

Incorporating the concept of output-influence in a data flow criterion presents new challenges in
detennining the def-use pairs that have been covered by a test case. Detennining data flow coverage for
the conventional All-du criterion requires recording all def-use pairs in the program that are exercised.
Our refined OI-All-du criterion, in addition, requires the detennination as to whether an exercised def-use

pair is also output-influencing. We utilize the concept of a program slice [25] to detennine data flow
coverage for the OI-All-du criterion. A program slice, first introduced by Weiser for debugging [25], is a
subset of a program that contains the statements that may influence the value of a selected set of variables
at selected program points. We use slicing to capture the output-influencing def-use pairs by computing
output-slices, which are slices on the output statements in the program. By fonnulating the coverage
problem as a slicing problem, we develop several techniques with varying costs and accuracies to deter-
mine the output-influencing def-use pairs in a test case.

Program slices can be computed statically over all executions of a program (static slice), or dynami-
cally, providing infonnation for a specific execution of a program (dynamic slice). A static output-slice
provides a conservative compile-time approximation of the actual def-use pairs in a test case. The advan-
tage of using static analysis is that the data flow infonnation for a program is computed only once prior to
execution. Although static data flow analysis is sufficiently accurate in its application in optimizing com-
pilers, static infonnation may be overly conservative in the presence of dynamic variable references, such
as array and pointer references. To obtain accurate infonnation for array and pointer variables, we com-
pute dynamic output-slices. By using the same approach for both static and dynamic slicing, we are also
able to combine the two slicing concepts. By incorporating both static and dynamic data flow infonna-
tion, we can move as much work as possible to compile-time and only collect dynamic infonnation,
where compile-time analysis is overly conservative, Le., for array and pointer references.

The remainder of this paper is organized as follows. Section 2 introduces the OI-All-du criterion
and discusses related work. Section 3 presents the dependence graph that we use to represent a program.
Section 3 also defines our slicing algorithm that operates on the dependence graph. In Section 4, we
demonstrate how we use the presented slicing concepts to develop several approaches with varying accu-
racies and costs to detennine the data flow coverage for the OI-All-du criterion. Concluding remarks are
given in Section 5.



2. Output Influence and Testing

Previous data flow criteria considered a def-use pair to be covered by a test case t if it was exercised
in t, assuming that merely exercising a def-use pair provides sufficient evidence of its correctness. We
refine previous data flow criteria by requiring that in order for a test case t to cover a def-use pair, the
def-use pair should not only be exercised during execution of t, but also influence the computation of an
output value produced by t. The output-influencing All-du (OI-All-du) criterion is defined as follows:

Definition: Let P be a program and Tp a test suite for P. Tp satisfies the output-inftuencing-AII-du (01-
AII-du) criterion if, and only if, for each def-use pair p in P there is some test case t in Tp such
that, when P is executed on t, the pair p is exercised and exercising p directly or indirectly affects
the computation of at least one correct output value produced by 1.

We illustrate our refined criterion using the example shown in Fig. 1 (i). The program fragment computes
the minimum and the sum over an input array a. However, we have introduced several errors that are
documented in the comments in Fig. I (i). We consider the test case to: n=4 and a=(O,O,O,4)for which
the fragment accidently produces the correct output values (i.e., the output is 0, 4). When executing the
fragment on this input, all statements are executed, and in particular all def-use pairs inside the loop com-
putation are exercised. Therefore, using the traditional All-du criterion leads to premature conclusions
about the correctness of the def-use pairs inside the loop computation that actually contains errors.

(1) input (n, a);
(2) i:=2;

(3) p:=l;

(4) m:=a[p];
(5) While i<n Do Begin

(6) If a[p]<=a[l] Then

(7) p:=i;
(8) a[i]:=a[i]+a[i-l];
(9) i:=i+l;

EndWhile;

/* should correctly be i<=n */
/* should correctly be a[p]<=a[i] */

/* omitted: m:=a[p] */

(10) output ('min is',m);

(11) output ('sum is',a[n]);

(i)

(1) input(n,a,b);
(2) i : =2;

(3) p:=l;
(4) m:=a[p];
(5) While i<n Do Begin

(8) a[i]:=a[i]+a[i-1];

(9) i:=i+1;

EndWhile;

(10) output ('min is',m);
(11) output ('sum is',a[n]);

(1) input (n, a, b) ;

(2) i:=2;

(3) p:=l;
(4) m:=a[p];
(10) output('min is' ,m);

(11) output ('sum is',a[n]);

(ii) (Ui)

Fig. 1: Original program fragment (i), the static slice on the two output values in statements 10 and 11 (ii), and the
dynamic slice for the two output values on input n=4, a=(O,O,O,4)(iii).



The new OI-All-ducriterionenablesa more rigorousapproachto data flowtesting. Def-usepairs
that are exercised in a test case but have not demonstrated any evidence of their correctness (like the ones
inside the loop computation in Fig. 1) are accordingly not considered covered. Thus, it is no longer
sufficient to determine data flow coverage from the def-use pairs that were exercised during a test case. In
addition, it must be determined which of the exercised def-use pairs were of output-influence. We utilize
the concept of a program slice to determine the output-influencing def-use pairs in a test case.

For the purpose of capturing the output-influencing def-use pairs in a test case, we are interested in a
particular class of slices, the output-slices. Output-slices are determined for the computed output values
in a program and contain the statements that directly or indirectly affect the computation of output values.
We use both static and dynamic output-slices to develop several techniques with varying costs and accu-
racies to determine the data flow coverage of a test case. Consider the example in Fig. 1. The static
output-slice on the two output values in statements 10 and 11 is shown in Fig. 1 (ii). The slice does not
contain statements 6 and 7 inside the loop and thus correctly indicates that no def-use pair involved in the
execution of those statements should be covered by the test case.

Although using static slices eliminates a number of def-use pairs from coverage that do actually not
contribute to the computed output values, the static nature of this approach may yield too conservative
information in the presence of dynamic structures such as arrays and pointers. The static output-slice in
Fig. 1 (ii), for example, does not express that the output value a [n] is actually not a result of the loop
computation (due to the error in the loop condition). To obtain accurate information in the presence of
arrays and pointers, we use a dynamic approach, since all static ambiguities of array and pointer accesses
can be resolved at run-time. The dynamic output-slice for the two output values produced by our test
case to is shown in Fig. 1 (Hi).The slice reveals that actually no def-use pair involved in the loop compu-
tation should be covered by the test case and therefore the errors in Fig. 1 (i) will not avoid detection dur-
ing testing.

Two approaches to compute static slices have been proposed. The first approach, proposed by
Weiser [25] computes a static slice by iteratively solving a set of data flow equations over the program's
control flow graph representation [3]. The second approach uses a variation of the program dependence
graph to represent a program [12,22]. The program dependence graph (PDG) [7,17] explicitly
represents both control and data dependencies among the statements in a program. The computation of a
static slice reduces to a simple vertex-reachability problem when using the PDG. There have also been
two approaches to compute dynamic program slices. In Korel and Laski's approach [15] a complete exe-
cution trace is generated at run-time and a dynamic slice is computed by solving data flow equations over
the generated trace. A different approach to compute dynamic slices based on dependence graphs has
been presented in [1,2]. The notion of a dynamic slice used in this approach is slightly different from
Korel and Laski's in that a dynamic slice is not necessarily an executable subset of the original program
and thus may contain fewer statements. In the work by Agrawal, DeMillo and Spafford a dynamically
expanded program dependence graph is defined based on the execution history of a program [2]. Agrawal
and Horgan describe how a reduced dynamic expansion of the program dependence graph can be built at
run-time [1]. Dynamic slices are determined after execution from the dynamic dependence graph or the
reduced dynamic dependence graph, respectively. The authors also describe a dependence graph based
approach that can be used to computed executable dynamic slices of the notion used by Korel and Laski.
In this approach, the static program dependence graph is built first and data dependence edges are marked
during execution as they arise. A dynamic slice is determined by considering only the marked portion of
the graph.



We follow the dependence graph based approach for slicing and use the notion of a slice as an exe-
cutable subset of a program. We use a variation of the program dependence graph for both static and
dynamic slicing. However, our notion of a dynamic dependence graph differs from the one given in [1].
Existing dynamic dependence graphs [1,19] fonD some dynamic expansion of a static program depen-
dence graph and are capable of distinguishing dependencies that hold for different instances of a state-
ments (for example, for statements inside a loop). Our primary interest, however, in using dynamic
dependence infonnation is to resolve compile-time ambiguities of array and pointer accesses. For this
purpose we have adapted a slightly different definition of a dynamic dependence graph that does not
represent an expansion but a dynamic subset of the program's static dependence graph with respect to a
specific execution. We have developed an efficient dynamic slicing algorithm that does not require the
generation of execution traces or run-time analysis. Instead of statically detennining the data flow in a
program, we collect the data flow infonnation that is needed to construct dynamic slices on-the-fly as the
program executes through a simple pointer mechanism.

By using dependence graphs for both static and dynamic slicing, we can efficiently combine the two
slicing concepts. The resulting slices are based on both static and dynamic infonnation. A hybrid between
a static and a dynamic slice was first introduced by Venkatesh [24], the so called 'quasi-slice'. In a quasi-
slice some input values are fixed while others may vary. Our notion of a hybrid slice is slightly different
in that our hybrid is a static slice with respect to some variables and a dynamic slice with respect to oth-
ers, independent of the input variables.

3. Dependence Graphs and Slicing

This section presents our approach for computing output-slices of a program. An output-slice is
extracted from a program's dependence graph that represents the control and data dependencies among
statements. Thus, the major portion of our slicing technique is the construction of the dependence graph.
The control dependence infonnation is derived from the program structure and we present three alterna-
tive methods for collecting data dependence infonnation: statically over all executions, dynamically with
respect to a specific execution, or in a combined static/dynamic fashion. The three methods are described
in detail in the following sections. Using any of these methods, we obtain a dependence graph for the con-
struction of output-slices. However, if the data dependence infonnation in the graph was computed stati-
cally the resulting output-slices are static output-slices. Similarly. if dynamic (combined static/dynamic)
data dependence infonnation is used, the output-slices are dynamic (combined static/dynamic) output-
slices.

3.1. The Dependence Graph

The dependence graph for a program represents two dependence relations among statements: con-
trol and data dependence. A statement s 1is control dependent on a statement s2' if s2 is a control predi-
cate and control reaches s 1 depending on the result of evaluating s 2' In structured programs the control
dependences can be directly derived from the nesting structure of statements. The computation of control
dependencies in arbitrary programs is described in [7]. Data dependence describes the def-use relation-
ships in a program: static data dependencies describe the potential def-use pairs and dynamic data depen-
dencies the actual def-use pairs for a specific input Thus, dynamic data dependence is a subrelation of
static data dependence. A statement s 1 is statically data dependent on a statement s 2 if s 2 contains a
definition of a variable v and s 1 uses v and control may reach s 1 after S2 without passing through a
redefinition of v. A statement s 1 is dynamically data dependent on s 2 with respect to program input /
if, during the execution on input /, s 1computes a value that is used in s2'



The dependence graph for a program P is a directed graph G =(N, CUD). N is a set of nodes,
C ~ N xN a set of control dependence edges, and D ~ N xN a set of data dependence edges. The nodes in
N represent the statements and the control predicates in P with one distinguished predicate called entry.
There is a control dependence edge v1-+ v2EC if v1is immediately control dependent on v2. Note that
by the restriction to immediate control dependent statements, there are no transitive control dependence
edges in the graph. There is a data dependence edge v 1-+v2ED if v1is data dependent on v2'

3.1.1. Static Data Dependence

If the data dependencies in the dependence graph for a program P are detennined statically, the
graph is called a static dependence graph, denoted Gs. A static dependence graph for P represents the
dependencies that hold for all executions of P. The complete static graph is built at compile-time. Tradi-
tional static data flow analysis techniques are used to detennine a conselVative approximation of the def-
use pairs in P and to establish corresponding static data dependence edges in the graph. Although there
have been some efforts in distinguishing individual array elements in static data flow analysis [13], arrays
are typically treated like one scalar. Each definition/use of an array element is treated as a definition/use
of the entire array. Pointer variables fonn another source of difficulty in static data flow analysis. Some
approaches to statically analyze programs with pointers have been described in [4,11,18]. Fig. 2 shows
the static dependence graph for the program example in Fig. 1.

u-- control dependence

static data dependence

Fig. 2: The static dependence graph for the program in Fig. 1 (i).



3.1.2. Dynamic Data Dependence

An alternative to applying static data flow analysis is to collect dynamic data dependence infonna-
tion at run-time. A dependence graph for a program P that is built using the dynamic data flow infonna-
tion for a specific input I is called a dynamic dependence graph for P with respect to I and is denoted
Gd' In contrast to the static dependence graph, Gd represents the specific data dependencies that hold in a
particular execution. Thus, for a program P the relation Gd ~ Gs holds with respect to any execution. To
construct a dynamic dependence graph Gd, we first statically build the control dependence subgraph of
Gd. Infonnation about dynamic def-use pairs is collected on-the-fly as the program executes. We utilize a
scheme similar to Korel's dynamic data flow analysis [16]. The original code is instrumented to deter-
mine the dynamic reaching definitions at run-time. This way. dynamic data dependence edges are
insetted in the graph on-the-fly without requiring a static approximation of the potential def-use pairs.

We associated with each variable v a pointer v.dptr. At any point during execution v.dptr points to
the program statement that last defined a value for v. Thus, for each executed use of v, the dynamic
reaching definition is immediately found through v.dptr and a corresponding dependence edge is created.
Every definition of a variable v that is executed in a statement s causes an update of v.dptr to point to s.

To handle composite structures such as records, the individual record components are treated in the
same way as described above. If, however, the entire record is used or defined, code instrumentation is
insetted for each component of the record. The same procedure follows for a reference to an entire array.
For the reference of individual array elements, code instrumentation is added for the evaluated array ele-
ment and also for every variable that occurs in the subscript expression. The use of pointer variables
requires special treatment. Pointer variable references are similar to array references in that they may
access a different variable in different instances. However, the reference of a pointer may actually access
two variables: the pointer itself and the variable pointed to by the pointer. If a pointer p points to a vari-
able v and v is accessed through p , we also insen code for the appropriate run-time actions for the refer-
ence to v. A high-level illustration of the code instrumentation on source code level is shown in Fig. 3.

(100) x:=*p; CreateEdge( 100 -+ p.dptr)
CreateEdge( 100 -+ eva1(*p) .dptr)
x.dptr:= 100

CreateEdge( 101 -+ x.dptr)
a[eva1(x)] .dptr:= 101

(101) a[x] :=0;

(102) q:=p; CreateEdge( 102 -+ p.dptr)
q.dptr:= 102

CreateEdge( 103 -+ x.dptr)

CreateEdge( 103 -+ q.dptr)

eva1(*q).dptr := 103

(103) *q:=x;

(i) Cn)

Fig. 3: A program fragment (i) and code instrumentation (ii).

-- ~



The code instrumentation enables the construction of the dynamic data dependence subgraph as the

program executes. Since the variables accessed by a subscripted reference or by a pointer may vary in dif-
ferent instances of the reference, a new data dependence edge is created for each distinct access. After
execution the complete dynamic dependence graph is available for the extraction of program slices. The
dynamic dependence graph for the program from Fig.l with respect to the input n::4, and a=(O,O,O,4)is
depicted in Fig. 4.

control dependence

- dynamic data dependence

Fig. 4: The dynamic dependence graph for the program in Fig. 1 (i) with respect to the input n:4, a=(O,O,O,4).

3.1.3. Combining Static and Dynamic Dependence

Constructing the dynamic dependence graph does not require static data flow analysis; however it
does require some execution overhead. Although only a constant amount of execution time overhead is
required for each executed statement, it may still be preferable to move as much work to compile-time as
possible. We may want to compute static data dependence information for the class of variables for which
static data flow analysis does not become overly conservative (Le., scalar variables) and use dynamic
analysis otherwise (i.e., arrays and pointers). Thus, the static dependence graph can be constructed par-
tially prior to execution and dynamic dependence information is collected for the remaining portion of the
graph at run-time. The resulting graph, denoted GsId, contains both static and dynamic data dependence
edges and forms a more accurate approximation of the actual def-use pairs than the purely static depen-
dence graph.

Intuitively, the set of variables V in a program is partitioned into two sets VIand V2' Static data
flow information is computed only for variables in V 1 and corresponding static dependence edges for
variables in V 1are created in the dependence graph prior to execution. For variables in the other set V2
code instrumentation is added to enable the creation of dynamic dependence edges for accesses of vari-
ables in V2 at run-time. However, care must be taken in partitioning the program variables in a static set
V 1 and a dynamic set V2' In order to obtain correct data dependence information with respect to the



actual dependencies in an execution, it must be ensured that no variable in one set is used to access a vari-
able from the other set. A partition of the variables in a program that satisfies this requirement is called a
feasible partition. For example, if there are no pointers in the program, a feasible partition divides the
program variables. such that array references are analyzed dynamically and other scalar variables stati-
cally. If there are pointer variables but the class of variables that can be pointed to by the pointers can be
restricted (for example by typing and pointer analysis [4. 11] ). the pointer variables together with the
variables they may point to can be analyzed separately. A feasible partition for the program in Fig. 1 is VI
= {n, i, ro, p} and V2 = {a}. where V 1contains all scalar variables to be analyzed statically and V2 con-
tains the array a to be analyzed dynamically.

3.2. Output-Slices

An output-slice of a program P is an executable suprogram of P defined as follows:

Definition: Given a set of output statements S in a program P and an input I for P .
(1) A static output-slice of P with respect to S is a subprogram P' of P that, when executed. com-
putes the samevaluesinS as P does. .

(2) A dynamic output-slice of P with respect to S and input I is a subprogram P" of P that. when
executed on input I, computes the same values in S as P does.

Note. that if a combination of static and dynamic data dependence information was used to create the
dependence graph with respect to an input I, the resulting output-slices are dynamic output-slices, Le.,
their execution is only defined for input I.

There may be more than one static output-slice for a program P and a set of output statements S.
Similarly. there may be more than one dynamic slice with respect to some input In particular. a static
slice for a set S is also a dynamic slice for S with respect to each input I. The problem of determining the
statement-minimal static slice is undecidable [25]. as is the problem for dynamic slices. Thus. data flow

analysis is used to construct a conservative approx,imationof the statement-minimal slice.

We extract static output-slices from the static dependen~ graph for a program P. and extract
dynamic output-slices from a dynamic dependence graph for P. For a given set of output nodes S in a
dependence graph G1 for a program P. the output-slice with respect to S corresponds to a subgraph of G
denoted GIS. The subprogram is obtained from GIS by restricting P to only those statements and predi-
cates that occur in GIS. We refer to both the subgraph GIS and the corresponding subprogram as an
output-slice. If G is a static dependence graph for P. GIS is a static output-slice. otherwise if G is a
dynamic dependence graph with respect to some input I. GIS is a dynamic output-slice.

In order to define the subgraph of a program's dependence graph that corresponds to an output-slice,
we utilize the following tenninology. A node nl is reachable from a node n2. denoted n2=:)nl.if there is a
path from n2 to nl' An edge e=(nl. nv is reachable fonn a node n. denoted n=:)e.if there is a path starting
at n that contains e. An output-slice GIS is the restriction of G to only those nodes and edges that are
reachable from a node. in S. Thus. given a dependence graph G = (N. E) for a program P and a set S of
output nodes in G. the output-slice with respect to S is the subgraph GIS = (N'. E'). where

N'= {neNI 3 seS: s~n} andE'= {eeEI 3 seS: s=:)e}.

1 If a distinction among a static. dynamic or combined static/dynamic dependence graph is irrelevant, we
merely use the term dependence graph.



An output-slice GIS is computed in a single traversal over a program's dependence graph G. A sim-
ple algorithm to walk.the dependence graph and compute a slice has been presented in [10]. The static
output-slice for the two output nodes 10 and 11 in the static dependence graph from Fig. 2, and the
dynamic output-slice for the dynamic dependence graph from Fig. 4 are shown in Fig. 5 (i) and (ii),
respectively.

-- -- -- - - control dependence

- datadependence

(i) static output-slice

(ii) dynamic output-slice

Fig. 5: The static output-slice (i) for the static dependence graph from Fig. 2, and the dynamic output-slice (ii) for
the dynamic dependence graph from Fig. 4.

4. Determining Data Flow Coverage

A data flow testing criterion describes a subset of the potential def-use pairs in a program to test.
The goal of data flow testing is to satisfy a testing criterion, Le., to execute as many test cases for a pro-
gram as necessary to cover all def-use pairs described in the criterion. When the set of def-use pairs is
completely covered, the program is considered tested with respect to the specific criterion. In general, it
may not be possible to fully satisfy a criterion and exhaustively test a program. Due to the limitation of



static program analysis, there may be infeasible def-use pairs included in the set of def-use pairs to test,
such that no test case exists that can cover them. However, the goal remains to cover as many def-use
pairs as possibly during testing and thus to get as close as possible to satisfying a particular criterion.
Reaching this testing goal involves two critical issues: appropriate test case generation and accurate data
flow coverage determination for a test case. If test cases are generated in an ad hoc fashion, it may be pos-
sible that during successive test cases no progress towards the testing goal is made; that is, no new def-
use pairs are exercised. If data flow coverage is determined incorrectly, Le., more def-use pairs than actu-
ally tested are covered, it may be possible that testing is terminated prematurely, leaving the programmer
in the illusion that the program is sufficiently tested, although there may still be errors that could have
been caught by the respective criterion.

We do not consider the problem of test case generation, which has been widely discussed in the
literature [6,16,23], and assume that test cases are generated 'reasonably' either manually by the pro-
grammer or by an automatic test case generator. The problem of determining the data flow coverage of a
test case has not received as much attention in the past, although it has been pointed out that the accuracy
and efficiency of determining when a criterion is satisfied is critical for the usefulness of a testing strategy
[26]. We focus on the problem of determining the data flow coverage for the OI-All-du criterion for both
programs with and without arrays and pointers.

4.1. The Cover Set

The data flow coverage problem for a program P and a test case t with respect to the OI-All-du cri-
terion can be formulated as the problem of computing the set Cover (t). The set Cover (t) is a subset of
the potential def-use pairs in P and contains only those pairs that had influence on the computation of at
least one correct output value produced by t. We present in the following sections three approaches that
differ in cost and accuracy to compute the set Cover (t) for a test case t.

4.2. Static Output-Slices and the Cover Set

Our first approach uses static output-slices of a program to capture the output-influence in a test
case. If S is the set of output statements that are executed by test case t, we are interested in the static
output-slice Gs/S. The set of data dependence edges in Gs/S contains the def-use pairs that may be of
output-influence for a class of test cases, specifically, all test cases that execute exactly the output state-
ments that are contained in S. Thus, the data dependence information in an output-slice must be tailored
to a specific test case t in order to determine Cover (t). For this purpose, we consider the execution path
net). net) is the set of nodes in the program's dependence graph that are executed by test case t. Intui-
tively, to compute Coverer) we filter the information in a static output-slice using the execution path
n(t); Cover (t) is determined as the set of data dependence edges in the slice that are induced by n(t).

Approach 1 - Static Output-Slice: Given a program P and the execution path n(t) of a test case t for
P. Let S be the set of output nodes in net) and Gs/S be the static output-slice with respect to S.
The set of def-use pairs covered by t is determined as:

Covers(t) = { (n l' nv I n 1~ n2 is a data dependence edge in Gs/S and {n l' n2} ~ net) }.

Approach 1 is easily implemented by using an adjacency matrix implementation for the data dependence
edges in the slice Gs/S' Covers(t) is then obtained by considering only the columns and rows of the
matrix for nodes in net).



We apply Approach 1 now to the example from fig. 2 and our test case to: n::4, a=(O,O,O,4).Test
case to executes all statements and in particular both output statements. Thus, the static output-slice with
respect to the executed output statements corresponds to the one depicted in Fig. 5 (i). Since all nodes in
the slice are executed, Covers(to) contains all data dependence edges in the slice. The set Covers(to)
correctly indicates that no def-use pair involved in the loop computation of the minimum element of the
input array should be considered tested by to, although they have been exercised. In particular the
incorrect use in statement 6 is not included in the cover set.

4.3. Dynamic Output-Slices and the Cover Set

Although using static output-slices prevents a number of def-use pairs from coverage that have not
contributed to the computed output values, the static nature of this approach may yield too imprecise
information in the presence of pointers and arrays. Consider for example the static output-slice from Fig.
5 (i). Statically, the array a is treated like one scalar so that the use of a [n] in node 11 is assumed to
depend on both definitions of a, the definition in node 1 and the one in node 8. However, due to the
error in the loop condition actually only the definition in node 1 can reach the use in node 11. Thus, the
statically determined def-use pair among node 8 and node 11 is dynamically infeasible.

It has recently been shown that data flow testing requires some form of monitoring of actual refer-
ences during execution to provide useful information in the presence of pointers and arrays [21].. We
present now a dynamic slicing approach to accurately determine Cover (t) if t contains array and pointer
accesses. The dynamic dependence graph for a program P with respect to a test case t represents the
actual def-use pairs among statements. Thus, the set of dynamic data dependence edges accurately
describes the eKerciseddef-use pairs. To capture the exercised def-use pairs that were of output-influence,
we consider dynamic output-slices. The cover set for a test case is then determined as the set of dynamic
dependence edges in a dynamic output-slice.

Approach 2 - Dynamic Output-Slice: Given a program P and a test case t for P. Let S be the set of
output nodes executed in t and Gd/S the dynamic output-slice with respect to S. The set of def-use
pairs covered by t is determined as:

Coverd(t) ={ (n I' ni) I n I~ n2 is a data dependence edge in Gd/S }.

Let us apply Approach 2 to our example. The dynamic output-slice with respect to our test case to
was shown in Fig. 5 (ii). The cover set Coverd(to) contains the dynamic dependence edges of the slice
depicted in Fig. 5 (ii). By utilizing dynamic output-slices, it is clear that the produced output values do
not depend on the loop computation. Thus, none of the exercised def-use pairs involved in the loop com-
putation is prematurely covered.

4.4. Combined Static and Dynamic Output-Slices

Approach 1 that uses static output-slices provides a conservative estimate for the covered def-use
pairs. Due to the limitation of static data flow analysis Covers(t) may contain more def-use pairs than the
actually output-influencing ones. The amount of inaccuracy in static data flow analysis of scalar variables
is insignificant in applications such as compiler optimizations. However, as we have also demonstrated,
static data flow information may be overly conservative for array and pointer variables. The dynamic
Approach 2 to compute Coverd(t) overcomes this inaccuracy and provides precise information in the
presence of dynamic variable accesses. Thus, for a given test case the relation

Covers(t) ~ Coverd(t)



holds. However, the cost of the accuracy in Coverd(t) is the increased execution overhead required to

collect dynamic data dependence edges. Although, the run-time overhead in our approach is kept low, as
we require no run-time analysis, it is still desirable to incorporate dynamic infonnation only if static
analysis cannot provide sufficient accuracy. For this purpose, we employ in the third approach the com-
bined static/dynamic slicing concept developed in Section 3.1.3. The computation of Coversld(t) is ident-
ical to the one in Approach 1, however instead of the static dependence graph, a combined
static/dynamics dependence graph for some feasible variable partition is used.

Approach 3 - Combined StaticIDynamic Output-Slice: Given a program P and the execution path
TI(t) of a test case t for P. Let S be the set of output nodes in TI(t) and Gs1d/S be the static
output-slice with respect to S and a feasible partition of the variables in P. The set of def-use pairs
covered by t is detennined as:

Coversld(t) ={(n},nz)ln}--+nzisadatadependenceedgeinGs1d/S and {n},nz} ~TI(t)}.

In general, Coversld(t) lies in accuracy betWeen Covers (t) and Coverd (t), i.e. the relation

Covers (t);;;2 Coversld(t);;;;?Coverd(t)

holds. Provided that variables are partitioned such that all and only the dynamically referenced variables
are analyzed at run-time, we expect, however, in practice, the accuracy of Coverd(t) to be very close to

Covers (t) while the cost could be significantly lower.

5. Conclusions

We have introduced the concept of output-influence as a refinementto existing data flow testing cri-
teria. Incorporating output-influences allows for a more rigorous approach to data flow testing that is
based on the intuition that a def-use pair to be considered tested must have demonstrated evidence of
correctness in tenDSof its contribution to a produced output value. Unlike previous data flow testing cri-
teria, not all exercised def-use pairs are covered by a test case. Instead we cover only those exercised
def-used pairs that influenced the computation of at least one correctly produced output value. We have
presented several techniques based on the concept of static and dynamic program slicing to compute the
output-influencing def-use pairs in a test case. By using slicing based techniques we can effectively and
efficiently detennine the data flow coverage including programs that contains arrays and pointers.

We are currently implementing the refined OI-All-du criterion as part of a data flow testing system.
A number of empirical and analytical studies have been presented to compare the cost and effectiveness
of previous testing strategies [8,26-28]. We expect to obtain insights in the practical implications of our
refined criterion through comparative studies to previous approaches with respect to cost and effective-
ness. When a traditional data flow criterion is satisfied for a program and a specific test suite, the
corresponding OI-criterion may not be satisfied if the exact same test suite is used demonstrating the
more rigorous approach using OI-criteria. In general, it is however, difficult to analytically compare the
OI-criteria with previous criteria in tenDSof the number of required test cases. Since a refined OI-criteria
and its corresponding traditional criterion may lead to a different coverage of def-use pairs in a specific
test case, different test cases may be generated even if the same test case generation strategy is used. We
expect to perfonn empirical comparisons of (1) the average number of test cases required to satisfy a trad-
itional criterion and its refined OI-version and (2) the number of additional errors that can be caught using
our refinement, but that circumvent detection using the traditional approach.
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