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Abstract

With the number of cores increasing rapidly but the performance per core increasing slowly at
best, software must be parallelized in order to improve performance. Manual parallelization is often
prohibitively time-consuming and error-prone (especially due to data races and memory-consistency
complexities), and some portions of code may simply be too difficult to understand or refactor
for parallelization. Most existing automatic parallelization techniques are performed statically at
compile time and require source code to be analyzed, leaving a large fraction of software behind.
In many cases, some or all of the source code and development tool chain is lost or, in the case
of third-party software, was never available. Furthermore, modern applications are assembled and
defined at run time, making use of shared libraries, virtual functions, plugins, dynamically-generated
code, and other dynamic mechanisms, as well as multiple languages. All these aspects of separate
compilation prevent the compiler from obtaining a holistic view of the program, leading to the risk
of incompatible parallelization techniques, subtle data races, and resource over-subscription. All the
above considerations motivate dynamic binary parallelization (DBP).

This dissertation explores the novel idea of trace-based DBP, which provides a large instruction
window without introducing spurious dependencies. We hypothesize that traces provide a generally
good trade-off between code visibility and analysis accuracy for a wide variety of applications so
as to achieve better parallel performance. Compared to the raw dynamic instruction stream (DIS),
traces expose more distant parallelism opportunities because their average length is typically much
larger than the size of the hardware instruction window. Compared to the complete control flow
graph (CFG), traces only contain control and data dependencies on the execution path which is
actually taken. More importantly, while DIS-based DBP typically only exploits fine-grained paral-
lelism and CFG-based DBP typically only exploits coarse-grained parallelism, traces can be used
as a unified representation of program execution to seamlessly incorporate the exploitation of both
coarse- and fine-grained parallelism.

We develop Tracy, an innovative DBP framework which monitors a program at run time and
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dynamically identifies hot traces, parallelizes them, and caches them for later use so that the program
can run in parallel every time a hot trace repeats. Our experimental results have demonstrated that
for floating point benchmarks, Tracy can achieve an average speedup of 1.99x, 1.39x better than the
speedup achieved by Core Fusion, one representative of DIS-based DBP techniques. Although the
average speedup achieved by Tracy is only 1.08x better than the speedup achieved by CFG-based
DBP, Tracy can speed up all floating point benchmarks while CFG-based DBP fails to parallelize
three out of eight applications at all. The performance of Tracy is not always better than the
performance of existing DIS- and CFG-based DBP techniques. However, it takes the first step to
dynamically parallelize the binary executable without using either the raw DIS or the complete
CFG. Thus, this dissertation is expected have a broad impact on future researchers who explore

other representations of program execution for DBP purposes.
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Chapter 1

Introduction

As a consequence of the diminishing returns for increasing complexity, microarchitecture designers
have started to increase the number of cores on a single chip instead of trying to increase its single-
threaded performance. Computers with four to eight cores are already ubiquitous and trends suggest
that core counts will continue to grow for the foreseeable future [1]. While the computational
capability of the chip continues to double every 18 months in accordance with Moore’s Law, the
performance of individual cores has largely stagnated due to limitations on area, power consumption,
and heat dissipation.

With the number of cores increasing rapidly but the performance per core increasing slowly at
best, software must be parallelized in order to improve performance. Manual parallelization typically
yields the best speedups because the programmer can choose new algorithms and data structures
that are more amenable to parallelism. However, manual parallelization is often prohibitively time-
consuming and error-prone (especially due to data races and memory-consistency complexities), and
some portions of code may simply be too difficult to understand or refactor for parallelization. Code
is only parallelized when the return on investment is sufficient.

There has also been considerable research on automatic parallelization. However, most exist-
ing automatic parallelization techniques are performed statically (i.e., at compile time) and require
source code to be analyzed, suffering three serious problems. First, in many cases, some or all of
the source code and development tool chain is lost or, in the case of third-party software, was never
available. During the Y2K crisis, it was estimated that some companies were missing as much as 60
percent of their source code [2]. Second, modern applications are assembled and defined at run time,

making use of shared libraries, virtual functions, plugins, dynamically-generated code, and other dy-
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namic mechanisms, as well as multiple languages. All these aspects of separate compilation prevent
the compiler from obtaining a holistic view of the program, leading to the risk of incompatible paral-
lelization techniques, subtle data races, and resource over-subscription. Third, compile-time analysis
has to conservatively respect all control and data dependencies on the control flow graph (CFG).
This deters parallelization, because many of these dependencies may not be on the execution path
which is actually taken. All the above considerations motivate binary code parallelization at run
time, which we call dynamic binary parallelization (DBP). Without effective techniques that can
operate on binary code, a large fraction of software will be left behind. And without the ability to

parallelize at run time, opportunities for parallelism are curtailed.

1.1 Problems of State-of-the-Art DBP

Prior research on DBP has been largely limited. Existing DBP technologies are generally divided
into two main categories: parallelizing the raw dynamic instruction stream (DIS) [3, 4, 5] and
parallelizing the dynamically-generated CFG [6, 7, 8, 9, 10].

DIS-based techniques use extra hardware to combine multiple cores to work cooperatively as a
wider core. Native out-of-order (O00) execution could also be considered as a DIS-based technique,
which has been widely adopted by modern microarchitectures. Focusing on exploiting instruction
level parallelism (ILP), this technology has wide applicability, because ILP typically exists through-
out the entire program (with different amounts). Limited by branch prediction accuracy and in-
struction window size, however, this technology generally fails to exploit distant or coarse-grained
parallelism, resulting in relatively mediocre speedups.

On the other hand, CFG-based techniques expose a global view of the program and allow dis-
covery of more coarse-grained loop and thread level parallelism (LLP and TLP), which have the
potential to produce much larger speedups. However, analysis on the CFG must be conservative
and consider the large number of possible paths of program execution, some of which may be rarely
executed. This requires the compiler to respect control and data dependencies that do not appear
in the actual execution path, inhibiting parallelization and requiring extensive speculation. When
source code is not available, this problem is exaggerated due to the lack of high-level information (e.g.,
types, variables, data structures), which is essential to achieve accurate alias analysis. Furthermore,
when coarse-grained parallelism is hard to exploit, CFG-based techniques typically lack the capabil-

ity to extract fine-grained parallelism instead and just execute the program sequentially. Thus, it is
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Code Visibility

Analysis Accuracy

—o o O+

DIS Trace Complete
CFG

Figure 1.1: Design spectrum of the representation of program execution on which parallelization
is performed. Compared to DIS and complete CFG, Trace has the potential to provide a large
instruction window without introducing spurious dependencies.

not surprising that most of the existing CFG-based techniques [6, 7, 10] have failed to parallelize at
least half applications in the selected benchmark suite.

Although DIS- and CFG-based techniques are complementary to each other, no prior research
has tried to implement both technologies under a unified system. Such a system may achieve
large speedups from code regions that contain coarse-grained LLP or TLP, and exploit ILP from
the remainder of the program. This combination is quite vital. As Amdahl’s Law shows, even
a small fraction of non-parallelizable code can drastically inhibit overall speedups. Asymmetric
architectures [11, 12] try to address this problem by providing one or more large, OoO cores on the
chip for sequential execution modes, and a larger number of simple, in-order (I0) cores to maximize
throughput. Due to chip area constraints, however, this organization reduces the number of total
cores on the chip, hurting the performance of code regions where plentiful LLP can be exploited.
The Oo0O core may also not be available when needed, if multiple applications are sharing the CPU.
Furthermore, when LLP or TLP is limited, there will often be more coarse-grained tasks needing
further acceleration via ILP than there are OoO cores. Finally, prior research [3, 4, 5] suggests that
cooperative work of multiple IO cores can generally outperform or at least compete with an OoO
core, which may obviate the need for an asymmetric architecture in the first place.

Does any representation of program execution provide a large instruction window without intro-
ducing spurious dependencies? Figure 1.1 illustrates the design spectrum of the representation of
program execution on which parallelization is performed. Theoretically, any point on the design
spectrum between the two extremes (DIS and complete CFG) may be the one that achieves the
optimal trade-off between code visibility and analysis accuracy. Unlike compile-time parallelization,

DBP has the potential to construct dynamic CFGs from the instruction stream by only considering
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execution paths which are actually taken in each particular run. These partial CFGs typically repre-
sent the execution of smaller code structures (e.g., part of a function instead of the entire function)
than static CFGs in order to maintain a practical number of unmerged control flows for aggres-
sive parallelization. As the design point shifts to the right on the design spectrum, each dynamic
CFG represents the execution of larger code structures and merges more execution paths until the
complete whole-program CFG is constucted.

In practice, many programs tend to frequently repeat long sequences of instructions called hot
traces, which have the potential to provide a generally good trade-off between code visibility and
analysis accuracy for a wide variety of applications so as to achieve better parallel performance. First,
traces only represent the execution path which is actually taken, eliminating spurious control and
data dependencies to the highest possible extent. Second, traces can act as a unified representation
of program execution to seamlessly incorporate the exploitation of both coarse- and fine-grained
parallelism. For traces that comprise multiple loop iterations, LLP can be exploited with higher
priority. By only considering a single execution possibility, many loop-carried dependencies are
simply eliminated and more accurate alias analysis can be achieved. As a result, more code regions
may contain exploitable LLP, greatly increasing the applicability of existing CFG-based techniques.
For the remainder of the program that is less parallelizable, long traces may still expose distant ILP
opportunities. The average length of traces is typically much larger than the size of the hardware

instruction window used in existing DIS-based techniques.

1.2 Challenges of Trace-Based DBP

The major challenge of trace-based DBP is constructing high-quality traces that provide a large
instruction window without introducing spurious dependencies. Due to Amdahl’s Law, these traces
should also cover a large portion of dynamic instructions in order to produce large overall speedups.
Another challenge is customizing algorithms that are most suitable to optimize and parallelize binary

code in trace format. The following sections will describe these challenges in detail.

1.2.1 Trace Construction and Prediction

Prior research [13] has demonstrated that the return of dynamic binary optimization (DBO) dimin-
ishes when traces are longer than 200 basic blocks. For parallelization purposes, however, traces have
to be as long as possible to expose more distant parallelism opportunities. Furthermore, traces have

to be logically atomic. They should have a single entry point, a single exit point, and the control
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flow cannot exit prematurely through so-called side exits. Thus, analysis can ignore all unnecessary
control and data dependencies, enabling more aggressive parallelization. This atomicity property
necessitates speculative execution to recover program state when a trace deviates from the execution
path which is actually taken. This is usually easier and less costly than more fine-grained recovery
code required to support side exits. Finally, traces of different program phases should all meet the
above two requirements so that the program can run in parallel most of the time.

The dilemma, however, is that the longer a trace is, the more difficult to achieve high speculation
accuracy. To the best of our knowledge, most existing technologies do not support the atomicity
property of traces [14, 15, 16, 17, 18, 19, 20]. rePlay [21] does perform DBO on short atomic
traces (16 to 256 instructions long), but they are not suitable for parallelization purposes. Before
the many-core era, some systems were proposed [22, 23, 24, 25] to use hardware-only technologies to
speculate multiple consecutive atomic traces and execute them simultaneously on different functional
units. In order to achieve reasonable speculation accuracy, however, these systems construct very
short traces, which necessitates ultra-low communication latency to support program state transfer.
Furthermore, these systems rely on fine-grained selective recovery from frequent mis-speculation.
While suitable for simultaneous-multithreaded or clustered microarchitectures, neither requirement

can be easily satisfied on many-core architectures.

1.2.2 Trace Optimization and Parallelization

Accurate alias analysis is usually the key factor to enable effective program optimization and par-
allelization. Lacking high-level information (e.g., types, variables, data structures), it is extremely
difficult to disambiguate memory references when source code is not available. Thus, most existing
software dynamic translation (SDT) systems, such as Dynamo [14], DynamoRio [15], Transmeta [26],
and Daisy [27], only perform alias analysis in the form of instruction inspection, which disambiguates
two memory references if they access either different memory regions or their addresses have the
same base register and different offsets. As demonstrated in prior research [28], instruction inspection
can only disambiguate one-third of all memory references in SPEC CUP2000 integer benchmarks,
greatly restricting aggressive code transformations.

Compilers typically rely on various data-flow analyses [29] to optimize programs. They set up
data-flow equations for each node of the CFG and solve them by repeatedly calculating the output
from the input locally at each node until the entire system stabilizes, i.e., it reaches a fixpoint. In

order to handle the large number of execution paths represented by the CFG, diverged program states
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are consertively merged at certain joint points. Furthermore, the name space of data-flow functions
is typically based on lexical names of variables, leaving many optimization opportunities behind.
Some frameworks [30, 31] have been developed to achieve scalable path-based value-flow analysis,
but all of them are targeted to bug detection instead of code transformations. On the contrary,
an atomic trace not only represents a single execution path, but also has no side exits so that all
control dependencies and derived data dependencies among its instructions can be ignored. Thus,
it is both important and necessary to design heavyweight but powerful optimization algorithms to
fully exploit the atomicity property of traces, which has never been studied by existing optimiaztion
systems that also leverage atomic traces [21, 32].

Due to limited trace length, existing trace-based parallelization systems [33, 34] only focus on
exploiting local ILP. However, prior research [35] has demonstrated that there is no dominant type
of parallelism. The contribution of each type of parallelism varies widely across the applications.
Thus, one major prerequisite to achieve the greatest speedups is to accurately identify the most
appropriate type of parallelism that should be exploited in each code region. Parallelization at the
trace level further increases the difficulty of exploiting hybrid parallelism. For the same code region
that has complicated control flows, different traces may have quite different characteristics, which

need customized parallelization algorithms to meet the specific requirements.

1.3 Research Overview

This dissertation explores the novel idea of trace-based DBP, which provides a large instruction
window without introducing spurious dependencies. We hypothesize that traces provide a generally
good trade-off between code visibility and analysis accuracy for a wide variety of applications so as
to achieve better parallel performance. Compared to DIS-based DBP, trace-based DBP can exploit
more distant parallelism because the average length of traces is typically much larger than the size
of the hardware instruction window. Compared to CFG-based DBP, trace-based DBP does not
need to respect control and data dependencies that are not on the execution path which is actually
taken. More importantly, while DIS-based DBP typically only exploits fine-grained parallelism and
CFG-based DBP typically only exploits coarse-grained parallelism, traces can be used as a unified
representation of program execution to seamlessly incorporate the exploitation of both coarse- and
fine-grained parallelism.

Before developing any specific design of trace-based DBP, we first conduct a limit study to:

1) identify the performance limits of trace-based DBP, and 2) explain why trace-based DBP has
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that performance. The first goal is to set up the performance upper bound so that any following
specific design can be judged to determine whether it has fully exploited the benefits of trace-based
DBP. The second goal is to identify the unique and powerful characteristics of trace-based DBP
that enable it to achieve substantial speedups. We highlight these characteristics by comparing
trace-based DBP to static parallelization which is typically performed by the compiler.

We analyze the performance limits of trace-based DBP by making three idealizations about the
hardware and algorithms: 1) the program runs on a many-core architecture with an unbounded
number of cores and an unlimited, shared L1 cache, 2) the trace construction algorithm can always
identify the most frequently repeating patterns of instructions that will occur in a particular run of
the program, and 3) when the program reaches a repeating trace, the trace prediction algorithm can
always correctly predict the trace that is about to run.

The limit study performs a five step process for each benchmark: 1) record the complete execution
sequence of the program, 2) analyze the recording offline to identify the frequently repeating traces,
3) create a new execution sequence by replacing each trace in the original execution sequence with
the parallelized version, 4) analyze the parallel execution time of the new execution sequence using a
model of a shared-memory many-core architecture, and 5) replay a linearization of the new execution
sequence on a real machine and check the correctness of the result.

We then develop Tracy, an innovative DBP framework which monitors a program at run time
and dynamically identifies hot traces, parallelizes them, and caches them for later use so that the
program can run in parallel every time a hot trace repeats. In order to achieve the greatest speedups
over sequential execution, Tracy has to construct high quality traces as well as to customize the most
suitable algorithms to optmize and parallelize these traces.

High quality traces have to simultaneously satisfy four requirements, which can be contrary to one
another. First, traces have to be as long as possible to expose more distant parallelism opportunities.
Second, traces have to be logically atomic. They should have a single entry point, a single exit point,
and the control flow cannot exit prematurely through side exits. Thus, analysis can ignore all
unnecessary control and data dependencies, enabling more aggressive parallelization. Third, traces
have to be predicted accurately so that valuable CPU cycles and energy are not wasted on executing
incorrect execution paths. Fourth, traces have to cover a large portion of dynamic instructions so
as to produce large overall speedups.

Based on the above insights, we exploit the unique power of many-core architectures by launch-
ing multiple traces and executing them simultaneously on idle cores. The major insight is that in

many cases, speculation accuracy can be dramatically increased by only trying a very small number
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of candidate traces. We also develop an innovatative trace construction algorithm that holistically
balances among trace length, speculation accuracy, and coverage of dynamic instructions. Tracy
constructs the longest traces that can be accurately speculated on the available number of cores.
In certain code regions that have complicated control flows, Tracy stops constructing traces and
executes these code regions sequentially. More specifically, we leverage the hierarchical code struc-
tures (e.g., functions, loops, basic blocks) to define the starting and ending points of each trace. In
order to maximize their length, traces are intially restricted to start and end at the outermost func-
tions or loops. During program execution, if a code structure shows unpredictable internal execution
paths, it is abandoned and the next level of inner code structures is used instead. If the innermost
code structure still has complicated control flows that are hard to predict, the corresponding code
regions are execuetd sequentially.

We develop two major optimizations to optimize traces that have been constructed, namely sym-
bolic evaluation and memory disambiguation. The functionality of these optimizations is not only
to directly produce speedups, but more importantly, to prepare the code for future parallelization.
Thus, the performed code transformations may be suboptimal for increasing the program perfor-
mance by themselves, but they reformat the code to be more amenable to parallelism. Furthermore,
these optimizations are designed to fully exploit the atomicity property of traces, within the confines
of the underlying architectural support.

Symbolic evaluation assigns a symbolic value to each defined register or memory location. Code
analysis and transformations are then performed through symbolically executing each program path
and updating these values. The path sensitivity characteristic of symbolic evaluation is not scalable,
and thus has not been used by the compiler that needs to optimize the entire CFG. However, because
symbolic evaluation performs path-sensitive program analysis and data-flow information is based on
symbolic values instead of lexical names, it performs more precise program analysis than traditional
data-flow analysis [29]. For memory disambiguation, we divide all memory references into groups
with different base registers. If the ranges of addresses covered by two groups are disjoint, memory
references in one group are guaranteed not to alias with those in the other group. Disambiguating
memory references at the group granularity is necessary because the sequential order of all memory
references is lost after parallelization, which, however, may introduce false positives due to the
approximation of memory addresses.

Our goal is not to develop totally innovative parallelization algorithms, but to customize off-the-
shelf algorithms to make them suitable for parallelizing atomic traces. For exploiting ILP, Tracy

adopts the traditional list scheduling algorithm [36] to partition and schedule instructions among
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different cores. Unlike the original algorithm that only reorders instructions on the same core, we
have to minimize inter-core synchronization overhead as well as cache coherence traffic on the many-
core architecture. For exploiting LLP, Tracy performs two major code transformations, accumulator
expansion and dependent code motion, to eliminate loop-carried dependencies or at least to increase
the execution overlap of multiple threads so as to achieve better parallel performance.

We also leverage traces as the unified representation of program execution to exploit both coarse-
and fine-grained parallelism. This combination is quite vital. As Amdahl’s Law shows, even a small
fraction of non-parallelizable code can drastically inhibit overall speedups. When both types of
parallelism are available, Tracy selects the optimal strategy at the trace level. It first parallelizes the
trace by exploiting LLP, which has the potential to produce larger speedups. If limited LLP exists,

however, Tracy extracts ILP from the trace instead.

1.4 Contributions of the Dissertation

The contributions of the dissertation are listed as follows:

e A limit study that not only identifies the performance limits of trace-based DBP, but also
explains why trace-based DBP performs as it does. It sets up the performance upper bound
so that any following specific design can be judged to determine whether it has fully exploited
the benefits of trace-based DBP. It also identifies the unique and powerful characteristics of

trace-based DBP that enable it to achieve substantial speedups.

e A capture-replay framework that efficiently records program execution and replays the record-
ing by capturing non-deterministic events such as interrupts, preemption, and user input. The
framework is unique in that the user can modify the execution sequence and replay the modified
version to verify that it is equivalent to the original execution, which will be widely applicable

to future studies on dynamic trace-based systems.

e An innovative trace-based DBP framework named Tracy which provides a large instruction
window without introducing spurious dependencies. Compared to DIS-based DBP, it can
exploit more distant parallelism and compared to CFG-based DBP, it only needs to respect

control and data dependencies on the execution path which is actually taken.

e A general trace construction algorithm that holistically balances among trace length, specu-

lation accuracy, and coverage of dynamic instructions. This algorithm constructs the longest
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traces that can be accurately speculated on the available number of cores and can be readily

adopted by other dynamic trace-based systems.

e Two code optimizations, symbolic evaluation and memory disambiguation, that are specifically
designed for atomic traces. They not only directly produce speedups, but also transform the

code to be more amenable to parallelism, which is usually more important.

e A unified parallelization system that uses customized algorithms to extract both coarse- and
fine-grained parallelism from atomic tracs and selects the optimal strategy based on the esti-

mated parallel performance.

1.5 Organization of the Dissertation

The remainder of the dissertation is organized as follows. Chapter 2 provides background on the evo-
lution of traces and different parallelization technologies to facilitate understanding of the subsequent
chapters. Chapter 3 discusses a limit study to prove the feasibility trace-based DBP and Chapter 4
then presents Tracy, an innovative trace-based DBP framework which leverages multi-trace execu-
tion to exploit the unique power of many-core architectures. After that, Chapters 5 to 7 describe
trace construction and prediction, trace optimization, and trace parallelization, respectively, which
are the three most important functionalities of Tracy. Finally, Chapter 8 concludes the dissertation

and discusses future work.



Chapter 2

Background and Related Work

Two key concepts of this dissertation are trace and parallelization. Thus, we organize the background
chapter based on these two concepts. Under the trace concept, we first describe its evolution
during the last three decades and then discuss how traces are typically constructed during run time
using SDT systems. Under the parallelization concept, we discuss both manual parallelization and
automatic parallelization. Automatic parallelization is further divided into four categories, each of

which is described in detail.

2.1 Evolution of Traces

Traces have long been used to improve program performance. While VLIW and superscalar proces-
sors need sufficient ILP to effectively utilize the parallel hardware, ILP within basic blocks is limited
for control-intensive programs. Thus, optimizations across basic block boundaries are needed. Based
on profiling information, the initial traces are constructed by the compiler, which removes constraints
due to unimportant execution paths and links basic blocks together following the most frequently
executing path. These traces contain both side entrances and side exits, where the control flow
can enter and exit the trace arbitrarily. For several different architectures, trace scheduling [37, 38|
has been proposed to exploit more ILP by performing code motion on these long sequences of in-
structions. However, the existing side entrances require very complex bookkeeping information to
schedule instructions across basic block boundaries, if at all possible.

In order to remove the problems of side entrances, tail duplication has been proposed to ensure
that the control flow can only enter from the top of the trace. More specifically, a copy is made of the

tail portion of the trace from the first side entrance to the end, and all side entrances are moved to

11
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the corresponding duplicated basic blocks. Such reformatted traces with a single entry and multiple
exits are called superblocks [16, 39]. Superblocks are not only constructed by the compiler based
on profiling information, but are also leveraged by a variety of modern microarchitectures and SDT
systems at run time. For example, the trace cache [40] increases instruction fetch width by caching
dynamic instruction sequences; the trace processor [25] speeds up control prediction by speculating
on traces instead of branches; DBO systems [14, 15, 18, 20, 21] exploit optimization opportunities
on traces which are not available by statically analyzing the CFG.

Although superblocks do not have side entrances, the side exits still prevent instructions from
being freely scheduled across basic block boundaries. For example, an instruction cannot be moved
above a preceding side exit if it is used before it is redefined when the side exit is taken. Thus, prior
research [21, 32] has introduced atomic traces, which have a single entry point and a single exit point.
Furthermore, these reformatted traces encapsulate only a single flow of control. If any instruction
within the trace executes, all instructions within the trace execute. This atomicity property provides
more flexibility for performing beneficial code transformations than if the traces were not atomic.
Instructions within the trace are not control dependent on one another and can be moved freely
within the confines of data dependencies.

Another enhancement of superblocks is called hyperblocks [17, 19], which represent multiple ex-
ecution paths simultaneously. Instructions from different execution paths are guarded by hardware-
supported predicates to maintain the correct control flow at run time. The motivation behind hyper-
blocks is to group many basic blocks from different execution paths into a single manageable code
region for compiler optimization. Thus, for programs without heavily biased branches, hyperblocks
provide a more flexible framework for compile-time code transformations. However, hyperblocks

also contain side exits and thus do not have the atomicity property.

2.2 Software Dynamic Translation

As described above, traces are initially constructed by the compiler based on profiling information.
Recently, however, SDT systems become increasingly popular to extract traces directly from the
instruction stream while the program is running. Figure 2.1 illustrates how an SDT system is
positioned under the application to intercept the native instruction stream at run time. Three
algorithmic components form the foundation of a generic SDT implementation: 1) the translator
translates instructions from the binary executable into traces that will run on the actual hardware,

often interjecting or altering instructions en route, 2) the code cache holds these commonly executed
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Figure 2.1: Generic SDT systems contain three algorithmic components and transparently manipu-
late the binary executable while it is running.

traces so that they can be executed again without re-translation, and 3) the dispatcher redirects the
control flow to either the next trace, if it is already in the trace cache, or to the translator which
re-translates the target address. In the mean time, the original program either continues running
without being translated or is suspended until the new trace is completed.

SDT systems have been implemented purely in software and executed on commodity microarchi-
tectures for diverse purposes, such as optimization [14, 15], ISA translation [27], profiling [41, 42],
or security monitoring [43, 44]. Due to the large overhead of software-based dynamic instrumen-
tation [41, 42], however, most systems [27, 41, 42, 43, 44] do not profile the running program
and terminate the trace at any conditional branch or jump that has multiple targets. Other sys-
tems [14, 15] use the next executed tail (NET) algorithm to construct superblocks, which only needs
very lightweight instrumentation. The NET algorithm has two phases, the profiling phase and the
collection phase. In the profiling phase, each conditional branch that is a backedge is instrumented.
A counter is maintained for each of these backedges and incremented every time that backedge is
taken. When this counter hits a predetermined threshold, the next superblock is collected. In the
collection phase, the code is instrumented and monitored basic block by basic block until another
backedge is encountered. The NET algorithm has two significant shortcommings: 1) it is possible to
collect a cold path during the collection phase even if a hot path was primarily responsible for reach-
ing the backedge during the profiling phase, and 2) the constructed hyperblocks cannot span any
function invocations/returns and loops, and thus are typically only two to three basic blocks long.

Prior research [45] has further demonstrated that for the SPEC CPU2006 benchmark suite, the su-
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perblocks constructed by the NET algorithm only account for less than 40% of dynamic instructions
and for more than 80% of the times, the control flow leaves the running superblock prematurely via
its side exits.

In order to improve trace quality with low runtime overhead, prior research [25, 40] has proposed
to implement dynamic instrumentation in hardware by directly integrating trace construction with
non-critical stages of instruction pipeline execution. This technology has been adopted by a variety
of DBO systems [18, 20, 21], for which increasing program speed is the top priority. For example,
both [18] and [20] profile the behavior (i.e., execution frequency and target bias) of every conditional
branch, which would cause prohibitive runtime overhead if using software-based dynamic instrumen-
tation. Highly biased hot branches are then identified and analyzed to generate those dominant
execution paths. As reported by [18], 12% of the constructed hyperblocks are more than 50 instruc-
tions long and 89% of them cover at least 100 million dynamic instructions during program execution.
rePlay [21, 46] takes a further step by associating each conditional branch with the global branch his-
tory [47]. This context sensitive information separates each conditional branch into instances based
on the execution path leading up to itself. Once separated this way, a greater number of conditional
branches tend to exhibit biased behavior. For integer applications in the SPEC CPU2000 benchmark
suite, rePlay is capable of constructing atomic traces of 102 instructions on average, which results

in optimization effectiveness [13].

2.3 Manual Parallelization

With the number of cores increasing rapidly but the performance per core increasing slowly at best,
software must be parallelized in order to improve performance. A variety of parallel programming
frameworks such as OpenMP [48], Chapel [49], and Axum [50] have been proposed to help software
engineers fully exploit this increased processing power by executing threads on multiple cores simul-
taneously. Based on these frameworks, specific parallel libraries [51, 52] have also been proposed to
facilitate efficient software development in different domains. Such manual parallelization typically
yields the best speedups because the programmer can choose new algorithms and data structures
that are more amenable to parallelism.

For a variety of reasons, however, many programs will not be completely parallelized and will
continue to have both parallel and sequential modes of execution. Software engineers may not have
the source code for some or all parts of the program because it was lost or because it uses third-party

libraries. Furthermore, manual parallelization is often prohibitively time-consuming and error-prone,
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Figure 2.2: Taxonomy of automatic parallelization techniques based on their applicability. The code
that cannot be parallelized is listed under each category.

especially due to data races and memory-consistency complexities. It has been estimated that the
efforts to analyze, fix, and test existing software due to the Y2K bug alone have cost about $2 billion
in the 1990s [53], and rewriting code to find opportunities for parallelism would be a much larger
and more challenging task. Finally, some portions of code may be too difficult to understand or
refactor for parallelization and other portions of code would simply not yield enough speedups to

justify manual parallelization.

2.4 Automatic Parallelization

In order to extricate software engineers from manual parallelization, there has been considerable
research on automatic parallelization. We classify automatic parallelization techniques into four dif-
ferent categories based on two orthogonal criteria: 1) whether the technique is performned statically
at compile time or dynamically at run time, and 2) whether the technique analyzes source code or
binary code. Figure 2.2 shows the code that cannot be parallelized by each category of techniques.
Source code parallelizers cannot handle legacy software, third-party software, and software written
in differet languages. On the other hand, static parallelizers cannot handle dynamic linking/loading
and self-modifying code. Thus, only DBP techniques can parallelize any code. If the software can
execute, then they can parallelize it. In the following sections, we will describe the four categories

of automatic parallelization techniques in detail.
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2.4.1 Static Source Parallelization

Static parallelization techniques typically analyze source code to extract parallelism at compile
time [33, 34, 35, 54, 55, 56, 57, 58, 59, 60]. These techniques have been used to exploit ILP [33, 34],
LLP [54, 56], TLP [55, 57, 58, 59, 60], or even a combination of them [35]. Furthermore, some
techniques are designed to parallelize general-purpose software on commodity machines [55, 56],
while others are specially customized for special microarchitectures [33, 34, 35, 57, 58, 59] or specific
domain of applications [54, 60].

Lacking runtime information, however, these parallelization techniques must be conservative and
consider the large number of possible paths of program execution, some of which may be rarely
executed. This requires the compiler to respect control and data dependencies that do not appear
in the actual execution path, inhibiting parallelization and requireing highly accurate alias analysis.
On the other hand, with full access to source code, these techniques have the potential to extract
coarse-grained parallelism that typically produces the largest speedups and is also most appropriate
on certain architectures which have high inter-core communication overhead.

Ever since the multiscalar architecture [61], thread-level speculation has been used to release spu-
rious dependency constraints caused by conservative static analysis [62, 63, 64, 65, 66, 67, 68, 69, 70].
Thread-level speculation allows the compiler to automatically parallelize portions of code in the
presence of statically ambiguous data dependencies, thus extracting parallelism between whatever
dynamic dependencies actually exist at run time. Such speculative execution usually requires hard-
ware support to detect data dependency violations at run time, which involves comparing load and
store addresses that may have occurred out of order with respect to sequential execution. For ex-
ample, [67] leverages invalidation-based cache coherence for mis-speculation detection. The basic
design is to extend those existing invalidation messages to detect data dependency violations by
noticing whenever an invalidation arrives from any logically earlier thread for a cache line that has
been speculatively loaded by any logically later thread. However, high speculation accuracy typically
requires heavy programmer annotation or comprehensive profiling, both of which can be difficult in
practice. When neither requirement is satisfied, the achieved speedups are unimpressive at best and
the dynamic length of speculated threads is only several hundred instructions, which are hard to

expose very useful coarse-grained parallelism [65].
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2.4.2 Static Binary Parallelization

Static parallelization techniques [71, 72, 73] have also been enhanced to analyze and transform binary
code directly using the binary rewriting technology [74]. All these techniques analyze the binary
executable and reconstruct data structures and control flows that were present in the high-level
source code. While Vizer [71] performs loop vectorization, two other techniques [72, 73] focus on
loop parallelization. For example, [72] extracts address expressions using simple pattern matching
to recognize counter initialization, test, and increment for affine loops. It also uses several simple
dependency tests to decide whether the given loop is worth parallelizing. These dependency tests
are directly adopted from affine loop parallelization at the source code level. As a step further, [73]
captures the data flow of address computations, and uses symbolic analysis to reconstruct address
expressions built around normalized loop counters. Furthermore, it leverages the polyhedral model
to parallelize affine loops, which is fundamentally superior to simple dependency tests.

Due to the difficulty of decompilation, however, these parallelization techniques have extremely
limited applicability. Vizer [71] is only applied to three benchmarks, all of which are simple scientific
applications such as 3D tridiagonal solver, matrix addition, and multiplication. Similarly, both [72]
and [73] are only used to parallelize affine loops in kernel applications, including the PolyBench
benchmark suite and the Stream benchmark suite. No attempts have ever been made to parallelize
more irregular programs that dominate everyday use. As stated in [73], any tiny irregularity in
the candidate loop can make it unparallelizable, such as the presence of function calls and various
loop optimizations (e.g., loop tiling, which produces non-strictly linear address expressions) that are

usually performed by the compiler by default.

2.4.3 Dynamic Source Parallelization

A variety of dynamic parallelization techniques have been proposed to insert control logic into
source code at compile time, which is used to select the best parallelization strategy at run time.
For example, just-in-time scheduling [75] dynamically selects the most beneficial chunk sizes for
LLP, and Merge [76] tolerates changing hardware by building separate function versions for different
accelerators. Although these techniques can adapt to the program behavior at run time to some
extent, the basic parallelization strategy is predetermined at compile time and cannot be updated
after the program starts running. Furthermore, these techniques can still not handle dynamically

loaded libraries and self-modifying code, which are always in binary formats.
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Some prior work has argued for a JVM-like layer to dynamically optimize and parallelize pro-
grams [77, 78]. The major insight is that applications cannot be parallelized just once. They require
separate parallelization targeted to the actual hardware and execution environment upon which they
will run. However, such techniques assume a dominant programming language such as Java, which

has relatively small applicability.

2.4.4 Dynamic Binary Parallelization

Suprisingly, DBP techniques have actually been existing for several decades, long before the many-
core era that is just upon us. The superscaler architecture [79] is the most successful parallelization
technique that exploits ILP transparently from the binary executable. Ever since the mid-1990’s,
000 superscalar execution has been dominating the microarchitecture market. This technology
transparently parallelizes all kinds of software that is widely used in research, industry, and more im-
portantly, everyday life. On the other hand, parallel programming languages [80] and compilers [56]
that can extract LLP and TLP have also been available for decades, but have primarily been used
for high-performance computing (HPC) applications.

History has shown that the HPC community will use all kinds of parallelization techniques to
exploit the latest advances in many-core architectures that start to dominate the microarchitecture
market. However, there is no precedent to show that non-transparent techniques will be adopted for
mainstream computing, and in fact there are many reasons to believe otherwise. Some companies
will undoubtedly continue to produce sequential programs due to the high cost of porting existing
software, updating tool chains, and re-training employees. Furthermore, many legacy programs
will be difficult or impossible to update with non-transparent techniques because source code is
not available. Finally, transparency is important for portability and forward compatibility of the
program, as the range and diversity of many-core architectures grow. These and other factors may
be important enough that non-transparent techniques are not adopted in the mainstream, despite
the lack of viable alternatives. The quality of transparent parallelization may be the limiting factor
on the impact of many-core architectures on mainstream computing.

Several extensions have been made to the superscalar architecture for finding more ILP, including
trace processing [25], dynamic multi-threading [22], and speculative multi-threading [23, 24]. These
systems use hardware-only technologies to speculate multiple very short threads and execute them
simultaneously on different functional units. In order to achieve reasonable speculation accuracy,

however, these systems construct very short traces, which necessitates ultra-low communication la-
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tency to support program state transfer. Furthermore, these systems rely on fine-grained selective
recovery from frequent mis-speculation. While suitable for simultaneous-multithreaded or clustered
microarchitectures, neither requirement can be easily satisfied on many-core architectures. More re-
cently, similar technologies have been adopted by several Java virtual machines to extract parallelism
from DOALL loops and recursive functions [81, 82, 83].

Several DBP technologies have also been proposed to support many-core architectures, which are
generally divided into two main categories: parallelizing the raw DIS [3, 4, 5] and parallelizing the
dynamically-generated CFG [6, 7, 8, 9, 10]. DIS-based techniques use extra hardware to combine
multiple cores to work cooperatively as a wider core. Native OoO execution could also be considered
as a DIS-based technique, which has been widely adopted by modern microarchitectures. Focusing
on exploiting ILP, this technology has wide applicability, because ILP typically exists throughout
the entire program (with different amounts). Limited by branch prediction accuracy and instruction
window size, however, this technology generally fails to exploit distant or coarse-grained parallelism,
resulting in relatively mediocre speedups. On the other hand, CFG-based techniques expose a
global view of the program and allow discovery of more coarse-grained LLP and TLP, which have
the potential to produce much larger speedups. However, analysis on the CFG must be conservative
and consider the large number of possible paths of program execution, some of which may be rarely
executed. This requires the compiler to respect control and data dependencies that do not appear
in the actual execution path, inhibiting parallelization and requiring extensive speculation. When
source code is not available, this problem is exaggerated due to the lack of high-level information (e.g.,
types, variables, data structures), which is essential to achieve accurate alias analysis. Furthermore,
when coarse-grained parallelism is hard to exploit, CFG-based techniques typically lack the capability
to extract fine-grained parallelism instead and just execute the program sequentially. Thus, it is
not surprising that most of the existing CFG-based techniques [6, 7, 10] have failed to parallelize at
least half applications in the selected benchmark suite.

Although DIS- and CFG-based techniques are complementary to each other, no prior research
has tried to implement both technologies under a unified system. Such a system may achieve
large speedups from code regions that contain coarse-grained LLP or TLP, and exploit ILP from
the remainder of the program. This combination is quite vital. As Amdahl’s Law shows, even
a small fraction of non-parallelizable code can drastically inhibit overall speedups. Asymmetric
architectures [11, 12] try to address this problem by providing one or more large, OoO cores on
the chip for sequential execution modes, and a larger number of simple, IO cores to maximize

throughput. Due to chip area constraints, however, this organization reduces the number of total
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cores on the chip, hurting the performance of code regions where plentiful LLP can be exploited.
The Oo0 core may also not be available when needed, if multiple applications are sharing the CPU.
Furthermore, when LLP or TLP is limited, there will often be more coarse-grained tasks needing
further acceleration via ILP than there are OoO cores. Finally, prior research [3, 4, 5] suggests that
cooperative work of multiple IO cores can generally outperform or at least compete with an OoO

core, which may obviate the need for an asymmetric architecture in the first place.



Chapter 3

Limit Study on Parallelizing Traces

Before developing any specific design of trace-based DBP, it is both important and necessary to
conduct a limit study to prove its feasibility. Our limit study has two goals: 1) identify the perfor-
mance limits of trace-based DBP, and 2) explain why trace-based DBP performs as it does. The
first goal is to set up the performance upper bound so that any following specific design can be
judged to determine whether it has fully exploited the benefits of trace-based DBP. The second
goal is to identify the unique and powerful characteristics of trace-based DBP that enable it achieve
substantial speedups. We highlight these characteristics by comparing trace-based DBP to static

parallelization which is typically performed by the compiler.

3.1 Overcoming Inherent Handicaps of Static Parallelization

We expect trace-based DBP to overcome two inherent handicaps of static, compile-time paralleliza-
tion. First, trace-based DBP can exploit parallelism across boundaries between application and
library code because traces are natually formed in which application and library instructions are in-
terleaved. This is not possible at compile time because dynamically loaded libraries are not available.
Even for those libraries that are accessible at compile time, they are normally in binary formats and
cannot be handled by most static parallelization techniques, all of which require source code to be
analyzed. Plugins and dynamically-generated code usually cause the similar problem.

Second, trace-based DBP can perform more aggressive parallelization than static techniques
because every trace typically has fewer true dependencies than the CFG. This is because analysis
of the CFG will produce true dependencies for all possible execution paths, while analysis of each

trace will produce true dependencies for only a single execution path which is actually taken. For
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Figure 3.1: Analysis of the trace (dashed arrow) produces fewer true dependencies than analysis of
the CFG@G, leading to improved parallel performance.

example, Figure 3.1(a) shows the CFG of a small program snippet containing five instructions: Iy,
Is, I3, I, and I5. Analysis of this CFG reveals three true dependencies: Iy — Is, I3 — I, and
I — I4. The last true dependency exists due to the possible execution path through Is. The best
possible parallelization of the left branch (dashed arrow) in this CFG that respects all three true
dependencies is depicted in Figure 3.1(b), with a parallel execution time of three clock cycles. On the
contrary, if the execution path along the left branch is converted into a trace at run time, an analysis
of the trace would not find the true dependency Iy — I, because I3 produces the most recent value
of Ry. A parallelization of this trace would thus run the same instructions with a parallel execution
time of only two clock cycles, as depicted in Figure 3.1(c). Thus, trace-based DBP can be more
aggressive than static parallelization because it must only consider true dependencies that manifest
in a single execution path, while static techniques tend to be conservative because they respect true

dependencies from all possible execution paths.

3.2 Limit Study Setup

We analyze the performance limits of trace-based DBP by making three idealizations about the
hardware and algorithms: 1) the program runs on a many-core architecture with an unbounded
number of cores and an unlimited, shared L1 cache, 2) the trace construction algorithm can always
identify the most frequently repeating patterns of instructions that will occur in a particular run
of the program, and 3) when the program reaches a repeating trace, the trace prediction algorithm

can always correctly predict the trace that is about to run, which we call perfect one-step prediction.
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These three idealizations are reasonable in the sense that real hardware and algorithms should
actually approach them as they improve over time. If the number of cores double every 18 months
as expected [1], processors may soon have more cores than trace-based DBP could ever use. The
trace construction algorithm will improve dramatically as it is increasingly informed by compile-
time analysis [84] and program profiling [85, 86]. When the next executed trace has been cached,
perfect one-step prediction is already possible by simply executing in parallel all existing traces that
begin with the next target address and, from this perspective, improvements in trace prediction will
simply reduce the number of cores required for perfect one-step prediction. Thus, we expect the
performance upper bound found in this limit study to be tight in the sense that the performance of
trace-based DBP may actually approach this bound as technologies evolve.

In order to conduct this limit study, we perform a five step process for each application in
the SPEC CPU2000 benchmark suite: 1) record the complete execution sequence of the program,
2) analyze the recording offline to identify the frequently repeating traces, 3) create a new execution
sequence by replacing each trace in the original execution sequence with the parallelized version,
4) analyze the parallel execution time of the new execution sequence using a model of a shared-
memory many-core architecture, and 5) replay a linearization of the new execution sequence on a real
machine and check the correctness of the result: a successful replay implies correct synchronizations
within the parallelized traces. The perlbmk benchmark was omitted because it recursively calls
itself, starting multiple instances of our capture framework and exhausting memory of the machine.
All benchmarks are executed using the test data sets as input. In the following sections, we will
describe in detail how we implement each of these steps.

Other studies have built systems to efficiently record program execution [85, 86], and some can
also replay the recording by capturing non-deterministic events such as interrupts, preemption, and
user input [87, 88]. Our framework is unique in that we can modify the execution sequence and
replay the modified version to verify that it is equivalent to the original execution, which will be

widely applicable to future studies on dynamic trace-based systems.

3.2.1 Recording Execution Sequences

We record the original execution sequence of the program by inserting instrumentation code to the
binary executable. This is performed by employing translation-based dynamic instrumentation to
the benchmark during its execution. Whenever a new basic block is translated, instrumentation code

is inserted to record the program counter whenever the basic block gets executed. Instrumentation
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code is also inserted to record the effective address of every load and store instruction, as well as the
memory value of each load instruction. We record the actual memory values so that the program
can be deterministically replayed. Otherwise, background operating system processes could change
the state of certain system libraries, creating non-deterministic effects during program playback. We
record the effective addresses of memory references to perform perfect memory disambiguation, as
will be described in Section 3.2.3.

The instrumentation code saves necessary state of the program, calls the appropriate logging
code, and then restores the state of the program before continuing execution. All instrumentation
is performed at the binary code level and not at the source code level. This avoids unintended
interactions between instrumentation code and compiler optimizations, thereby ensuring that we
are executing the true binary executable for each benchmark.

Recording the complete execution sequence of the program produces a large amount of infor-
mation and so we use double buffering [89] to reduce runtime overhead and apply the VPC3 algo-
rithm [90] to compress the collected information. This greatly increases execution speed and reduces
disk space requirements, although a typical one second program still requires three minutes and fifty
megabytes of disk space to record. We record program execution on a SPARC/Solaris machine, in
part because RISC ISAs are understood to be more suitable for many-core architectures [91]. The

results of our limit study should generalize at least to other RISC ISAs.

3.2.2 Analyzing Execution Sequences to Construct Repeating Traces

Once the execution sequence has been recorded, we construct traces by finding all frequently re-
peating patterns of instructions. We do this using an offline dictionary-based algorithm that is
typically used for compression [92], shown in Figure 3.2(a). Initially every basic block is defined to
be a unique symbol. We then identify the two symbols s; and s; that are the most frequent pair
of adjacent symbols in the entire execution sequence (lines 2 to 8). If no pair appears more than
once, the algorithm stops (line 13). Otherwise, we replace all occurrences of s;s; with a new symbol
A;j (lines 10 to 11). The execution sequence now has fewer symbols and the algorithm repeats to
again find the most frequent pair of adjacent symbols. When the algorithm completes, all symbols
remaining on the execution sequence become the selected traces. Figure 3.2(b) shows an example of
how traces are constructed on an execution sequence of eight basic blocks (a,b, ¢, a,b, a,b,c). In the
first iteration, ab is found to occur most frequently (three times) and is replaced by a new symbol

A. In the second iteration, Ac occurs two times and is replaced by a new symbol B. After that,
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Figure 3.2: The idealized trace construction algorithm finds the most frequently repeating patterns of instructions in the entire execution sequence,
as shown in the example. The handicapped version does not construct traces across boundaries between application and library code.
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no pair of adjacent symbols occurs more than once and the algorithm completes, constructing two
different traces A (basic block sequence a,b) and B (basic block sequence a, b, c¢).

The traces constructed in this phase are the ones that will be parallelized in the next phase. The
choice of this trace construction algorithm corresponds to the idealized assumption that frequently
repeating traces can always be identified at run time, perhaps with the help of compile-time anal-
ysis [84] and program profiling [85, 86]. One advantage of this assumption is that a small set of
repeating traces cover a large portion of dynamic instructions and thus have a high probability to be
predicted accurately [46]. One study of short traces about seven basic blocks long has demonstrated
that even a very shallow execution history is effective enough to achieve close to 90% prediction
accuracy on average [93].

We can modify the trace construction algorithm to handicap trace-based DBP so that it cannot
parallelize across boundaries between application and library code. More specifically, we replace the
original check_pair function (Figure 3.2(c)) invoked on line 3 of the trace construction algorithm with
an alternative version that only allows two adjacent basic blocks to be combined into a single symbol
if both of them belong to application code or both of them belong to library code. The pseudo code
for this handicapped algorithm is illustrated in Figures3.2(d) and its effects on execution speed will

be analyzed in Section 3.3.

3.2.3 Parallelizing Execution Sequences

Once the repeating traces in the execution sequence are identified, they are parallelized using a
modified version of the dynamic critical path scheduling algorithm [94], which is derived from prior
research on allocating task graphs to fully-connected multi-processors. This algorithm is selected
because it has been experimentally demonstrated to produce the minimum execution time among
all comparable algorithms. For the purposes of trace parallelization, we define each instruction to

be a separate task. For each trace, we perform the following four steps:

1. Identify true dependencies in the trace and build the dependency graph. Initialize the current

schedule to be an empty schedule.

2. Calculate the absolute earliest start time (AEST) and absolute latest start time (ALST) of
each instruction based on the current schedule. Let L be the group of instructions with the
smallest value of ALST — AEST, and pick instruction ¢ from L that does not have predecessors

in L. Ties are broken arbitrarily.
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3. Schedule instruction ¢ on core j where 1) after insertion, it does not delay the ALST of all
instructions that are already scheduled on that core, including itself, and 2) there are no

violations of any true dependencies.

4. Go back to Step 2 if all instructions are not scheduled.

Calculation of the AEST and ALST requires an analysis of the program’s dependency graph.
True register dependencies are easily identified. Anti and output register dependencies are elimi-
nated using renaming technologies to increase scheduling flexibility. On the other hand, many of
memory dependencies are ambiguous, where two load or store operations refer to a memory address
that has not yet been calculated, and so the system cannot tell whether or not there is a dependency
between them. We use the actual effective addresses that are recorded during the original execution
sequence to disambiguate these memory references, and only take the real memory dependencies
into account when calculating the AEST and ALST. Memory disambiguation is a standard tech-
nique employed by many parallelization and OoQO execution systems to execute memory reference
instructions (i.e., loads and stores) out of program order. Both software-based and hardware-based
techniques have been developed, and experimental results have shown approximately 80% accuracy
in memory disambiguation for some applications [28, 95].

After all the traces are parallelized, we replace their occurrences in the original execution sequence
with the parallelized versions. This new execution sequence represents the idealized execution se-
quence that a trace-based DBP implementation might produce in the real world. Correctly replacing
every single trace in the original execution sequence with the parallelized version corresponds to the
idealized assumption of perfect one-step prediction. As stated earlier, when the next executed trace
has been cached, this assumption can be satisfied if a trace-based DBP system can execute multiple
predicted traces in parallel.

We can modify the trace parallelization algorithm by considering more or less data dependencies
in Step 1. For example, we can handicap the algorithm by considering all true register dependencies
in the CFG, instead of only those in the trace. This would emulate the handicap of static paralleliza-
tion that is conservative because it has to respect all true dependencies carried by every possible
execution path. On the other hand, we can employ optimizations such as constant propagation be-
fore parallelization to eliminate unnecessary register dependencies and similarly, we can eliminate all
memory dependencies, which would emulate the advantage of having perfect value prediction [96, 97].
The effects of these modified versions of the trace parallelization algorithm on execution speed will

be analyzed in Section 3.3.



3.2 | Limit Study Setup 28

3.2.4 Modeling Parallel Execution Time

Once the parallel execution sequences are created, we analyze them using a model of a shared-
memory multi-core architecture to calculate the parallel execution time. We assume hardware that
is ideally suited for trace-based DBP and that is not currently available on the market. However,
all individual components and features of our hardware model are either currently available or are
achievable or nearly achievable using current technologies. The only aspect of the hardware model
that is not currently achievable is the assumption of an unlimited number of cores with an unbounded,
shared L1 cache (i.e., no memory access latency), which becomes one of the idealized assumptions.
We use the same hardware model to calculate the time of both the unmodified sequential execution
sequence and the parallelized execution sequence.

In order to calculate the execution time of a sequence of instructions, we define each instruction
to have an execution time of one clock cycle due to pipelining. We define the execution time of a
parallelized trace to be the maximum AEST of all instructions in the trace plus one, to account for the
execution of the last instruction. We require at least one clock cycle to separate any two instructions
with true register dependencies and any memory dependencies that execute on different cores, for
inter-core communication. Software-based synchronization techniques such as locks, barriers, and
monitors can cause more than one clock cycle of runtime overhead due to the interactions with the
operating system, but special hardware such as synchronization array [98] and operand network [99]
provide efficient, non-memory-based communication between different cores on the same chip. These
technologies enable the production and consumption of a single register value on different cores to
be performed in back-to-back cycles, as long as the path between the two cores is not congested.
Thus, we aggressively set the inter-core synchronization time to be one clock cycle.

Dynamic trace-based systems typically incur runtime overhead for analyzing and manipulating
traces, inserting new traces into the trace cache, deleting outdated traces from the trace cache,
and other trace management operations. On many-core architectures, we assume that all of these
operations are shipped to idle cores, and that it has no impact on the execution speed of the
actual program. Even for single-core architectures, the total runtime overhead of software dynamic
translation can be as low as 3% [100, 101], which can be further amortized when used in combination
with one of the many other reasons for virtualization.

Dynamic trace-based systems also incur runtime overhead because they have to observe execu-
tion patterns in order to construct traces. One widely used technology is software-based dynamic

instrumentation in which the system inserts instrumentation code to each basic block for obtaining
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the execution history. However, this technology can cause the target program to run up to two
times slower on average [41, 42]. In the mean time, a variety of hardware-based instrumentation
techniques have been proposed to directly integrate trace construction with non-critical stages of in-
struction pipeline execution, which dramatically reduce runtime overhead. Recently, Intel Research
has designed log-based architecture [102] that captures an instruction-grained log from a monitored
program and ships it to another core that performs further processing. Additionally, prior research
has also proposed a chip-wide branch trace buffer [45], which makes the execution history of one core
visible in real time to the other cores on the same chip. Use of these transparent, hardware-based
techniques would make the runtime overhead of execution monitoring negligible and thus, we assume
that trace construction occurs simultaneously with actual program execution and does not need to

consume any extra clock cycles.

3.2.5 Verifying Parallel Execution Sequences

In addition to calculating execution time, we also execute the parallelized execution sequence to
ensure correct synchronizations within the parallelized traces. In order to do this, all basic blocks
and traces in the final execution sequence are linked together into a single executable, loaded into
to its original address space, and replayed on a real machine. For parallelized traces, a lineariza-
tion is created based on the final AEST of each instruction. This process does not test all possible
linearizations and thus does not guarantee that the synchronization is one hundred percent correct,
but it does create a linearization that is substantially different from the original execution sequence
and allowe us to verify several benchmarks with reasonable confidence. During the replay, renamed
registers are allocated in a software-based register file to avoid expensive post-scheduling register
allocation on such long instruction sequences. Furthermore, load instructions are not actually ex-
ecuted. The corresponding memory value that is recorded in the original execution is provided to
the target register. This prevents background processes in the operating system from producing

non-deterministic values which can cause segmentation faults.

3.3 Experimental Results

We use the limit study framework described in Section 3.2 to analyze the performance of trace-
based DBP on the SPEC CPU2000 benchmark suite. We test and compare four different versions
of the trace-based DBP implementation. The first two implementations use handicapped versions

of the trace construction and parallelization algorithms, as described in Sections 3.2.2 and 3.2.3,
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respectively. These handicaps emulate varying degrees of the two handicaps of static parallelization
described in Section 3.1. The third implementation is standard trace-based DBP with no handicaps
applied. The fouth implementation is an enhanced version of trace-based DBP that uses constant
propagation to eliminate unnecessary register dependencies and uses perfect value prediction to
eliminate all memory dependencies, as described in Section 3.2.3. These four implementations are

named and defined as follows:

e T-DBP—2: trace construction cannot cross boundaries between application and library code;

trace parallelization is constrained by all true dependencies found in the CFG.
e T-DBP—1: trace construction cannot cross boundaries between application and library code.
e T-DBP: both trace construction and trace parallelization are unconstrained.

e T-DBP+1: trace parallelization does not consider unnecessary register dependencies and all

memory dependencies.

The performance of all four trace-based DBP implementations is illustrated in Figure 3.3, with the
results of integer benchmarks and floating point benchmarks put into separate graphs. The average
speedup over sequential execution is 9.36x and 22.34x for integer and floating point benchmarks,
respectively. This number can be as high as 30.04x for integer benchmarks (vortex) and 54.81x for
floating point benchmarks (mgird). The higher speedup for floating point applications is likely due
to the fact that they contain a larger fraction of numerical code, which has shown to introduce fewer
true dependencies by prior research.

When all handicaps are emulated, the average speedup over sequential execution is 4.68x for
integer benchmarks and 9.36x for floating point benchmarks. This supports the hypothesis that the
ability of trace-based DBP to overcome these two handicaps accounts for its ability to explore a high
degree of parallelism. Eliminating these handicaps improves the performance of trace-based DBP
by more than two times. In the following sections, we will analyze in detail the degree to which

various aspects of trace-based DBP affect its performance.

3.3.1 Analysis of Trace Construction

The relative results of T-DBP—1 and T-DBP indicate that parallelizing across boundaries between
application and library code can improve the average speedup over sequential execution from 6.91x
and 17.12x to 9.36x and 22.34x, for integer and floating point benchmarks, respectively. Note

that the speedup does not necessarily correspond to the percentage of executed basic blocks or
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Figure 3.3: The standard T-DBP achieves an average speedup of 9.36x and 22.34x over sequential
execution for integer and floating point benchmarks, respectively. When all handicaps are artifi-
cially emulated, the average speedup shrinks to 4.68x for integer benchmarks and 9.36x for floating
point benchmarks. Traditional constant propagation and perfect value prediction could potentially
improve execution speed by another factor of 1.97x for integer benchmarks and 3.49x for floating
point benchmarks on average.

instructions that are from libraries, which is illustrated in Figure 3.4. In fact, mcf executes more
library instructions than all other integer benchmarks but also shows the minimum improvement
between T-DBP—1 and T-DBP. On the other hand, the performance of crafty and vortexr degrades
dramatically with only 2% and 11% of its instructions executed in libraries, respectively. Also
note that the library instructions are being parallelized in all versions of the trace-based DBP

implementation. The handicapped version only eliminates parallelization between application and
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Figure 3.4: An average of 10.32% basic blocks or 8.40% instructions for integer benchmarks and
17.91% basic blocks or 11.12% instructions for floating point benchmarks belong to libraries.

library instructions. The degree to which this handicap affects the speedup is related to the degree
to which application instructions are interleaved with library instructions. These results validate the
hypothesis that the inability to parallelize across boundaries between application and library code
is a significant handicap for static parallelization.

When all handicaps are removed, trace-based DBP constructs very long traces. Figure 3.5 depicts
the average number of basic blocks within each constructed trace, which can be as large as 1,880 for
integer benchmarks (vortex) and 26,931 for floating point benchmarks (mgrid). This indicates that

the applications in this benchmark suite tend to repeat long sequences of instructions. Figure 3.6
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Figure 3.5: The average trace length is 235 basic blocks for integer benchmarks and 4,565 basic
blocks for floating point benchmarks.

illustrates the percentage of basic blocks in the entire execution sequence that are not formed into
traces. For all applications, nearly all basic blocks are combined to construct longer traces and
can be parallelized for later reuse. The singleton basic blocks that do occur are primarily from
the prologue and epilogue of the program. Both of these results support the hypothesis that for
a typical program, a relatively small number of traces can almost cover all dynamic instructions,

which suggests good trace predictability.



3.3 | Experimental Results 34

0.08%
0.07%
0.06%
0.05%
0.04%
0.03%
0.02%
0.01%

0.00% T T T T

K >V
‘:’;\'\QAQK & ¢ <

(a) CINT2000.

0.20%

2.51%
0.15%

0.10%

0.05%

0-00% T I T T T T
Q&

(b) CFP2000.

Figure 3.6: An average of 0.02% basic blocks for integer benchmarks and 0.19% basic blocks for
floating point benchmarks are not formed into traces.

3.3.2 Analysis of Trace Parallelization

The only difference between T-DBP—2 and T-DBP—1 is that T-DBP—2 performs dependency anal-
ysis on the CFG during the parallelization process while T-DBP—1 performs dependency analysis
on traces. Thus, the relative results of these two versions of the trace-based DBP implementation
indicate the degree to which parallelism increases when performing dependency analysis on traces at
run time instead of on the CFG at comple time. The average speedup of T-DBP—2 over sequential
execution is 4.68x and 9.36x for integer and floating point benchmarks, respectively, while it is 6.91x

and 17.12x of T-DBP—1. Thus, in this experimental condition, dependency analysis on traces can
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produce an average speedup of 1.47x for integer benchmarks and 1.77x for floating point bench-
marks over dependency analysis on the CFG. These results validate the hypothesis that dependency

analysis on the CFG is a significant handicap for static parallelization.

3.3.3 Analysis of Constant Propagation and Value Prediction

The relative results of T-DBP and T-DBP+1 indicate the degree to which dynamic optimizations
such as constant propagation and value prediction could possibly improve the performance of trace-
based DBP. The results indicate that applying traditional constant propagation on traces before
parallelization and applying perfect value prediction during dependency analysis would improve exe-
cution speed by an average factor of 1.97x and 3.49x over standard trace-based DBP, for integer and
floating point benchmarks, respectively, and can improve the final speed by up to 174.30x (applu)
over sequential execution. These results approximate the absolute limit of trace-based DBP, when
unnecessary register dependencies are eliminated and all memory values can be predicted in advance.
State-of-the-art value prediction techniques can achieve approximately 90% prediction accuracy on
some applications [97, 103], although we expect that value prediction accuracy may be higher with
trace-based DBP, which could enable the development of new value prediction techniques that lever-

age runtime information about traces.

3.4 Summary

In this chapter, we study the performance limits of trace-based DBP by making three idealized
assumptions: 1) an unlimited number of cores and an unbounded amount of shared L1 cache, 2) the
construction of most frequently repeating traces at run time, and 3) perfect one-step prediction of
the trace that is about to run. Our results demonstrate the ability of trace-based DBP to produce
an average speedup of 9.36x and 22.34x for integer and floating point benchmarks, respectively. We
hypothesize that this improvement is due to the ability of trace-based DBP to overcome two key
handicaps of static parallelization: 1) it cannot parallelize across boundaries between application
and library code, and 2) analysis of the CFG identifies true dependencies that do not actually appear
during program execution. We quantify the effects of each of these handicaps by artificially applying
them to trace-based DBP, and show that when all handicaps are emulated, the average speedup does
indeed drop dramatically to 4.68x for integer benchmarks and 9.36x for floating point benchmarks.

On the other hand, dynamic optimizations such as constant propagation and value prediction could
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potentially improve execution speed by another factor of 1.97x for integer benchmarks and 3.49x for
floating point benchmarks on average.

Trace-based DBP is not an alternative to most other parallelization techniques. It is an or-
thogonal technique that can be applied simultaneously to create a multiplicative gain. For ex-
ample, trace-based DBP can be combined with value prediction to remove memory dependencies
from traces [7, 68], and can be applied to each thread created by manual parallelization tech-
niques [51, 49, 48, 50, 52]. Trace-based DBP can also be combined with other program manipu-
lations that require program virtualization and/or dynamic binary translation, such as optimiza-
tion [14, 15, 18, 20, 21], ISA translation [26, 27|, profiling [41, 42], or security monitoring [43, 44].

Combining such operations would amortize any overhead of the virtual execution engine.
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Figure 4.1: Tracy takes a sequential instruction stream and transparently converts it to a set of
parallel instruction streams.

Chapter 4

The Tracy Framework

This chapter proposes Tracy, an innovative DBP technology that explores the possibility of leveraging
hot traces to provide a large instruction window without introducing spurious dependencies. Tracy
monitors a program at run time and dynamically identifies these hot traces, parallelizes them, and
caches them for later use so that the program can run in parallel every time a hot trace repeats.
Inspired by multi-path execution [104, 105, 106], Tracy exploits the unique power of many-core
architectures by launching multiple traces and executing them simultaneously on idle cores. The
major insight is that in many cases, speculation accuracy can be dramatically increased by only

trying a very small number of candidate traces.
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Figure 4.2: Tracy uses one core for trace management plus sequential execution, and the remaining
cores for speculative execution of parallelized candidate traces.

Figure 4.1 illustrates the overall framework of Tracy, which involves five algorithmic components.
A conceptual overview of Tracy is explained in Figure 4.2. In Figure 4.2, Core 1 is instrumented
with trace management functionality and starts to execute the unmodified, sequential binary. Simul-
taneously, the trace constructor monitors the instruction stream and identifies traces from frequently
repeating instruction sequences. The traces are then processed by the trace parallelizer and stored
in the trace cache. This parallelization process is offloaded to spare cores in order not to affect the
sequential execution. At every point during execution, the trace predictor checks for candidate traces:
parallelized traces in the trace cache that 1) begin with the instruction that is about to be executed
by the sequential binary, and 2) have a high probability of running to completion. If any exist, it
suspends the sequential execution and launches them on the remaining available cores (Cores 2 to
7). The speculated traces operate on copies of the actual program state. If a trace deviates from
the execution path which is actually taken, it aborts and its copy of program state is discarded. If
any traces run to completion, one of them is selected and its copy of program state is committed
to the suspended sequential execution, which “skips forward” in time to the end of the selected
trace. Figure 4.2 illustrates three example scenarios. First, the right trace aborts and the left trace

succeeds, causing the sequential execution to skip forward. Second, both traces abort and so the
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sequential binary continues running from the last dispatch point. Third, both traces succeed (it is
possible when one trace happens to be the prefix of the other trace) and the copy of program state

from the left trace is selected to commit.

4.1 Motivating Example

While it is relatively obvious that long traces expose more parallelism opportunities than the small
hardware instruction window used by DIS-based DBP techniques, Figure 4.3 illustrates an example
of how Tracy can successfully parallelize some applications when CFG-based DBP techniques fail to.
Figure 4.3(a) shows the CFG of a simple loop with a loop-carried dependency on index variable i.
Assuming the contents of array = are hard to predict, this dependency serializes every iteration of
the loop so that no parallelism can be extracted. During run time, Tracy observes that the program
continues repeating two traces (Figures 4.3(b) and 4.3(e)), each of which comprises two iterations of
the original loop. (In reality, Tracy would build much longer traces. Traces of two iterations are just
for illustrative purposes.) Because the interleaving of these two traces is unpredictable (otherwise,
the contents of array x are also predictable), Tracy has to execute both of them simultaneously to
achieve high speculation accuracy. Because each trace encapsulates only a single flow of control, con-
trol dependencies are eliminated and they can both be aggressively parallelized. Taking the second
trace as an example, it is first optimized to eliminate unnecessary data dependencies. As illustrated
in Figure 4.3(f), the value of variable ¢ defined at statement 3 is propagated to statements 4, 7,
and 8, which breaks the dependency between the two iterations. Thus, these two iterations can
run in parallel as depicted by Figure 4.3(g). In Figure 4.3(h), Tracy further performs fine-grained
instruction scheduling by moving statements 7 and 8 to the first iteration, achieving better load

balance between the two threads.

4.2 Execution Model Justification

Although it dramatically increases speculation accuracy, multi-trace execution does require more
cores and possibly more energy that can otherwise be used to exeute other applications. In practice,
however, this execution model is reasonable and efficient in many computing environments. First,
in most server systems for high performance and research computing, once a job is scheduled, it
has dedicated use of the cores to which it was allocated. Modern applications usually contain both

sequential and parallel code regions, and users tend to request resources greedly to support the most
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parallel parts of the program. These otherwise “wasted” cores can be readily leveraged by Tracy
to automatically parallelize the sequential parts of the program. Furthermore, these computing
environments do not impose any cost to users for energy, and they are often more concerned in the
provisioning stage to ensure sufficient power delivery under peak load. For users interested in getting
their results as quickly as possible, there is no disincentive, and every incentive, to use Tracy. Second,
the same dedicated-resource policy also applies to datacenters to ensure quality of service (QoS) [107].
Co-location on many-core machines is disallowed for user-facing and latency-sensitive applications
to avoid potential interference. As more computing moves into the cloud, these applications are
likely to dominate everyday computing in the future. Tracy, on the contrary, can exploit these
idle cores to provide better QoS. Energy consumption does matter in datacenters because profit is
heavily affected by operating efficiency. However, the CPU chip is only a small fraction of overall
energy consumption. Large DRAM, disk, power supply inefficiencies, etc. are also major factors
that impose a constant background “system leakage” while the machine is awake. “Wasting” some
energy on the CPU chip to complete the task further and thus reducing energy spent on these other
factors may be justifiable. For example, if the other factors are constant and the CPU chip consumes
30% of the total power, increasing the CPU chip power by 2x but reducing execution time by even

a mere 1.3x is break-even on energy.

4.3 Hardware Architecture

Tracy assumes that a many-core chip is organized into master clusters and slave clusters, as illus-
trated in Figure 4.4. Cores within each cluster are connected via a cluster bus, and different clusters
are connected via a backbone bus. Such a hierarchical bus design is inspired by [108], and can be
easily replaced by other on-chip networks (e.g., 2D Mesh [109]). The backbone bus is also segmented
and connected with simple tri-state gates to pipeline sequential transfer of bulk data between the
same source and destination core [108]. In each master cluser, at least one core is instrumented with
special hardware to support execution monitoring and trace management, which will be described
in Chapter 5. Several other cores are dedicated for trace parallelization, depending on the actual
workload during run time. Tracy does not rely on any centralized hardware to support collaborative
fetch, renaming, memory disambiguation, or commit, which is essential in existing DBP technologies
to enable fine-grained multithreading [3, 4, 5]. Besides trace construction and prediction, however,
Tracy does require some extra support from the underlying architecture, which will be described in

the following sections in detail.
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Figure 4.4: Tracy assumes that a many-core chip is organized into master clusters with a specially-
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Figure 4.5: Each entry in the synchronization array is correlated to a unique register or memory
reference that needs to be synchronized. While the actual value of each synchronized register is
explicitly transferred through the array, a boolean value is just enough for a pair of dependent
memory references to maintain the correct order.

4.3.1 Supporting Low-Latency Intra-Cluster Communication

Because one important functionality of Tracy is to exploit fine-grained parallelism (e.g., ILP), it
requires low-latency communication channels among different cores on the same chip to transfer
scalar values. Software-based synchronization techniques such as locks, barriers, and monitors can
cause large runtime overhead due to the interactions with the operating system, but special hardware
such as synchronization array [98] and operand network [99] provide efficient, non-memory-based

communication between different cores on the same chip.
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Within each slave cluster, a multi-banked synchronization array [98] is also connected to all the
cores to provide low-latency communication via dedicated links, which are depicted as part of the
cluster bus. Each separate link connects one core to the array and does not interfere with cache
traffic. As illustrated in Figure 4.5, each entry in the array is correlated to a unique register or
memory reference that needs to be synchronized. Due to this one-to-one correlation, the array can
be aggressively multi-banked in order to maintain low access latency. During program execution,
explict produce and consume instructions inserted in each parallelized thread are used to copy data to
and from the array. While consume instructions can run speculatively, the copy back must happen at
the retire stage of the produce instruction. In the current design choice, after the produce instruction
is decoded, the processor extracts the entry number of the array (no address calculation is needed
as in normal memory loads and stores) and stores it with the instruction that actually produces
the value. When that instruction retires, the value is directly routed to the array. The hardware
cost for this architectural optimization is quite small. For example, in OoO cores, only some extra
bits are needed for each ROB entry. If the consumer arrives earlier than the producer, the core
number of the consumer is recorded and the data will be automatically redirected to it when the
producer finally arrives. While the actual value (e.g., 0x80 in the first entry) of each synchronized
register is explicitly transferred through the array, a boolean value (e.g., 1 in the second entry) is
just enough for a pair of dependent memory references to maintain the correct order. Note that if
one memory reference instruction is dependent on several memory reference instructions on another
core, it only needs to be synchronized with the last one because instructions are retired in order. If
an instruction needs to consume multiple values, they are encoded into one variable-length consume
instruction. In OoO execution, a separate issue queue is dedicated for consume instructions, which

has been adopted and proven important by prior research [3, 35].

4.3.2 Supporting Multi-Trace Execution

In order to predict long traces accurately, Tracy speculatively dispatches multiple candidate traces
at the same time. As long as one trace completes execution, the prediction is considered successful.
Tracy uses the L1 data cache to hold the speculative program state produced by memory accesses,
and each of its lines contains an extra bit to specify whether it has been speculatively modified.
The cluster bus is segmented [108] accordingly to ensure that the copies of program state from
different candidate traces can never be polluted by one another. Tracy also leverages and extends

the underlying cache conherence protocol (MESI in this case) to support multi-trace execution. Note
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| State

Modified (M) | line resides exclusively in this cache only

content is modified relative to main memory

Exclusive (E) | line resides exclusively in this cache only

content is same as main memory

Shared (S) | line resides in this cache but may be shared with other
content is same as main memory

Invalid (T) line contains no valid main memory copy

Description

Table 4.1: In the MESI cache conherence protocol, each cache line is in one of four states: 1) modified,
2) exclusive, 3) shared, and 4) invalid.

| Action | Current State | Next State | Bus Activity |

Read M M none (read hit)
Read E E none (read hit)
Read S S none (read hit)
Read I S/E line fill (read miss)

send inquiry to other caches

Write M M none (write hit)
Write E M none (write hit)
Write S S/E write through (write hit)
send invalidation signal to other caches
Write I I write through (write miss)

send invalidation signal to other caches

Table 4.2: State transfer of the cache line in the MESI cache conherence protocol when responding
to messages initialized from the processor.

| Action | Current State | Next State | Bus Activity |

Read M S provide data on bus and write back
Read E S provide data on bus

Read S S provide data on bus

Read I I none

Write M I provide data on bus and write back
Write E I none

Write S I none

Write I I none

Table 4.3: State transfer of the cache line in the MESI cache conherence protocol when responding
to messages initialized from the snoopy bus.

that this modification does not have any inherent dependencies on snooping-based protocols and can
be ported easily to directory-based protocols.

In the MESI protocol, each cache line is in one of four states, which are described in Table 4.1.
Table 4.2 and 4.3 list the state transfer of each cache line when responding to messages initialized
from the processor and the snoopy bus, respectively. In order to support multi-trace execution, the

MESTI protocol is modified as follows.

e If any read or write miss occurs in the L1 data cache of a slave core (i.e., slave cache) and the
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cache line cannot be provided locally by other collaborative caches that are occupied by the
same candidate trace, the request is sent to the L1 data cache of the master core (i.e., master
cache). If the cache line still cannot be provided, the L2 cache is then accessed. This extra
process implicitly transfers live-in cache lines from squential execution to the candidate trace.
When receiving the write miss message, the master cache does not have to invalidate its own
copy of the cache line because the candidate trace may abort later due to mis-speculation.
On the contrary, when receiving the read miss message, the master cache does update the
state of its cache line because it will remain valid in the requesting slave cache even when the

corresponding candidate trace aborts.

e If any speculatively modified cache line is forced to be replaced in a slave cache, the candidate

trace aborts. According to our experience, this situation rarely happens in practice.

e If a candidate trace aborts or is not selected to commit, all of its speculatively modified cache
lines are invalidated. Otherwise, they are explicitly broadcasted to the master cache and all
other slave caches as live-out cache lines. If the master cache cannot hold all these cache
lines, they are written back to the L2 cache to become part of the permanent state. On the
contrary, if any slave cache cannot hold all these cache lines, they are simply discarded. Finally,
exclusive cache lines in all slave caches are changed to the shared state because they may have

been requested by different candidate traces.

4.4 Summary

Tarcy is an innovative DBP technology that explores the possibility of leveraging hot traces to pro-
vide a large instruction window without introducing spurious dependencies. Inspired by multi-path
execution [104, 105, 106], Tracy exploits the unique power of many-core architectures by launching
multiple traces and executing them simultaneously on idle cores. Multi-trace execution is essential
to Tracy’s capability to exploit more coarse- and fine-grained parallelism than DIS- and CFG-based
DBP techniques. For ILP, this technology enables the construction of very long tracs that expose
more distant parallelism and for LLP, this technology increases the possibility to break loop-carried
dependencies that can not be handled by value prediction.

Multi-trace execution does require more cores and possibly more energy that can otherwise
be used to exeute other applications. In practice, however, this execution model is reasonable and

efficient in many computing environments, such as high performance computing, research computing,
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cloud computing, and data centers. Furthermore, the CPU chip is only a small fraction of overall
energy consumption. Large DRAM, disk, power supply inefficiencies, etc. are also major factors
that impose a constant background “system leakage” while the machine is awake. “Wasting” some
energy on the CPU chip to complete the task further and thus reduce energy spent on these other
factors may be justifiable. For example, if the other factors are constant and the CPU chip consumes
30% of the total power, increasing the CPU chip power by 2x but reducing execution time by even
a mere 1.3x is break-even on energy.

Tracy leverages and extends the underlying cache conherence protocol (MESI in this case) to
support multi-trace execution. If any speculatively modified cache line is forced to be replaced in
a slave cache, the candidate trace aborts. All cache lines that are speculatively modified by the
committed trace are broadcasted to the master cache and all other slave caches as live-out cache
lines. These cache lines become part of the permanent state and have to be written to the L2 cache

if the master cache cannot hold all of them.



Chapter 5

Trace Construction and Prediction

High quality traces are the prerequisite for Tracy to effectively exploit both coarse- and fine-grained
parallelism. More specifically, perfect traces have to simultaneously satisfy four requirements, which
can be contrary to one another. First, traces have to be as long as possible to expose more distant
parallelism opportunities. Second, traces have to be logically atomic. They should have a single
entry point, a single exit point, and the control flow cannot exit prematurely through side exits.
Thus, analysis can ignore all unnecessary control and data dependencies, enabling more aggressive
parallelization. Third, traces have to be predicted accurately so that valuable CPU cycles and energy
are not wasted on executing incorrect execution paths. Fourth, traces have to cover a large portion

of dynamic instructions so as to produce large overall speedups.

5.1 Extending Branch Promotion

In prior research, rePlay [21, 46] constructs the longest atomic traces that can be predicted accurately.
rePlay uses a bias table to keep track of whether each conditional branch has gone in the same
direction for 32 consecutive times. If it has, the bias table indicates that the conditional branch
should be promoted to an assertion, which is called branch promotion. Each instruction is appended
to the end of the trace construction buffer when it is retired. Once an unpromoted conditional branch
is encountered, the pending trace is considered complete. A separate bias table is maintained for
indirect branches and returns. For such control transfer instructions, a single bit for the last direction
does not suffice and the target address must be kept in each entry. rePlay also associates each control
transfer instruction with the global branch history [47]. This context sensitive information separates

each control transfer instruction into instances based on the execution path leading up to itself.

47
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Once separated this way, a greater number of control transfer instructions tend to exhibit biased
behavior. The starting branch history of each trace (i.e., the branch history associated with the first
control transfer instruction in the trace) is kept with the trace and only when the prior execution
path matches this history, the corresponding trace is predicted to run.

rePlay is not compatible with multi-trace execution because it only constructs one trace under
each different context. Thus, as the first step to further enlarge trace length, we relax the require-
ments of the original branch promotion heuristic so as to construct multiple longer traces under each
different context, which can be predicted to run simultaneously. During program execution, each
control transfer instruction is instrumented to track the frequency with which it jumps to each target
address. As each instruction is retired, it is appended to the end of the trace construction buffer,
causing the pending trace to grow. Whenever a control transfer instruction is encountered and the
frequency associated with its current target address exceeds 25%, it is promoted to be an assertion
and treated as a normal instruction. Otherwise, the pending trace is terminated. An 11-element
branch history is used to differentiate the same control transfer instruction under different contexts,
assuming perfect alias resolution. Each trace is limited to be between 16 and 16K instructions long,
and there are no restrictions on the number of traces that can be constructed. We use a simple
trace prediction heuristic that dispatches every trace that 1) starts with the next target address,
and 2) its starting branch history matches the prior execution path. If multiple candidate traces
run to completion, the longest one is selected to commit.

We evaluate the above trace construction and prediction heuristics using the SPEC CPU2000
benchmark suite with the test data sets as input. Experimental results listed in Table 5.1 indicate
that the constructed traces generally meet the four requirements to be considered high quality,
especially for floating point applications. However, a more comprehensive analysis shows that some
serious flaws exist by simply integrating branch promotion and multi-trace execution.

The third column of Table 5.1 lists the total size of unique traces that commit at least once
during program execution. This is a conservative estimate of the working set size of traces, because
a simple cache eviction policy [110, 111] could eliminate those traces that are constructed but never
commit. Benchmarks like perlibmk, swim, mgrid, applu, lucas, fma3d and apsi do not experience
serious code expansion through this technology. Because each trace can be always dispatched to the
same core, the collaboration of all cores on the same chip can provide a large enough L1 instruction
cache to hold the entire working set of traces. Furthermore, because traces only contain straight-line
sequences of instructions, the traditional Next-N-Line prefetching scheme [112] works perfectly to

fetch needed instructions into the L1 instruction cache on time. For half benchmarks, however, the



SPEC CPU2000 Trace Construction Trace Prediction Execution on
Benchmark Trace Size (MB) | Avg. Trace Length | Above 400 % | Accuracy | Avg. Candidate # Traces %
gzip 32.87 174.23 4.65% 96.61% 51.83, 5.41 99.49%
vpr 20.06 111.24 1.31% 92.78% 66.31, 8.35 98.43%
gee 163.68 168.35 7.65% 85.18% 18.28, 4.10 94.07%
mef 17.34 112.47 1.44% 81.40% 32.58, 4.11 95.33%
crafty 212.65 129.40 4.29% 91.51% 22.26, 3.19 95.92%
INT parser 137.71 96.35 1.46% 88.50% 35.92, 6.40 96.70%
eon 8.49 291.18 19.71% 88.94% 11.07, 3.00 90.37%
perlbmk 1.29 318.23 16.78% 99.17% 5.20, 1.28 99.49%
gap 45.08 153.37 4.79% 92.92% 16.92, 3.57 97.43%
vortex 13.66 153.76 5.34% 99.11% 7.25, 1.60 99.85%
bzip2 147.60 305.23 20.79% 98.53% 192.88, 14.85 99.75%
mcf 23.30 213.20 14.36% 86.34% 23.95, 4.99 92.15%
wupwise 20.91 555.08 28.73% 94.45% 4.61, 1.60 97.18%
swim 1.42 984.85 10.14% 99.57% 7.08, 1.26 99.88%
mgrid 3.95 7,548.63 98.60% 99.98% 8.03, 1.18 99.99%
applu 2.62 6,892.11 95.96% 96.24% 2.63, 1.15 97.90%
mesa 62.98 400.54 33.16% 99.71% 6.57, 2.60 99.60%
galgel 35.22 801.19 80.33% 94.27% 33.23, 4.54 96.20%
FP art 12.54 365.37 10.91% 98.65% 34.60, 2.30 99.84%
equake 22.90 385.90 21.37% 83.33% 8.30, 1.75 89.88%
facerec 13.89 2,745.72 79.88% 94.22% 11.25, 1.39 99.56%
ammp 39.71 233.80 13.73% 94.28% 31.26, 2.44 99.06%
lucas 2.97 363.19 1.83% 99.98% 52.04, 1.13 99.99%
fma3d 0.57 416.87 27.83% 54.87% 6.67, 2.96 69.46%
sixtrack 17.68 468.09 58.37% 96.42% 6.29, 1.95 99.10%
apsi 4.66 1,262.80 66.66% 99.90% 8.32, 1.56 99.97%

Table 5.1: This table shows 1) the total size of unique traces that commit at least once, 2) the average length of traces that commit in each correct
prediction, 3) the percentage of committed traces that are longer than 400 instructions, 4) the trace prediction accuracy, 5) the average size of the
candidate trace pool and the average sorted rank of the committed trace in that pool, and 6) the percentage of instructions executed by the unmodified
program that are covered by correctly predicted traces.
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total size of useful traces is more than 20 MB, which is not likely to be even fit entirely in the L3 cache
on modern microarchitectures. In most cases, a large portion of these traces are constructed within
a small number of code regions that have complicated control flows, which can not be predicted
accurately by only executing a small number of candidate traces. Thus, these code regions do not
benefit from trace-based DBP and should continue executing sequentially.

The fourth column of Table 5.1 lists the average length (in instructions) of committed traces,
weighted by the number of times that each trace commits. The fifth column lists the percentage
of times that the committed trace contains more than 400 instructions. This threshold is selected
due to our experience and such long traces have a higher probability to contain corase-grained par-
allelism (e.g., LLP) that may produce larger speedups. For four floating point benchmarks (mgrid,
applu, facerec, apsi), a majority of committed traces contain more than 400 instructions, with
the average trace length in the thousands. Other floating point benchmarks and all integer bench-
marks have shorter traces, in which fine-grained parallelism (e.g., ILP) is more likely to be exploited.
However, after manually inspecting the constructed traces, we find that traces are terminated pre-
maturely for most of the benchmarks. Recall that in the trace construction heuristic, only when the
frequency associated with the current target address of the control transfer instruction exceeds 25%,
it is promoted to an assertion and the pending trace continues growing. This requirement almost
guarantees that the pending trace will be terminated after the innermost loop is exited. If there are
not enough iterations in the innermost loop, the constructed trace is unnecessarily curtailed when
more instructions should have be appended.

The first number in the seventh column of Table 5.1 is the average number of candidate traces
per prediction, which forms the candidate pool. These numbers can be large, especialy for integer
benchmarks, which indicates that blindly executing all traces in the candidate pool would not be
energy proportional to the performance increase and in many cases, the underlying architecture
would not have that many cores to execute all of the candidate traces simultaneously. We then
sort the candidate pool in decreasing order of the number of times each trace commits in prior
program execution, with ties being broken by placing the longer traces first. The second number
in the seventh column of Table 5.1 shows the average rank of the committed trace in the sorted
candidate pool. Nine out of 14 floating point benchmarks have average rank of less than two and
almost all benchmarks have average rank less than five. Thus, a simple heuristic to only execute
a small number of high priority candidate traces in parallel is likely to substantially improve the
energy proportionality while maintaining high prediction accuracy.

Compared to the original rePlay implementation, multi-trace execution dramatically increases
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| Parameter | Definition |
MinTrLeng minimum trace length
MaxTrLeng maximum trace length
MinLoopLeng minimum loop-derived trace length that is initially assigned
LoopDivisor divisor to reduce minimum loop-derived trace length until
minimum trace length is reached
MinBlkLeng minimum length of a basic block to be a valid code structure
MaxTrNum maximum number of traces that start with the same address

MinSpecAccuracy | minimum speculation accuracy for a code structure to remain
valid when maximum trace number is reached

TrDiscThold number of times that traces derived from a code structure are
allowed be discarded consecutively

TrConstThold number of times that a trace has to repeat before being officially
constructed

Table 5.2: Parameter definition of the trace construction algorithm.

trace length while achieving higher speculation accuracy and larger coverage of dynamic instructions.
Simply integrating branch promotion and multi-trace execution, however, has two drawbacks. On
one hand, branch promotion sometimes overuses multi-trace execution by constructing traces from
code regions that have complicated control flows, which do not benefit from trace-based DBP and
should continue executing sequentially. On the other hand, branch promotion sometimes underuses
multi-trace execution by terminating traces prematurely when the innermost loop is exited. Thus,
it is both important and necessary to develop novel trace construction algorithms that fully but

carefully exploit the unique power of multi-trace execution.

5.2 Exploiting Hierarchical Code Structures

Based on the above observations, We develop an innovatative trace construction algorithm that
holistically balances among trace length, speculation accuracy, and coverage of dynamic instructions.
Tracy constructs the longest traces that can be accurately speculated on the available number of
cores. In certain code regions that have complicated control flows, Tracy stops constructing traces
and executes these code regions sequentially.

In order to reduce runtime overhead, Tracy implements dynamic instrumentation in hardware
by directly integrating trace construction with instruction pipeline execution, which has been widely
adopted by prior research [1