
Trace-Based Dynamic Binary Parallelization

A Dissertation

Presented to

the Faculty of the School of Engineering and Applied Science

University of Virginia

In Partial Fulfillment

of the requirements for the Degree

Doctor of Philosophy (Computer Science)

by

Jing Yang

June 2012

c© 2012 Jing Yang

Abstract

With the number of cores increasing rapidly but the performance per core increasing slowly at

best, software must be parallelized in order to improve performance. Manual parallelization is often

prohibitively time-consuming and error-prone (especially due to data races and memory-consistency

complexities), and some portions of code may simply be too difficult to understand or refactor

for parallelization. Most existing automatic parallelization techniques are performed statically at

compile time and require source code to be analyzed, leaving a large fraction of software behind.

In many cases, some or all of the source code and development tool chain is lost or, in the case

of third-party software, was never available. Furthermore, modern applications are assembled and

defined at run time, making use of shared libraries, virtual functions, plugins, dynamically-generated

code, and other dynamic mechanisms, as well as multiple languages. All these aspects of separate

compilation prevent the compiler from obtaining a holistic view of the program, leading to the risk

of incompatible parallelization techniques, subtle data races, and resource over-subscription. All the

above considerations motivate dynamic binary parallelization (DBP).

This dissertation explores the novel idea of trace-based DBP, which provides a large instruction

window without introducing spurious dependencies. We hypothesize that traces provide a generally

good trade-off between code visibility and analysis accuracy for a wide variety of applications so

as to achieve better parallel performance. Compared to the raw dynamic instruction stream (DIS),

traces expose more distant parallelism opportunities because their average length is typically much

larger than the size of the hardware instruction window. Compared to the complete control flow

graph (CFG), traces only contain control and data dependencies on the execution path which is

actually taken. More importantly, while DIS-based DBP typically only exploits fine-grained paral-

lelism and CFG-based DBP typically only exploits coarse-grained parallelism, traces can be used

as a unified representation of program execution to seamlessly incorporate the exploitation of both

coarse- and fine-grained parallelism.

We develop Tracy, an innovative DBP framework which monitors a program at run time and

i

Abstract ii

dynamically identifies hot traces, parallelizes them, and caches them for later use so that the program

can run in parallel every time a hot trace repeats. Our experimental results have demonstrated that

for floating point benchmarks, Tracy can achieve an average speedup of 1.99x, 1.39x better than the

speedup achieved by Core Fusion, one representative of DIS-based DBP techniques. Although the

average speedup achieved by Tracy is only 1.08x better than the speedup achieved by CFG-based

DBP, Tracy can speed up all floating point benchmarks while CFG-based DBP fails to parallelize

three out of eight applications at all. The performance of Tracy is not always better than the

performance of existing DIS- and CFG-based DBP techniques. However, it takes the first step to

dynamically parallelize the binary executable without using either the raw DIS or the complete

CFG. Thus, this dissertation is expected have a broad impact on future researchers who explore

other representations of program execution for DBP purposes.

Approval Sheet

This dissertation is submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy (Computer Science)

Jing Yang

This dissertation has been read and approved by the Examining Committee:

Mary Lou Soffa, Advisor

Kamin Whitehouse, Advisor

Kevin Skadron, Committee Chair

Westley Weimer

Mircea Stan, Minor Representative

Accepted for the School of Engineering and Applied Science:

James H. Aylor, Dean, School of Engineering and Applied Science

June 2012

iii

To my parents, Yifeng Yang and Yajuan Dai.

iv

Acknowledgments

For my advisors, Prof. Mary Lou Soffa, Prof. Kamin Whitehouse and Prof. Kevin Skadron, who

continuously stimulated my interests in research and encouraged me during those hard times. Their

invaluable advice and selfless supports in both professional and personal matters will be forever

remembered in the rest of my life.

For my parents, Yifeng Yang and Yajuan Dai, who always respected and supported my choices.

Daddy, I believe you are watching over me all the time from heaven.

For my wife, Dr. Meng Wang, who gives me endless love and understands me more than anyone

else. I promise that our life will become much better from now on.

For my committee members, Prof. Westley Weimer and Prof. Mircea Stan, who followed my

research for several years and always provided insightful suggestions and comments.

For my academic brothers and sisters, Shukang Zhou, Prof. Wei Le, Dr. Apala Guha, Na

Zhang, Nguyet Nguyen, Dr. Jason Mars, Dr. Lingjia Tang, Wei Wang, and Tanima Dey, who spent

many hours with me in the lab coding, debuging, and fighting for paper deadlines. Your jokes and

encouragement made my graduate life much more colorful and enjoyable.

For my friends, Jingbin Zhang, Prof. Shan Lin, Weide Zhang, Dr. Jiakang Lu, Dr. Jiayuan

Meng, Dr. Hengchang Liu, Yu Yao, Dr. Tao Long, Ning Zhang, Xiaopu Wang, Dr. Jun Liu, Prof.

Roseanne Ford, Dr. Naveen Kumar, Dr. Daniel Williams, Dr. Gogul Balakrishnan, Dr. Franjo

Ivancic, Dr. Naoto Maeda, Dr. Aarti Gupta, and Dr. Weihong Li, who spent a lot of good time

with me at the University of Virginia and NEC Laboratories America.

v

Contents

Contents vi

List of Tables . viii
List of Figures . ix

1 Introduction 1

1.1 Problems of State-of-the-Art DBP . 2
1.2 Challenges of Trace-Based DBP . 4

1.2.1 Trace Construction and Prediction . 4
1.2.2 Trace Optimization and Parallelization . 5

1.3 Research Overview . 6
1.4 Contributions of the Dissertation . 9
1.5 Organization of the Dissertation . 10

2 Background and Related Work 11

2.1 Evolution of Traces . 11
2.2 Software Dynamic Translation . 12
2.3 Manual Parallelization . 14
2.4 Automatic Parallelization . 15

2.4.1 Static Source Parallelization . 16
2.4.2 Static Binary Parallelization . 17
2.4.3 Dynamic Source Parallelization . 17
2.4.4 Dynamic Binary Parallelization . 18

3 Limit Study on Parallelizing Traces 21

3.1 Overcoming Inherent Handicaps of Static Parallelization 21
3.2 Limit Study Setup . 22

3.2.1 Recording Execution Sequences . 23
3.2.2 Analyzing Execution Sequences to Construct Repeating Traces 24
3.2.3 Parallelizing Execution Sequences . 26
3.2.4 Modeling Parallel Execution Time . 28
3.2.5 Verifying Parallel Execution Sequences . 29

3.3 Experimental Results . 29
3.3.1 Analysis of Trace Construction . 30
3.3.2 Analysis of Trace Parallelization . 34
3.3.3 Analysis of Constant Propagation and Value Prediction 35

3.4 Summary . 35

4 The Tracy Framework 37

4.1 Motivating Example . 39
4.2 Execution Model Justification . 39
4.3 Hardware Architecture . 41

4.3.1 Supporting Low-Latency Intra-Cluster Communication 42
4.3.2 Supporting Multi-Trace Execution . 43

vi

Contents vii

4.4 Summary . 45

5 Trace Construction and Prediction 47

5.1 Extending Branch Promotion . 47
5.2 Exploiting Hierarchical Code Structures . 51

5.2.1 Selecting Starting and Ending Points . 53
5.2.2 Appending Retired Instructions . 54
5.2.3 Inserting into the Trace Cache . 54

5.3 Adaptive Speculation . 55
5.4 Experimental Setup . 56

5.4.1 Architectures . 56
5.4.2 Algorithms . 57
5.4.3 Benchmarks . 57
5.4.4 Evaluation Methodology . 58

5.5 Experimental Results . 59
5.6 Summary . 62

6 Trace Optimization 64

6.1 Symbolic Execution . 66
6.2 Memory Disambiguation . 70
6.3 Experimental Setup . 72
6.4 Experimental Results . 75
6.5 Summary . 76

7 Trace Parallelization 77

7.1 Exploiting ILP . 77
7.2 Exploiting LLP . 78
7.3 Combining ILP and LLP . 80
7.4 Experimental Setup . 81
7.5 Experimental Results . 81

7.5.1 Overall Performance using Different Parallelization Startegies 83
7.5.2 Upgrading to OoO Cores . 86
7.5.3 Comparing to DIS- and CFG-Based DBP Techniques 88
7.5.4 Changing System Configurations and Architectural Parameters 90
7.5.5 Isolating Overheads and Benefits . 100

7.6 Summary . 101

8 Conclusions and Future Work 103

8.1 Merits of the Dissertation . 104
8.2 Future Work . 105

8.2.1 Balancing and Integrating Coarse- and Fine-Grained Parallelism 106
8.2.2 Resource Allocation . 107
8.2.3 Portability and Robustness to Runtime Dynamics 107
8.2.4 Scalability . 108
8.2.5 Combining Tracy with Native Parallelization 108
8.2.6 Implementing Tracy on Contemporary Hardware 109

Bibliography 110

List of Tables

4.1 In the MESI cache conherence protocol, each cache line is in one of four states: 1) mod-
ified, 2) exclusive, 3) shared, and 4) invalid. 44

4.2 State transfer of the cache line in the MESI cache conherence protocol when respond-
ing to messages initialized from the processor. 44

4.3 State transfer of the cache line in the MESI cache conherence protocol when respond-
ing to messages initialized from the snoopy bus. 44

5.1 This table shows 1) the total size of unique traces that commit at least once, 2) the
average length of traces that commit in each correct prediction, 3) the percentage
of committed traces that are longer than 400 instructions, 4) the trace prediction
accuracy, 5) the average size of the candidate trace pool and the average sorted rank
of the committed trace in that pool, and 6) the percentage of instructions executed
by the unmodified program that are covered by correctly predicted traces. 49

5.2 Parameter definition of the trace construction algorithm. 51
5.3 Architectural parameters of Tracy4

34
-io2. 57

5.4 Algorithmic parameters of trace construction and prediction. 57
5.5 This table shows trace-related statistical analysis of Tracy4

34
-io2, including 1) the

percentage of instructions executed by the unmodified program that are covered by
correctly predicted traces, 2) the number of traces in the trace cache, 3) the trace
misprediction rate, 4) the average number of candidate traces for each prediction, and
5) the average length of the trace that commits in each correct prediction. 60

5.6 This table summarizes trace-related statistical analysis of 1) Tracy4
10
-io2, 2) Tracy4

18
-

io2, and 3) Tracy4
34
-io2, including 1) the percentage of instructions executed by the

unmodified program that are covered by correctly predicted traces, 2) the number
of traces in the trace cache, 3) the trace misprediction rate, 4) the average number
of candidate traces for each prediction, and 5) the average length of the trace that
commits in each correct prediction. 61

7.1 Extra architectural parameters of 2-issue OoO cores. 81
7.2 This tables shows the percentage of instructions executed by the unmodified program

that are covered by correctly predicted traces in which LLP is exploited over instruc-
tions that are covered by any correctly predicted traces. 83

7.3 This table summaries the performance of 1) Tracy434-io2, 2) Tracy
4
34-ooo2, and 3) Tracy434-

ooo4. Results are normalized to ST-io2, ST-ooo2, and ST-ooo4, respectively. Two
metrics are evaluated for each category of benchmarks: 1) the number of programs
with improved performance, and 2) the speedup averaged over programs with im-
proved performance. 87

viii

List of Figures

1.1 Design spectrum of the representation of program execution on which parallelization
is performed. Compared to DIS and complete CFG, Trace has the potential to provide
a large instruction window without introducing spurious dependencies. 3

2.1 Generic SDT systems contain three algorithmic components and transparently ma-
nipulate the binary executable while it is running. 13

2.2 Taxonomy of automatic parallelization techniques based on their applicability. The
code that cannot be parallelized is listed under each category. 15

3.1 Analysis of the trace (dashed arrow) produces fewer true dependencies than analysis
of the CFG, leading to improved parallel performance. 22

3.2 The idealized trace construction algorithm finds the most frequently repeating pat-
terns of instructions in the entire execution sequence, as shown in the example. The
handicapped version does not construct traces across boundaries between application
and library code. 25

3.3 The standard T-DBP achieves an average speedup of 9.36x and 22.34x over sequential
execution for integer and floating point benchmarks, respectively. When all handicaps
are artificially emulated, the average speedup shrinks to 4.68x for integer benchmarks
and 9.36x for floating point benchmarks. Traditional constant propagation and perfect
value prediction could potentially improve execution speed by another factor of 1.97x
for integer benchmarks and 3.49x for floating point benchmarks on average. 31

3.4 An average of 10.32% basic blocks or 8.40% instructions for integer benchmarks and
17.91% basic blocks or 11.12% instructions for floating point benchmarks belong to
libraries. 32

3.5 The average trace length is 235 basic blocks for integer benchmarks and 4,565 basic
blocks for floating point benchmarks. 33

3.6 An average of 0.02% basic blocks for integer benchmarks and 0.19% basic blocks for
floating point benchmarks are not formed into traces. 34

4.1 Tracy takes a sequential instruction stream and transparently converts it to a set of
parallel instruction streams. 37

4.2 Tracy uses one core for trace management plus sequential execution, and the remain-
ing cores for speculative execution of parallelized candidate traces. 38

4.3 Based on multi-trace execution, Tracy can successfully parallelize some applications
when CFG-based DBP techniques fail to. 40

4.4 Tracy assumes that a many-core chip is organized into master clusters with a specially-
instrumented core and slave clusters that contain synchronization arrays. 42

4.5 Each entry in the synchronization array is correlated to a unique register or memory
reference that needs to be synchronized. While the actual value of each synchronized
register is explicitly transferred through the array, a boolean value is just enough for
a pair of dependent memory references to maintain the correct order. 42

ix

List of Figures x

5.1 Tracy constructs traces at the retire stage of each instruction. It stores traces in main
memory and their metadata in the set associative trace cache on chip. 52

5.2 Tracy starts to exploit code structures in the outermost scope, and only enters the
next level if necessary. 53

6.1 Tracy optimizes and parallelizes the constructed trace in five steps. 64

6.2 Tracy divides all MIPS instructions into four categories: 1) memory loads, 2) memory
stores, 3) instructions that only perform integer arithmetic and logical operations (in-
cluding control transfer instructions that test integer registers), and 4) all other in-
structions. Tracy uses different strategies to symbolically evaluate instructions in
different categories. 67

6.3 Tracy performs symbolic evaluation and memory disambiguation before paralleliza-
tion to eliminate unnecessary data dependencies (both register and memory) or in-
crease data dependency lengths, exposing more parallelism opportunities.. 69

6.4 Tracy inserts extra dependencies to ensure that every monitored base register receives
the correct value. 71

6.5 This figure shows the speedup of Tracy4
34
-io2 when 1) optimization is disabled, and

2) optimization is enabled. Results are normalized to ST-io2. 73
6.6 This figure shows the optimization-only speedup of Tracy434-io2 when 1) memory dis-

ambiguation is disabled, and 2) memory disambiguation is enabled. Results are nor-
malized to ST-io2. 74

7.1 Accumulator expansion replaces the single shared accumulator with multiple private
accumulators. 79

7.2 Dependent code motion pushes every producer to be executed earlier and every con-
sumer to be executed later. 79

7.3 This figure shows the speedup of Tracy4
34
-io2 when it is configured to exploit 1) LLP

only, 2) ILP only, and 3) both LLP and ILP. Results are normalized to ST-io2. . . . 82
7.4 This figure shows the energy consumption of Tracy4

34
-io2 when it is configured to

exploit both LLP and ILP. Results are normalized to ST-io2. The adjusted energy
consumption is achieved by counting in “system leakage” from other machine compo-
nents and power supply inefficiencies. 84

7.5 This figure shows the speedup of Tracy434-ooo2 when it is configured to exploit both
LLP and ILP. Results are normalized to ST-ooo2. 86

7.6 This figure shows the speedup of Tracy4
34
-ooo4 when it is configured to exploit both

LLP and ILP. Results are normalized to ST-ooo4. 87
7.7 This figure compares the performance of Core Fusion, one representative of DIS-based

DBP, with Tracy4
34
-ooo2 and Tracy8

66
-ooo2 when they are configured to exploit both

LLP and ILP. Results are normalized to ST-ooo2. 88
7.8 This figure compares the performance of CFG-based DBP with Tracy2

18
-io2 when it

is configured to exploit both LLP and ILP. Results are normalized to ST-io2. 90
7.9 This figure shows the speedup of 1) Tracy4

10
-io2, 2) Tracy4

18
-io2, and 3) Tracy4

34
-io2

when they are configured to exploit both LLP and ILP. Results are normalized to
ST-io2. 91

7.10 This figure shows the speedup of 1) Tracy2
18
-io2, 2) Tracy4

34
-io2, and 3) Tracy8

66
-io2

when they are configured to exploit both LLP and ILP. Results are normalized to
ST-io2. 92

7.11 This figure shows the speedup of Tracy4
34
-io2 when the synchronization has access

latency of 1) 8 clock cycles, 2) 4 clock cycles, and 3) 1 clock cycle. The system is
configured to exploit both LLP and ILP. Results are normalized to ST-io2. 93

7.12 This figure shows the speedup of Tracy4
34
-io2 when the backbone bus has transfer

delay of 1) 12 clock cycles, 2) 6 clock cycles, and 3) 3 clock cycle. The system is
configured to exploit both LLP and ILP. Results are normalized to ST-io2. 94

List of Figures xi

7.13 This figure shows the speedup of Tracy4
34
-io2 when 1) symbolic evaluation is disabled,

and 2) symbolic evaluation is enabled. The system is configured to exploit both LLP
and ILP. Results are normalized to ST-io2. 96

7.14 This figure shows the speedup of Tracy4
34
-io2 when 1) memory disambiguation is

disabled, and 2) memory disambiguation is enabled. The system is configured to
exploit both LLP and ILP. Results are normalized to ST-io2. 97

7.15 This figure shows the execution time overhead of Tracy434-io2 caused by mis-speculation
and program state transfer. The system is configured to exploit both LLP and ILP.
Useful execution includes the time spent on both sequential execution and parallel
execution that is speculated correctly. 98

7.16 This figure shows the energy overhead of Tracy4
34
-io2 caused by mis-speculation and

program state transfer. The system is configured to exploit both LLP and ILP. Useful
execution includes the time spent on both sequential execution and parallel execution
that is speculated correctly. 99

Chapter 1

Introduction

As a consequence of the diminishing returns for increasing complexity, microarchitecture designers

have started to increase the number of cores on a single chip instead of trying to increase its single-

threaded performance. Computers with four to eight cores are already ubiquitous and trends suggest

that core counts will continue to grow for the foreseeable future [1]. While the computational

capability of the chip continues to double every 18 months in accordance with Moore’s Law, the

performance of individual cores has largely stagnated due to limitations on area, power consumption,

and heat dissipation.

With the number of cores increasing rapidly but the performance per core increasing slowly at

best, software must be parallelized in order to improve performance. Manual parallelization typically

yields the best speedups because the programmer can choose new algorithms and data structures

that are more amenable to parallelism. However, manual parallelization is often prohibitively time-

consuming and error-prone (especially due to data races and memory-consistency complexities), and

some portions of code may simply be too difficult to understand or refactor for parallelization. Code

is only parallelized when the return on investment is sufficient.

There has also been considerable research on automatic parallelization. However, most exist-

ing automatic parallelization techniques are performed statically (i.e., at compile time) and require

source code to be analyzed, suffering three serious problems. First, in many cases, some or all of

the source code and development tool chain is lost or, in the case of third-party software, was never

available. During the Y2K crisis, it was estimated that some companies were missing as much as 60

percent of their source code [2]. Second, modern applications are assembled and defined at run time,

making use of shared libraries, virtual functions, plugins, dynamically-generated code, and other dy-

1

1.1 Problems of State-of-the-Art DBP 2

namic mechanisms, as well as multiple languages. All these aspects of separate compilation prevent

the compiler from obtaining a holistic view of the program, leading to the risk of incompatible paral-

lelization techniques, subtle data races, and resource over-subscription. Third, compile-time analysis

has to conservatively respect all control and data dependencies on the control flow graph (CFG).

This deters parallelization, because many of these dependencies may not be on the execution path

which is actually taken. All the above considerations motivate binary code parallelization at run

time, which we call dynamic binary parallelization (DBP). Without effective techniques that can

operate on binary code, a large fraction of software will be left behind. And without the ability to

parallelize at run time, opportunities for parallelism are curtailed.

1.1 Problems of State-of-the-Art DBP

Prior research on DBP has been largely limited. Existing DBP technologies are generally divided

into two main categories: parallelizing the raw dynamic instruction stream (DIS) [3, 4, 5] and

parallelizing the dynamically-generated CFG [6, 7, 8, 9, 10].

DIS-based techniques use extra hardware to combine multiple cores to work cooperatively as a

wider core. Native out-of-order (OoO) execution could also be considered as a DIS-based technique,

which has been widely adopted by modern microarchitectures. Focusing on exploiting instruction

level parallelism (ILP), this technology has wide applicability, because ILP typically exists through-

out the entire program (with different amounts). Limited by branch prediction accuracy and in-

struction window size, however, this technology generally fails to exploit distant or coarse-grained

parallelism, resulting in relatively mediocre speedups.

On the other hand, CFG-based techniques expose a global view of the program and allow dis-

covery of more coarse-grained loop and thread level parallelism (LLP and TLP), which have the

potential to produce much larger speedups. However, analysis on the CFG must be conservative

and consider the large number of possible paths of program execution, some of which may be rarely

executed. This requires the compiler to respect control and data dependencies that do not appear

in the actual execution path, inhibiting parallelization and requiring extensive speculation. When

source code is not available, this problem is exaggerated due to the lack of high-level information (e.g.,

types, variables, data structures), which is essential to achieve accurate alias analysis. Furthermore,

when coarse-grained parallelism is hard to exploit, CFG-based techniques typically lack the capabil-

ity to extract fine-grained parallelism instead and just execute the program sequentially. Thus, it is

1.1 Problems of State-of-the-Art DBP 3

Code Visibility

Analysis Accuracy

Complete

CFG

DIS Trace

Figure 1.1: Design spectrum of the representation of program execution on which parallelization
is performed. Compared to DIS and complete CFG, Trace has the potential to provide a large
instruction window without introducing spurious dependencies.

not surprising that most of the existing CFG-based techniques [6, 7, 10] have failed to parallelize at

least half applications in the selected benchmark suite.

Although DIS- and CFG-based techniques are complementary to each other, no prior research

has tried to implement both technologies under a unified system. Such a system may achieve

large speedups from code regions that contain coarse-grained LLP or TLP, and exploit ILP from

the remainder of the program. This combination is quite vital. As Amdahl’s Law shows, even

a small fraction of non-parallelizable code can drastically inhibit overall speedups. Asymmetric

architectures [11, 12] try to address this problem by providing one or more large, OoO cores on the

chip for sequential execution modes, and a larger number of simple, in-order (IO) cores to maximize

throughput. Due to chip area constraints, however, this organization reduces the number of total

cores on the chip, hurting the performance of code regions where plentiful LLP can be exploited.

The OoO core may also not be available when needed, if multiple applications are sharing the CPU.

Furthermore, when LLP or TLP is limited, there will often be more coarse-grained tasks needing

further acceleration via ILP than there are OoO cores. Finally, prior research [3, 4, 5] suggests that

cooperative work of multiple IO cores can generally outperform or at least compete with an OoO

core, which may obviate the need for an asymmetric architecture in the first place.

Does any representation of program execution provide a large instruction window without intro-

ducing spurious dependencies? Figure 1.1 illustrates the design spectrum of the representation of

program execution on which parallelization is performed. Theoretically, any point on the design

spectrum between the two extremes (DIS and complete CFG) may be the one that achieves the

optimal trade-off between code visibility and analysis accuracy. Unlike compile-time parallelization,

DBP has the potential to construct dynamic CFGs from the instruction stream by only considering

1.2 Challenges of Trace-Based DBP 4

execution paths which are actually taken in each particular run. These partial CFGs typically repre-

sent the execution of smaller code structures (e.g., part of a function instead of the entire function)

than static CFGs in order to maintain a practical number of unmerged control flows for aggres-

sive parallelization. As the design point shifts to the right on the design spectrum, each dynamic

CFG represents the execution of larger code structures and merges more execution paths until the

complete whole-program CFG is constucted.

In practice, many programs tend to frequently repeat long sequences of instructions called hot

traces, which have the potential to provide a generally good trade-off between code visibility and

analysis accuracy for a wide variety of applications so as to achieve better parallel performance. First,

traces only represent the execution path which is actually taken, eliminating spurious control and

data dependencies to the highest possible extent. Second, traces can act as a unified representation

of program execution to seamlessly incorporate the exploitation of both coarse- and fine-grained

parallelism. For traces that comprise multiple loop iterations, LLP can be exploited with higher

priority. By only considering a single execution possibility, many loop-carried dependencies are

simply eliminated and more accurate alias analysis can be achieved. As a result, more code regions

may contain exploitable LLP, greatly increasing the applicability of existing CFG-based techniques.

For the remainder of the program that is less parallelizable, long traces may still expose distant ILP

opportunities. The average length of traces is typically much larger than the size of the hardware

instruction window used in existing DIS-based techniques.

1.2 Challenges of Trace-Based DBP

The major challenge of trace-based DBP is constructing high-quality traces that provide a large

instruction window without introducing spurious dependencies. Due to Amdahl’s Law, these traces

should also cover a large portion of dynamic instructions in order to produce large overall speedups.

Another challenge is customizing algorithms that are most suitable to optimize and parallelize binary

code in trace format. The following sections will describe these challenges in detail.

1.2.1 Trace Construction and Prediction

Prior research [13] has demonstrated that the return of dynamic binary optimization (DBO) dimin-

ishes when traces are longer than 200 basic blocks. For parallelization purposes, however, traces have

to be as long as possible to expose more distant parallelism opportunities. Furthermore, traces have

to be logically atomic. They should have a single entry point, a single exit point, and the control

1.2 Challenges of Trace-Based DBP 5

flow cannot exit prematurely through so-called side exits. Thus, analysis can ignore all unnecessary

control and data dependencies, enabling more aggressive parallelization. This atomicity property

necessitates speculative execution to recover program state when a trace deviates from the execution

path which is actually taken. This is usually easier and less costly than more fine-grained recovery

code required to support side exits. Finally, traces of different program phases should all meet the

above two requirements so that the program can run in parallel most of the time.

The dilemma, however, is that the longer a trace is, the more difficult to achieve high speculation

accuracy. To the best of our knowledge, most existing technologies do not support the atomicity

property of traces [14, 15, 16, 17, 18, 19, 20]. rePlay [21] does perform DBO on short atomic

traces (16 to 256 instructions long), but they are not suitable for parallelization purposes. Before

the many-core era, some systems were proposed [22, 23, 24, 25] to use hardware-only technologies to

speculate multiple consecutive atomic traces and execute them simultaneously on different functional

units. In order to achieve reasonable speculation accuracy, however, these systems construct very

short traces, which necessitates ultra-low communication latency to support program state transfer.

Furthermore, these systems rely on fine-grained selective recovery from frequent mis-speculation.

While suitable for simultaneous-multithreaded or clustered microarchitectures, neither requirement

can be easily satisfied on many-core architectures.

1.2.2 Trace Optimization and Parallelization

Accurate alias analysis is usually the key factor to enable effective program optimization and par-

allelization. Lacking high-level information (e.g., types, variables, data structures), it is extremely

difficult to disambiguate memory references when source code is not available. Thus, most existing

software dynamic translation (SDT) systems, such as Dynamo [14], DynamoRio [15], Transmeta [26],

and Daisy [27], only perform alias analysis in the form of instruction inspection, which disambiguates

two memory references if they access either different memory regions or their addresses have the

same base register and different offsets. As demonstrated in prior research [28], instruction inspection

can only disambiguate one-third of all memory references in SPEC CUP2000 integer benchmarks,

greatly restricting aggressive code transformations.

Compilers typically rely on various data-flow analyses [29] to optimize programs. They set up

data-flow equations for each node of the CFG and solve them by repeatedly calculating the output

from the input locally at each node until the entire system stabilizes, i.e., it reaches a fixpoint. In

order to handle the large number of execution paths represented by the CFG, diverged program states

1.3 Research Overview 6

are consertively merged at certain joint points. Furthermore, the name space of data-flow functions

is typically based on lexical names of variables, leaving many optimization opportunities behind.

Some frameworks [30, 31] have been developed to achieve scalable path-based value-flow analysis,

but all of them are targeted to bug detection instead of code transformations. On the contrary,

an atomic trace not only represents a single execution path, but also has no side exits so that all

control dependencies and derived data dependencies among its instructions can be ignored. Thus,

it is both important and necessary to design heavyweight but powerful optimization algorithms to

fully exploit the atomicity property of traces, which has never been studied by existing optimiaztion

systems that also leverage atomic traces [21, 32].

Due to limited trace length, existing trace-based parallelization systems [33, 34] only focus on

exploiting local ILP. However, prior research [35] has demonstrated that there is no dominant type

of parallelism. The contribution of each type of parallelism varies widely across the applications.

Thus, one major prerequisite to achieve the greatest speedups is to accurately identify the most

appropriate type of parallelism that should be exploited in each code region. Parallelization at the

trace level further increases the difficulty of exploiting hybrid parallelism. For the same code region

that has complicated control flows, different traces may have quite different characteristics, which

need customized parallelization algorithms to meet the specific requirements.

1.3 Research Overview

This dissertation explores the novel idea of trace-based DBP, which provides a large instruction

window without introducing spurious dependencies. We hypothesize that traces provide a generally

good trade-off between code visibility and analysis accuracy for a wide variety of applications so as

to achieve better parallel performance. Compared to DIS-based DBP, trace-based DBP can exploit

more distant parallelism because the average length of traces is typically much larger than the size

of the hardware instruction window. Compared to CFG-based DBP, trace-based DBP does not

need to respect control and data dependencies that are not on the execution path which is actually

taken. More importantly, while DIS-based DBP typically only exploits fine-grained parallelism and

CFG-based DBP typically only exploits coarse-grained parallelism, traces can be used as a unified

representation of program execution to seamlessly incorporate the exploitation of both coarse- and

fine-grained parallelism.

Before developing any specific design of trace-based DBP, we first conduct a limit study to:

1) identify the performance limits of trace-based DBP, and 2) explain why trace-based DBP has

1.3 Research Overview 7

that performance. The first goal is to set up the performance upper bound so that any following

specific design can be judged to determine whether it has fully exploited the benefits of trace-based

DBP. The second goal is to identify the unique and powerful characteristics of trace-based DBP

that enable it to achieve substantial speedups. We highlight these characteristics by comparing

trace-based DBP to static parallelization which is typically performed by the compiler.

We analyze the performance limits of trace-based DBP by making three idealizations about the

hardware and algorithms: 1) the program runs on a many-core architecture with an unbounded

number of cores and an unlimited, shared L1 cache, 2) the trace construction algorithm can always

identify the most frequently repeating patterns of instructions that will occur in a particular run of

the program, and 3) when the program reaches a repeating trace, the trace prediction algorithm can

always correctly predict the trace that is about to run.

The limit study performs a five step process for each benchmark: 1) record the complete execution

sequence of the program, 2) analyze the recording offline to identify the frequently repeating traces,

3) create a new execution sequence by replacing each trace in the original execution sequence with

the parallelized version, 4) analyze the parallel execution time of the new execution sequence using a

model of a shared-memory many-core architecture, and 5) replay a linearization of the new execution

sequence on a real machine and check the correctness of the result.

We then develop Tracy, an innovative DBP framework which monitors a program at run time

and dynamically identifies hot traces, parallelizes them, and caches them for later use so that the

program can run in parallel every time a hot trace repeats. In order to achieve the greatest speedups

over sequential execution, Tracy has to construct high quality traces as well as to customize the most

suitable algorithms to optmize and parallelize these traces.

High quality traces have to simultaneously satisfy four requirements, which can be contrary to one

another. First, traces have to be as long as possible to expose more distant parallelism opportunities.

Second, traces have to be logically atomic. They should have a single entry point, a single exit point,

and the control flow cannot exit prematurely through side exits. Thus, analysis can ignore all

unnecessary control and data dependencies, enabling more aggressive parallelization. Third, traces

have to be predicted accurately so that valuable CPU cycles and energy are not wasted on executing

incorrect execution paths. Fourth, traces have to cover a large portion of dynamic instructions so

as to produce large overall speedups.

Based on the above insights, we exploit the unique power of many-core architectures by launch-

ing multiple traces and executing them simultaneously on idle cores. The major insight is that in

many cases, speculation accuracy can be dramatically increased by only trying a very small number

1.3 Research Overview 8

of candidate traces. We also develop an innovatative trace construction algorithm that holistically

balances among trace length, speculation accuracy, and coverage of dynamic instructions. Tracy

constructs the longest traces that can be accurately speculated on the available number of cores.

In certain code regions that have complicated control flows, Tracy stops constructing traces and

executes these code regions sequentially. More specifically, we leverage the hierarchical code struc-

tures (e.g., functions, loops, basic blocks) to define the starting and ending points of each trace. In

order to maximize their length, traces are intially restricted to start and end at the outermost func-

tions or loops. During program execution, if a code structure shows unpredictable internal execution

paths, it is abandoned and the next level of inner code structures is used instead. If the innermost

code structure still has complicated control flows that are hard to predict, the corresponding code

regions are execuetd sequentially.

We develop two major optimizations to optimize traces that have been constructed, namely sym-

bolic evaluation and memory disambiguation. The functionality of these optimizations is not only

to directly produce speedups, but more importantly, to prepare the code for future parallelization.

Thus, the performed code transformations may be suboptimal for increasing the program perfor-

mance by themselves, but they reformat the code to be more amenable to parallelism. Furthermore,

these optimizations are designed to fully exploit the atomicity property of traces, within the confines

of the underlying architectural support.

Symbolic evaluation assigns a symbolic value to each defined register or memory location. Code

analysis and transformations are then performed through symbolically executing each program path

and updating these values. The path sensitivity characteristic of symbolic evaluation is not scalable,

and thus has not been used by the compiler that needs to optimize the entire CFG. However, because

symbolic evaluation performs path-sensitive program analysis and data-flow information is based on

symbolic values instead of lexical names, it performs more precise program analysis than traditional

data-flow analysis [29]. For memory disambiguation, we divide all memory references into groups

with different base registers. If the ranges of addresses covered by two groups are disjoint, memory

references in one group are guaranteed not to alias with those in the other group. Disambiguating

memory references at the group granularity is necessary because the sequential order of all memory

references is lost after parallelization, which, however, may introduce false positives due to the

approximation of memory addresses.

Our goal is not to develop totally innovative parallelization algorithms, but to customize off-the-

shelf algorithms to make them suitable for parallelizing atomic traces. For exploiting ILP, Tracy

adopts the traditional list scheduling algorithm [36] to partition and schedule instructions among

1.4 Contributions of the Dissertation 9

different cores. Unlike the original algorithm that only reorders instructions on the same core, we

have to minimize inter-core synchronization overhead as well as cache coherence traffic on the many-

core architecture. For exploiting LLP, Tracy performs two major code transformations, accumulator

expansion and dependent code motion, to eliminate loop-carried dependencies or at least to increase

the execution overlap of multiple threads so as to achieve better parallel performance.

We also leverage traces as the unified representation of program execution to exploit both coarse-

and fine-grained parallelism. This combination is quite vital. As Amdahl’s Law shows, even a small

fraction of non-parallelizable code can drastically inhibit overall speedups. When both types of

parallelism are available, Tracy selects the optimal strategy at the trace level. It first parallelizes the

trace by exploiting LLP, which has the potential to produce larger speedups. If limited LLP exists,

however, Tracy extracts ILP from the trace instead.

1.4 Contributions of the Dissertation

The contributions of the dissertation are listed as follows:

• A limit study that not only identifies the performance limits of trace-based DBP, but also

explains why trace-based DBP performs as it does. It sets up the performance upper bound

so that any following specific design can be judged to determine whether it has fully exploited

the benefits of trace-based DBP. It also identifies the unique and powerful characteristics of

trace-based DBP that enable it to achieve substantial speedups.

• A capture-replay framework that efficiently records program execution and replays the record-

ing by capturing non-deterministic events such as interrupts, preemption, and user input. The

framework is unique in that the user can modify the execution sequence and replay the modified

version to verify that it is equivalent to the original execution, which will be widely applicable

to future studies on dynamic trace-based systems.

• An innovative trace-based DBP framework named Tracy which provides a large instruction

window without introducing spurious dependencies. Compared to DIS-based DBP, it can

exploit more distant parallelism and compared to CFG-based DBP, it only needs to respect

control and data dependencies on the execution path which is actually taken.

• A general trace construction algorithm that holistically balances among trace length, specu-

lation accuracy, and coverage of dynamic instructions. This algorithm constructs the longest

1.5 Organization of the Dissertation 10

traces that can be accurately speculated on the available number of cores and can be readily

adopted by other dynamic trace-based systems.

• Two code optimizations, symbolic evaluation and memory disambiguation, that are specifically

designed for atomic traces. They not only directly produce speedups, but also transform the

code to be more amenable to parallelism, which is usually more important.

• A unified parallelization system that uses customized algorithms to extract both coarse- and

fine-grained parallelism from atomic tracs and selects the optimal strategy based on the esti-

mated parallel performance.

1.5 Organization of the Dissertation

The remainder of the dissertation is organized as follows. Chapter 2 provides background on the evo-

lution of traces and different parallelization technologies to facilitate understanding of the subsequent

chapters. Chapter 3 discusses a limit study to prove the feasibility trace-based DBP and Chapter 4

then presents Tracy, an innovative trace-based DBP framework which leverages multi-trace execu-

tion to exploit the unique power of many-core architectures. After that, Chapters 5 to 7 describe

trace construction and prediction, trace optimization, and trace parallelization, respectively, which

are the three most important functionalities of Tracy. Finally, Chapter 8 concludes the dissertation

and discusses future work.

Chapter 2

Background and Related Work

Two key concepts of this dissertation are trace and parallelization. Thus, we organize the background

chapter based on these two concepts. Under the trace concept, we first describe its evolution

during the last three decades and then discuss how traces are typically constructed during run time

using SDT systems. Under the parallelization concept, we discuss both manual parallelization and

automatic parallelization. Automatic parallelization is further divided into four categories, each of

which is described in detail.

2.1 Evolution of Traces

Traces have long been used to improve program performance. While VLIW and superscalar proces-

sors need sufficient ILP to effectively utilize the parallel hardware, ILP within basic blocks is limited

for control-intensive programs. Thus, optimizations across basic block boundaries are needed. Based

on profiling information, the initial traces are constructed by the compiler, which removes constraints

due to unimportant execution paths and links basic blocks together following the most frequently

executing path. These traces contain both side entrances and side exits, where the control flow

can enter and exit the trace arbitrarily. For several different architectures, trace scheduling [37, 38]

has been proposed to exploit more ILP by performing code motion on these long sequences of in-

structions. However, the existing side entrances require very complex bookkeeping information to

schedule instructions across basic block boundaries, if at all possible.

In order to remove the problems of side entrances, tail duplication has been proposed to ensure

that the control flow can only enter from the top of the trace. More specifically, a copy is made of the

tail portion of the trace from the first side entrance to the end, and all side entrances are moved to

11

2.2 Software Dynamic Translation 12

the corresponding duplicated basic blocks. Such reformatted traces with a single entry and multiple

exits are called superblocks [16, 39]. Superblocks are not only constructed by the compiler based

on profiling information, but are also leveraged by a variety of modern microarchitectures and SDT

systems at run time. For example, the trace cache [40] increases instruction fetch width by caching

dynamic instruction sequences; the trace processor [25] speeds up control prediction by speculating

on traces instead of branches; DBO systems [14, 15, 18, 20, 21] exploit optimization opportunities

on traces which are not available by statically analyzing the CFG.

Although superblocks do not have side entrances, the side exits still prevent instructions from

being freely scheduled across basic block boundaries. For example, an instruction cannot be moved

above a preceding side exit if it is used before it is redefined when the side exit is taken. Thus, prior

research [21, 32] has introduced atomic traces, which have a single entry point and a single exit point.

Furthermore, these reformatted traces encapsulate only a single flow of control. If any instruction

within the trace executes, all instructions within the trace execute. This atomicity property provides

more flexibility for performing beneficial code transformations than if the traces were not atomic.

Instructions within the trace are not control dependent on one another and can be moved freely

within the confines of data dependencies.

Another enhancement of superblocks is called hyperblocks [17, 19], which represent multiple ex-

ecution paths simultaneously. Instructions from different execution paths are guarded by hardware-

supported predicates to maintain the correct control flow at run time. The motivation behind hyper-

blocks is to group many basic blocks from different execution paths into a single manageable code

region for compiler optimization. Thus, for programs without heavily biased branches, hyperblocks

provide a more flexible framework for compile-time code transformations. However, hyperblocks

also contain side exits and thus do not have the atomicity property.

2.2 Software Dynamic Translation

As described above, traces are initially constructed by the compiler based on profiling information.

Recently, however, SDT systems become increasingly popular to extract traces directly from the

instruction stream while the program is running. Figure 2.1 illustrates how an SDT system is

positioned under the application to intercept the native instruction stream at run time. Three

algorithmic components form the foundation of a generic SDT implementation: 1) the translator

translates instructions from the binary executable into traces that will run on the actual hardware,

often interjecting or altering instructions en route, 2) the code cache holds these commonly executed

2.2 Software Dynamic Translation 13

Translator

Dispatcher

Code

Cache

Application

Instruction

Stream

Translated

Instructions

Retranslation

Request

Control

Transfer

Cache

Miss

Figure 2.1: Generic SDT systems contain three algorithmic components and transparently manipu-
late the binary executable while it is running.

traces so that they can be executed again without re-translation, and 3) the dispatcher redirects the

control flow to either the next trace, if it is already in the trace cache, or to the translator which

re-translates the target address. In the mean time, the original program either continues running

without being translated or is suspended until the new trace is completed.

SDT systems have been implemented purely in software and executed on commodity microarchi-

tectures for diverse purposes, such as optimization [14, 15], ISA translation [27], profiling [41, 42],

or security monitoring [43, 44]. Due to the large overhead of software-based dynamic instrumen-

tation [41, 42], however, most systems [27, 41, 42, 43, 44] do not profile the running program

and terminate the trace at any conditional branch or jump that has multiple targets. Other sys-

tems [14, 15] use the next executed tail (NET) algorithm to construct superblocks, which only needs

very lightweight instrumentation. The NET algorithm has two phases, the profiling phase and the

collection phase. In the profiling phase, each conditional branch that is a backedge is instrumented.

A counter is maintained for each of these backedges and incremented every time that backedge is

taken. When this counter hits a predetermined threshold, the next superblock is collected. In the

collection phase, the code is instrumented and monitored basic block by basic block until another

backedge is encountered. The NET algorithm has two significant shortcommings: 1) it is possible to

collect a cold path during the collection phase even if a hot path was primarily responsible for reach-

ing the backedge during the profiling phase, and 2) the constructed hyperblocks cannot span any

function invocations/returns and loops, and thus are typically only two to three basic blocks long.

Prior research [45] has further demonstrated that for the SPEC CPU2006 benchmark suite, the su-

2.3 Manual Parallelization 14

perblocks constructed by the NET algorithm only account for less than 40% of dynamic instructions

and for more than 80% of the times, the control flow leaves the running superblock prematurely via

its side exits.

In order to improve trace quality with low runtime overhead, prior research [25, 40] has proposed

to implement dynamic instrumentation in hardware by directly integrating trace construction with

non-critical stages of instruction pipeline execution. This technology has been adopted by a variety

of DBO systems [18, 20, 21], for which increasing program speed is the top priority. For example,

both [18] and [20] profile the behavior (i.e., execution frequency and target bias) of every conditional

branch, which would cause prohibitive runtime overhead if using software-based dynamic instrumen-

tation. Highly biased hot branches are then identified and analyzed to generate those dominant

execution paths. As reported by [18], 12% of the constructed hyperblocks are more than 50 instruc-

tions long and 89% of them cover at least 100 million dynamic instructions during program execution.

rePlay [21, 46] takes a further step by associating each conditional branch with the global branch his-

tory [47]. This context sensitive information separates each conditional branch into instances based

on the execution path leading up to itself. Once separated this way, a greater number of conditional

branches tend to exhibit biased behavior. For integer applications in the SPEC CPU2000 benchmark

suite, rePlay is capable of constructing atomic traces of 102 instructions on average, which results

in optimization effectiveness [13].

2.3 Manual Parallelization

With the number of cores increasing rapidly but the performance per core increasing slowly at best,

software must be parallelized in order to improve performance. A variety of parallel programming

frameworks such as OpenMP [48], Chapel [49], and Axum [50] have been proposed to help software

engineers fully exploit this increased processing power by executing threads on multiple cores simul-

taneously. Based on these frameworks, specific parallel libraries [51, 52] have also been proposed to

facilitate efficient software development in different domains. Such manual parallelization typically

yields the best speedups because the programmer can choose new algorithms and data structures

that are more amenable to parallelism.

For a variety of reasons, however, many programs will not be completely parallelized and will

continue to have both parallel and sequential modes of execution. Software engineers may not have

the source code for some or all parts of the program because it was lost or because it uses third-party

libraries. Furthermore, manual parallelization is often prohibitively time-consuming and error-prone,

2.4 Automatic Parallelization 15

Static Dynamic

Source

�Legacy Software

�Third-Party Software

�Multi-Language Software

�Dynamic Linking and Loading

�Self-Modifying Code

�Legacy Software

�Third-Party Software

�Multi-Language Software

Binary
�Dynamic Linking and Loading

�Self-Modifying Code

If the software can execute,

then we can parallelize it !

Figure 2.2: Taxonomy of automatic parallelization techniques based on their applicability. The code
that cannot be parallelized is listed under each category.

especially due to data races and memory-consistency complexities. It has been estimated that the

efforts to analyze, fix, and test existing software due to the Y2K bug alone have cost about $2 billion

in the 1990s [53], and rewriting code to find opportunities for parallelism would be a much larger

and more challenging task. Finally, some portions of code may be too difficult to understand or

refactor for parallelization and other portions of code would simply not yield enough speedups to

justify manual parallelization.

2.4 Automatic Parallelization

In order to extricate software engineers from manual parallelization, there has been considerable

research on automatic parallelization. We classify automatic parallelization techniques into four dif-

ferent categories based on two orthogonal criteria: 1) whether the technique is performned statically

at compile time or dynamically at run time, and 2) whether the technique analyzes source code or

binary code. Figure 2.2 shows the code that cannot be parallelized by each category of techniques.

Source code parallelizers cannot handle legacy software, third-party software, and software written

in differet languages. On the other hand, static parallelizers cannot handle dynamic linking/loading

and self-modifying code. Thus, only DBP techniques can parallelize any code. If the software can

execute, then they can parallelize it. In the following sections, we will describe the four categories

of automatic parallelization techniques in detail.

2.4 Automatic Parallelization 16

2.4.1 Static Source Parallelization

Static parallelization techniques typically analyze source code to extract parallelism at compile

time [33, 34, 35, 54, 55, 56, 57, 58, 59, 60]. These techniques have been used to exploit ILP [33, 34],

LLP [54, 56], TLP [55, 57, 58, 59, 60], or even a combination of them [35]. Furthermore, some

techniques are designed to parallelize general-purpose software on commodity machines [55, 56],

while others are specially customized for special microarchitectures [33, 34, 35, 57, 58, 59] or specific

domain of applications [54, 60].

Lacking runtime information, however, these parallelization techniques must be conservative and

consider the large number of possible paths of program execution, some of which may be rarely

executed. This requires the compiler to respect control and data dependencies that do not appear

in the actual execution path, inhibiting parallelization and requireing highly accurate alias analysis.

On the other hand, with full access to source code, these techniques have the potential to extract

coarse-grained parallelism that typically produces the largest speedups and is also most appropriate

on certain architectures which have high inter-core communication overhead.

Ever since the multiscalar architecture [61], thread-level speculation has been used to release spu-

rious dependency constraints caused by conservative static analysis [62, 63, 64, 65, 66, 67, 68, 69, 70].

Thread-level speculation allows the compiler to automatically parallelize portions of code in the

presence of statically ambiguous data dependencies, thus extracting parallelism between whatever

dynamic dependencies actually exist at run time. Such speculative execution usually requires hard-

ware support to detect data dependency violations at run time, which involves comparing load and

store addresses that may have occurred out of order with respect to sequential execution. For ex-

ample, [67] leverages invalidation-based cache coherence for mis-speculation detection. The basic

design is to extend those existing invalidation messages to detect data dependency violations by

noticing whenever an invalidation arrives from any logically earlier thread for a cache line that has

been speculatively loaded by any logically later thread. However, high speculation accuracy typically

requires heavy programmer annotation or comprehensive profiling, both of which can be difficult in

practice. When neither requirement is satisfied, the achieved speedups are unimpressive at best and

the dynamic length of speculated threads is only several hundred instructions, which are hard to

expose very useful coarse-grained parallelism [65].

2.4 Automatic Parallelization 17

2.4.2 Static Binary Parallelization

Static parallelization techniques [71, 72, 73] have also been enhanced to analyze and transform binary

code directly using the binary rewriting technology [74]. All these techniques analyze the binary

executable and reconstruct data structures and control flows that were present in the high-level

source code. While Vizer [71] performs loop vectorization, two other techniques [72, 73] focus on

loop parallelization. For example, [72] extracts address expressions using simple pattern matching

to recognize counter initialization, test, and increment for affine loops. It also uses several simple

dependency tests to decide whether the given loop is worth parallelizing. These dependency tests

are directly adopted from affine loop parallelization at the source code level. As a step further, [73]

captures the data flow of address computations, and uses symbolic analysis to reconstruct address

expressions built around normalized loop counters. Furthermore, it leverages the polyhedral model

to parallelize affine loops, which is fundamentally superior to simple dependency tests.

Due to the difficulty of decompilation, however, these parallelization techniques have extremely

limited applicability. Vizer [71] is only applied to three benchmarks, all of which are simple scientific

applications such as 3D tridiagonal solver, matrix addition, and multiplication. Similarly, both [72]

and [73] are only used to parallelize affine loops in kernel applications, including the PolyBench

benchmark suite and the Stream benchmark suite. No attempts have ever been made to parallelize

more irregular programs that dominate everyday use. As stated in [73], any tiny irregularity in

the candidate loop can make it unparallelizable, such as the presence of function calls and various

loop optimizations (e.g., loop tiling, which produces non-strictly linear address expressions) that are

usually performed by the compiler by default.

2.4.3 Dynamic Source Parallelization

A variety of dynamic parallelization techniques have been proposed to insert control logic into

source code at compile time, which is used to select the best parallelization strategy at run time.

For example, just-in-time scheduling [75] dynamically selects the most beneficial chunk sizes for

LLP, and Merge [76] tolerates changing hardware by building separate function versions for different

accelerators. Although these techniques can adapt to the program behavior at run time to some

extent, the basic parallelization strategy is predetermined at compile time and cannot be updated

after the program starts running. Furthermore, these techniques can still not handle dynamically

loaded libraries and self-modifying code, which are always in binary formats.

2.4 Automatic Parallelization 18

Some prior work has argued for a JVM-like layer to dynamically optimize and parallelize pro-

grams [77, 78]. The major insight is that applications cannot be parallelized just once. They require

separate parallelization targeted to the actual hardware and execution environment upon which they

will run. However, such techniques assume a dominant programming language such as Java, which

has relatively small applicability.

2.4.4 Dynamic Binary Parallelization

Suprisingly, DBP techniques have actually been existing for several decades, long before the many-

core era that is just upon us. The superscaler architecture [79] is the most successful parallelization

technique that exploits ILP transparently from the binary executable. Ever since the mid-1990’s,

OoO superscalar execution has been dominating the microarchitecture market. This technology

transparently parallelizes all kinds of software that is widely used in research, industry, and more im-

portantly, everyday life. On the other hand, parallel programming languages [80] and compilers [56]

that can extract LLP and TLP have also been available for decades, but have primarily been used

for high-performance computing (HPC) applications.

History has shown that the HPC community will use all kinds of parallelization techniques to

exploit the latest advances in many-core architectures that start to dominate the microarchitecture

market. However, there is no precedent to show that non-transparent techniques will be adopted for

mainstream computing, and in fact there are many reasons to believe otherwise. Some companies

will undoubtedly continue to produce sequential programs due to the high cost of porting existing

software, updating tool chains, and re-training employees. Furthermore, many legacy programs

will be difficult or impossible to update with non-transparent techniques because source code is

not available. Finally, transparency is important for portability and forward compatibility of the

program, as the range and diversity of many-core architectures grow. These and other factors may

be important enough that non-transparent techniques are not adopted in the mainstream, despite

the lack of viable alternatives. The quality of transparent parallelization may be the limiting factor

on the impact of many-core architectures on mainstream computing.

Several extensions have been made to the superscalar architecture for finding more ILP, including

trace processing [25], dynamic multi-threading [22], and speculative multi-threading [23, 24]. These

systems use hardware-only technologies to speculate multiple very short threads and execute them

simultaneously on different functional units. In order to achieve reasonable speculation accuracy,

however, these systems construct very short traces, which necessitates ultra-low communication la-

2.4 Automatic Parallelization 19

tency to support program state transfer. Furthermore, these systems rely on fine-grained selective

recovery from frequent mis-speculation. While suitable for simultaneous-multithreaded or clustered

microarchitectures, neither requirement can be easily satisfied on many-core architectures. More re-

cently, similar technologies have been adopted by several Java virtual machines to extract parallelism

from DOALL loops and recursive functions [81, 82, 83].

Several DBP technologies have also been proposed to support many-core architectures, which are

generally divided into two main categories: parallelizing the raw DIS [3, 4, 5] and parallelizing the

dynamically-generated CFG [6, 7, 8, 9, 10]. DIS-based techniques use extra hardware to combine

multiple cores to work cooperatively as a wider core. Native OoO execution could also be considered

as a DIS-based technique, which has been widely adopted by modern microarchitectures. Focusing

on exploiting ILP, this technology has wide applicability, because ILP typically exists throughout

the entire program (with different amounts). Limited by branch prediction accuracy and instruction

window size, however, this technology generally fails to exploit distant or coarse-grained parallelism,

resulting in relatively mediocre speedups. On the other hand, CFG-based techniques expose a

global view of the program and allow discovery of more coarse-grained LLP and TLP, which have

the potential to produce much larger speedups. However, analysis on the CFG must be conservative

and consider the large number of possible paths of program execution, some of which may be rarely

executed. This requires the compiler to respect control and data dependencies that do not appear

in the actual execution path, inhibiting parallelization and requiring extensive speculation. When

source code is not available, this problem is exaggerated due to the lack of high-level information (e.g.,

types, variables, data structures), which is essential to achieve accurate alias analysis. Furthermore,

when coarse-grained parallelism is hard to exploit, CFG-based techniques typically lack the capability

to extract fine-grained parallelism instead and just execute the program sequentially. Thus, it is

not surprising that most of the existing CFG-based techniques [6, 7, 10] have failed to parallelize at

least half applications in the selected benchmark suite.

Although DIS- and CFG-based techniques are complementary to each other, no prior research

has tried to implement both technologies under a unified system. Such a system may achieve

large speedups from code regions that contain coarse-grained LLP or TLP, and exploit ILP from

the remainder of the program. This combination is quite vital. As Amdahl’s Law shows, even

a small fraction of non-parallelizable code can drastically inhibit overall speedups. Asymmetric

architectures [11, 12] try to address this problem by providing one or more large, OoO cores on

the chip for sequential execution modes, and a larger number of simple, IO cores to maximize

throughput. Due to chip area constraints, however, this organization reduces the number of total

2.4 Automatic Parallelization 20

cores on the chip, hurting the performance of code regions where plentiful LLP can be exploited.

The OoO core may also not be available when needed, if multiple applications are sharing the CPU.

Furthermore, when LLP or TLP is limited, there will often be more coarse-grained tasks needing

further acceleration via ILP than there are OoO cores. Finally, prior research [3, 4, 5] suggests that

cooperative work of multiple IO cores can generally outperform or at least compete with an OoO

core, which may obviate the need for an asymmetric architecture in the first place.

Chapter 3

Limit Study on Parallelizing Traces

Before developing any specific design of trace-based DBP, it is both important and necessary to

conduct a limit study to prove its feasibility. Our limit study has two goals: 1) identify the perfor-

mance limits of trace-based DBP, and 2) explain why trace-based DBP performs as it does. The

first goal is to set up the performance upper bound so that any following specific design can be

judged to determine whether it has fully exploited the benefits of trace-based DBP. The second

goal is to identify the unique and powerful characteristics of trace-based DBP that enable it achieve

substantial speedups. We highlight these characteristics by comparing trace-based DBP to static

parallelization which is typically performed by the compiler.

3.1 Overcoming Inherent Handicaps of Static Parallelization

We expect trace-based DBP to overcome two inherent handicaps of static, compile-time paralleliza-

tion. First, trace-based DBP can exploit parallelism across boundaries between application and

library code because traces are natually formed in which application and library instructions are in-

terleaved. This is not possible at compile time because dynamically loaded libraries are not available.

Even for those libraries that are accessible at compile time, they are normally in binary formats and

cannot be handled by most static parallelization techniques, all of which require source code to be

analyzed. Plugins and dynamically-generated code usually cause the similar problem.

Second, trace-based DBP can perform more aggressive parallelization than static techniques

because every trace typically has fewer true dependencies than the CFG. This is because analysis

of the CFG will produce true dependencies for all possible execution paths, while analysis of each

trace will produce true dependencies for only a single execution path which is actually taken. For

21

3.2 Limit Study Setup 22

I2 : R0 = R1

I3 : R0 = R2 I5 : R2 = 2

I4 : R3 = R0

I3 : R0 = R2 I1 : R1 = R4

I4 : R3 = R0

3
 c

lo
c
k
 c

y
c
le

s

(b) Parallelization Based on the CFG.

I3 : R0 = R2 I1 : R1 = R4

I4 : R3 = R0

2
 c

lo
c
k
 c

y
c
le

s

(c) Parallelization Based on the Trace.(a) A Simple CFG.

I1 : R1 = R4

I2 : R0 = R1

I2 : R0 = R1

Figure 3.1: Analysis of the trace (dashed arrow) produces fewer true dependencies than analysis of
the CFG, leading to improved parallel performance.

example, Figure 3.1(a) shows the CFG of a small program snippet containing five instructions: I1,

I2, I3, I4, and I5. Analysis of this CFG reveals three true dependencies: I1 → I2, I3 → I4, and

I2 → I4. The last true dependency exists due to the possible execution path through I5. The best

possible parallelization of the left branch (dashed arrow) in this CFG that respects all three true

dependencies is depicted in Figure 3.1(b), with a parallel execution time of three clock cycles. On the

contrary, if the execution path along the left branch is converted into a trace at run time, an analysis

of the trace would not find the true dependency I2 → I4 because I3 produces the most recent value

of R0. A parallelization of this trace would thus run the same instructions with a parallel execution

time of only two clock cycles, as depicted in Figure 3.1(c). Thus, trace-based DBP can be more

aggressive than static parallelization because it must only consider true dependencies that manifest

in a single execution path, while static techniques tend to be conservative because they respect true

dependencies from all possible execution paths.

3.2 Limit Study Setup

We analyze the performance limits of trace-based DBP by making three idealizations about the

hardware and algorithms: 1) the program runs on a many-core architecture with an unbounded

number of cores and an unlimited, shared L1 cache, 2) the trace construction algorithm can always

identify the most frequently repeating patterns of instructions that will occur in a particular run

of the program, and 3) when the program reaches a repeating trace, the trace prediction algorithm

can always correctly predict the trace that is about to run, which we call perfect one-step prediction.

3.2 Limit Study Setup 23

These three idealizations are reasonable in the sense that real hardware and algorithms should

actually approach them as they improve over time. If the number of cores double every 18 months

as expected [1], processors may soon have more cores than trace-based DBP could ever use. The

trace construction algorithm will improve dramatically as it is increasingly informed by compile-

time analysis [84] and program profiling [85, 86]. When the next executed trace has been cached,

perfect one-step prediction is already possible by simply executing in parallel all existing traces that

begin with the next target address and, from this perspective, improvements in trace prediction will

simply reduce the number of cores required for perfect one-step prediction. Thus, we expect the

performance upper bound found in this limit study to be tight in the sense that the performance of

trace-based DBP may actually approach this bound as technologies evolve.

In order to conduct this limit study, we perform a five step process for each application in

the SPEC CPU2000 benchmark suite: 1) record the complete execution sequence of the program,

2) analyze the recording offline to identify the frequently repeating traces, 3) create a new execution

sequence by replacing each trace in the original execution sequence with the parallelized version,

4) analyze the parallel execution time of the new execution sequence using a model of a shared-

memory many-core architecture, and 5) replay a linearization of the new execution sequence on a real

machine and check the correctness of the result: a successful replay implies correct synchronizations

within the parallelized traces. The perlbmk benchmark was omitted because it recursively calls

itself, starting multiple instances of our capture framework and exhausting memory of the machine.

All benchmarks are executed using the test data sets as input. In the following sections, we will

describe in detail how we implement each of these steps.

Other studies have built systems to efficiently record program execution [85, 86], and some can

also replay the recording by capturing non-deterministic events such as interrupts, preemption, and

user input [87, 88]. Our framework is unique in that we can modify the execution sequence and

replay the modified version to verify that it is equivalent to the original execution, which will be

widely applicable to future studies on dynamic trace-based systems.

3.2.1 Recording Execution Sequences

We record the original execution sequence of the program by inserting instrumentation code to the

binary executable. This is performed by employing translation-based dynamic instrumentation to

the benchmark during its execution. Whenever a new basic block is translated, instrumentation code

is inserted to record the program counter whenever the basic block gets executed. Instrumentation

3.2 Limit Study Setup 24

code is also inserted to record the effective address of every load and store instruction, as well as the

memory value of each load instruction. We record the actual memory values so that the program

can be deterministically replayed. Otherwise, background operating system processes could change

the state of certain system libraries, creating non-deterministic effects during program playback. We

record the effective addresses of memory references to perform perfect memory disambiguation, as

will be described in Section 3.2.3.

The instrumentation code saves necessary state of the program, calls the appropriate logging

code, and then restores the state of the program before continuing execution. All instrumentation

is performed at the binary code level and not at the source code level. This avoids unintended

interactions between instrumentation code and compiler optimizations, thereby ensuring that we

are executing the true binary executable for each benchmark.

Recording the complete execution sequence of the program produces a large amount of infor-

mation and so we use double buffering [89] to reduce runtime overhead and apply the VPC3 algo-

rithm [90] to compress the collected information. This greatly increases execution speed and reduces

disk space requirements, although a typical one second program still requires three minutes and fifty

megabytes of disk space to record. We record program execution on a SPARC/Solaris machine, in

part because RISC ISAs are understood to be more suitable for many-core architectures [91]. The

results of our limit study should generalize at least to other RISC ISAs.

3.2.2 Analyzing Execution Sequences to Construct Repeating Traces

Once the execution sequence has been recorded, we construct traces by finding all frequently re-

peating patterns of instructions. We do this using an offline dictionary-based algorithm that is

typically used for compression [92], shown in Figure 3.2(a). Initially every basic block is defined to

be a unique symbol. We then identify the two symbols si and sj that are the most frequent pair

of adjacent symbols in the entire execution sequence (lines 2 to 8). If no pair appears more than

once, the algorithm stops (line 13). Otherwise, we replace all occurrences of sisj with a new symbol

Aj (lines 10 to 11). The execution sequence now has fewer symbols and the algorithm repeats to

again find the most frequent pair of adjacent symbols. When the algorithm completes, all symbols

remaining on the execution sequence become the selected traces. Figure 3.2(b) shows an example of

how traces are constructed on an execution sequence of eight basic blocks (a, b, c, a, b, a, b, c). In the

first iteration, ab is found to occur most frequently (three times) and is replaced by a new symbol

A. In the second iteration, Ac occurs two times and is replaced by a new symbol B. After that,

3
.2

L
im

it
S
tu
d
y
S
etu

p
2
5

Algorithm construct_trace : path

01 loop do

02 for each pair of adjacent symbols (s 1, s 2) i in path do

03 if check_pair (s 1, s 2) i then begin

04 num i ← occurrence number of (s 1, s 2) i

05 end

06 done

07 (s 1, s 2) m ← most frequent pair

08 freq m ← maximum occurrence number

09 if freq m > 1 then begin

10 A j ← create new symbol

11 replace all occurrences of (s 1, s 2) m with A j

12 end else begin

13 break

14 end

15 done

execution path pair (max. num.) new symbol

1 path → abcababc ab (3) A → ab

2 path → AcAAc Ac (2) B → Ac

3 path → BAB

(b) Example of Trace Construction.

(a) Idealized Trace Construction Algorithm.

Algorithm check_pair : (s 1, s 2) i

01 return true

(c) No Handicap.

Algorithm check_pair : (s 1, s 2) i

01 if (s 1 app && s 2 app) || (s 1 lib && s 2 lib) then begin

02 return true

03 end else begin

04 return false

05 end

(d) Handicapped Algorithm that Cannot Parallelize across

Boundaries between Application and Library Code.

∈∈ ∈ ∈

Figure 3.2: The idealized trace construction algorithm finds the most frequently repeating patterns of instructions in the entire execution sequence,
as shown in the example. The handicapped version does not construct traces across boundaries between application and library code.

3.2 Limit Study Setup 26

no pair of adjacent symbols occurs more than once and the algorithm completes, constructing two

different traces A (basic block sequence a, b) and B (basic block sequence a, b, c).

The traces constructed in this phase are the ones that will be parallelized in the next phase. The

choice of this trace construction algorithm corresponds to the idealized assumption that frequently

repeating traces can always be identified at run time, perhaps with the help of compile-time anal-

ysis [84] and program profiling [85, 86]. One advantage of this assumption is that a small set of

repeating traces cover a large portion of dynamic instructions and thus have a high probability to be

predicted accurately [46]. One study of short traces about seven basic blocks long has demonstrated

that even a very shallow execution history is effective enough to achieve close to 90% prediction

accuracy on average [93].

We can modify the trace construction algorithm to handicap trace-based DBP so that it cannot

parallelize across boundaries between application and library code. More specifically, we replace the

original check pair function (Figure 3.2(c)) invoked on line 3 of the trace construction algorithm with

an alternative version that only allows two adjacent basic blocks to be combined into a single symbol

if both of them belong to application code or both of them belong to library code. The pseudo code

for this handicapped algorithm is illustrated in Figures3.2(d) and its effects on execution speed will

be analyzed in Section 3.3.

3.2.3 Parallelizing Execution Sequences

Once the repeating traces in the execution sequence are identified, they are parallelized using a

modified version of the dynamic critical path scheduling algorithm [94], which is derived from prior

research on allocating task graphs to fully-connected multi-processors. This algorithm is selected

because it has been experimentally demonstrated to produce the minimum execution time among

all comparable algorithms. For the purposes of trace parallelization, we define each instruction to

be a separate task. For each trace, we perform the following four steps:

1. Identify true dependencies in the trace and build the dependency graph. Initialize the current

schedule to be an empty schedule.

2. Calculate the absolute earliest start time (AEST) and absolute latest start time (ALST) of

each instruction based on the current schedule. Let L be the group of instructions with the

smallest value of ALST−AEST , and pick instruction i from L that does not have predecessors

in L. Ties are broken arbitrarily.

3.2 Limit Study Setup 27

3. Schedule instruction i on core j where 1) after insertion, it does not delay the ALST of all

instructions that are already scheduled on that core, including itself, and 2) there are no

violations of any true dependencies.

4. Go back to Step 2 if all instructions are not scheduled.

Calculation of the AEST and ALST requires an analysis of the program’s dependency graph.

True register dependencies are easily identified. Anti and output register dependencies are elimi-

nated using renaming technologies to increase scheduling flexibility. On the other hand, many of

memory dependencies are ambiguous, where two load or store operations refer to a memory address

that has not yet been calculated, and so the system cannot tell whether or not there is a dependency

between them. We use the actual effective addresses that are recorded during the original execution

sequence to disambiguate these memory references, and only take the real memory dependencies

into account when calculating the AEST and ALST. Memory disambiguation is a standard tech-

nique employed by many parallelization and OoO execution systems to execute memory reference

instructions (i.e., loads and stores) out of program order. Both software-based and hardware-based

techniques have been developed, and experimental results have shown approximately 80% accuracy

in memory disambiguation for some applications [28, 95].

After all the traces are parallelized, we replace their occurrences in the original execution sequence

with the parallelized versions. This new execution sequence represents the idealized execution se-

quence that a trace-based DBP implementation might produce in the real world. Correctly replacing

every single trace in the original execution sequence with the parallelized version corresponds to the

idealized assumption of perfect one-step prediction. As stated earlier, when the next executed trace

has been cached, this assumption can be satisfied if a trace-based DBP system can execute multiple

predicted traces in parallel.

We can modify the trace parallelization algorithm by considering more or less data dependencies

in Step 1. For example, we can handicap the algorithm by considering all true register dependencies

in the CFG, instead of only those in the trace. This would emulate the handicap of static paralleliza-

tion that is conservative because it has to respect all true dependencies carried by every possible

execution path. On the other hand, we can employ optimizations such as constant propagation be-

fore parallelization to eliminate unnecessary register dependencies and similarly, we can eliminate all

memory dependencies, which would emulate the advantage of having perfect value prediction [96, 97].

The effects of these modified versions of the trace parallelization algorithm on execution speed will

be analyzed in Section 3.3.

3.2 Limit Study Setup 28

3.2.4 Modeling Parallel Execution Time

Once the parallel execution sequences are created, we analyze them using a model of a shared-

memory multi-core architecture to calculate the parallel execution time. We assume hardware that

is ideally suited for trace-based DBP and that is not currently available on the market. However,

all individual components and features of our hardware model are either currently available or are

achievable or nearly achievable using current technologies. The only aspect of the hardware model

that is not currently achievable is the assumption of an unlimited number of cores with an unbounded,

shared L1 cache (i.e., no memory access latency), which becomes one of the idealized assumptions.

We use the same hardware model to calculate the time of both the unmodified sequential execution

sequence and the parallelized execution sequence.

In order to calculate the execution time of a sequence of instructions, we define each instruction

to have an execution time of one clock cycle due to pipelining. We define the execution time of a

parallelized trace to be the maximum AEST of all instructions in the trace plus one, to account for the

execution of the last instruction. We require at least one clock cycle to separate any two instructions

with true register dependencies and any memory dependencies that execute on different cores, for

inter-core communication. Software-based synchronization techniques such as locks, barriers, and

monitors can cause more than one clock cycle of runtime overhead due to the interactions with the

operating system, but special hardware such as synchronization array [98] and operand network [99]

provide efficient, non-memory-based communication between different cores on the same chip. These

technologies enable the production and consumption of a single register value on different cores to

be performed in back-to-back cycles, as long as the path between the two cores is not congested.

Thus, we aggressively set the inter-core synchronization time to be one clock cycle.

Dynamic trace-based systems typically incur runtime overhead for analyzing and manipulating

traces, inserting new traces into the trace cache, deleting outdated traces from the trace cache,

and other trace management operations. On many-core architectures, we assume that all of these

operations are shipped to idle cores, and that it has no impact on the execution speed of the

actual program. Even for single-core architectures, the total runtime overhead of software dynamic

translation can be as low as 3% [100, 101], which can be further amortized when used in combination

with one of the many other reasons for virtualization.

Dynamic trace-based systems also incur runtime overhead because they have to observe execu-

tion patterns in order to construct traces. One widely used technology is software-based dynamic

instrumentation in which the system inserts instrumentation code to each basic block for obtaining

3.3 Experimental Results 29

the execution history. However, this technology can cause the target program to run up to two

times slower on average [41, 42]. In the mean time, a variety of hardware-based instrumentation

techniques have been proposed to directly integrate trace construction with non-critical stages of in-

struction pipeline execution, which dramatically reduce runtime overhead. Recently, Intel Research

has designed log-based architecture [102] that captures an instruction-grained log from a monitored

program and ships it to another core that performs further processing. Additionally, prior research

has also proposed a chip-wide branch trace buffer [45], which makes the execution history of one core

visible in real time to the other cores on the same chip. Use of these transparent, hardware-based

techniques would make the runtime overhead of execution monitoring negligible and thus, we assume

that trace construction occurs simultaneously with actual program execution and does not need to

consume any extra clock cycles.

3.2.5 Verifying Parallel Execution Sequences

In addition to calculating execution time, we also execute the parallelized execution sequence to

ensure correct synchronizations within the parallelized traces. In order to do this, all basic blocks

and traces in the final execution sequence are linked together into a single executable, loaded into

to its original address space, and replayed on a real machine. For parallelized traces, a lineariza-

tion is created based on the final AEST of each instruction. This process does not test all possible

linearizations and thus does not guarantee that the synchronization is one hundred percent correct,

but it does create a linearization that is substantially different from the original execution sequence

and allowe us to verify several benchmarks with reasonable confidence. During the replay, renamed

registers are allocated in a software-based register file to avoid expensive post-scheduling register

allocation on such long instruction sequences. Furthermore, load instructions are not actually ex-

ecuted. The corresponding memory value that is recorded in the original execution is provided to

the target register. This prevents background processes in the operating system from producing

non-deterministic values which can cause segmentation faults.

3.3 Experimental Results

We use the limit study framework described in Section 3.2 to analyze the performance of trace-

based DBP on the SPEC CPU2000 benchmark suite. We test and compare four different versions

of the trace-based DBP implementation. The first two implementations use handicapped versions

of the trace construction and parallelization algorithms, as described in Sections 3.2.2 and 3.2.3,

3.3 Experimental Results 30

respectively. These handicaps emulate varying degrees of the two handicaps of static parallelization

described in Section 3.1. The third implementation is standard trace-based DBP with no handicaps

applied. The fouth implementation is an enhanced version of trace-based DBP that uses constant

propagation to eliminate unnecessary register dependencies and uses perfect value prediction to

eliminate all memory dependencies, as described in Section 3.2.3. These four implementations are

named and defined as follows:

• T-DBP−2: trace construction cannot cross boundaries between application and library code;

trace parallelization is constrained by all true dependencies found in the CFG.

• T-DBP−1: trace construction cannot cross boundaries between application and library code.

• T-DBP: both trace construction and trace parallelization are unconstrained.

• T-DBP+1: trace parallelization does not consider unnecessary register dependencies and all

memory dependencies.

The performance of all four trace-based DBP implementations is illustrated in Figure 3.3, with the

results of integer benchmarks and floating point benchmarks put into separate graphs. The average

speedup over sequential execution is 9.36x and 22.34x for integer and floating point benchmarks,

respectively. This number can be as high as 30.04x for integer benchmarks (vortex) and 54.81x for

floating point benchmarks (mgird). The higher speedup for floating point applications is likely due

to the fact that they contain a larger fraction of numerical code, which has shown to introduce fewer

true dependencies by prior research.

When all handicaps are emulated, the average speedup over sequential execution is 4.68x for

integer benchmarks and 9.36x for floating point benchmarks. This supports the hypothesis that the

ability of trace-based DBP to overcome these two handicaps accounts for its ability to explore a high

degree of parallelism. Eliminating these handicaps improves the performance of trace-based DBP

by more than two times. In the following sections, we will analyze in detail the degree to which

various aspects of trace-based DBP affect its performance.

3.3.1 Analysis of Trace Construction

The relative results of T-DBP−1 and T-DBP indicate that parallelizing across boundaries between

application and library code can improve the average speedup over sequential execution from 6.91x

and 17.12x to 9.36x and 22.34x, for integer and floating point benchmarks, respectively. Note

that the speedup does not necessarily correspond to the percentage of executed basic blocks or

3.3 Experimental Results 31

5

10

15

20

T-DBP - 2 T-DBP - 1 T-DBP T-DBP + 1

47.03 43.23 46.33

30.04 45.04

0

5

(a) CINT2000.

10

20

30

40

50

60

T-DBP - 2 T-DBP - 1 T-DBP T-DBP + 1

96.62 174.31 73.53 74.31 80.76 68.07

0

10

(b) CFP2000.

Figure 3.3: The standard T-DBP achieves an average speedup of 9.36x and 22.34x over sequential
execution for integer and floating point benchmarks, respectively. When all handicaps are artifi-
cially emulated, the average speedup shrinks to 4.68x for integer benchmarks and 9.36x for floating
point benchmarks. Traditional constant propagation and perfect value prediction could potentially
improve execution speed by another factor of 1.97x for integer benchmarks and 3.49x for floating
point benchmarks on average.

instructions that are from libraries, which is illustrated in Figure 3.4. In fact, mcf executes more

library instructions than all other integer benchmarks but also shows the minimum improvement

between T-DBP−1 and T-DBP. On the other hand, the performance of crafty and vortex degrades

dramatically with only 2% and 11% of its instructions executed in libraries, respectively. Also

note that the library instructions are being parallelized in all versions of the trace-based DBP

implementation. The handicapped version only eliminates parallelization between application and

3.3 Experimental Results 32

5.00%

10.00%

15.00%

20.00%

Basic Block Instruction

41.82% 37.35%

0.00%

5.00%

(a) CINT2000.

5.00%

10.00%

15.00%

20.00%

Basic Block Instruction

52.28%

70.62% 56.26%

68.43% 42.47%

0.00%

(b) CFP2000.

Figure 3.4: An average of 10.32% basic blocks or 8.40% instructions for integer benchmarks and
17.91% basic blocks or 11.12% instructions for floating point benchmarks belong to libraries.

library instructions. The degree to which this handicap affects the speedup is related to the degree

to which application instructions are interleaved with library instructions. These results validate the

hypothesis that the inability to parallelize across boundaries between application and library code

is a significant handicap for static parallelization.

When all handicaps are removed, trace-based DBP constructs very long traces. Figure 3.5 depicts

the average number of basic blocks within each constructed trace, which can be as large as 1,880 for

integer benchmarks (vortex) and 26,931 for floating point benchmarks (mgrid). This indicates that

the applications in this benchmark suite tend to repeat long sequences of instructions. Figure 3.6

3.3 Experimental Results 33

50

100

150

200

250

1,880

0

50

(a) CINT2000.

500

1000

1500

2000

2500

3000

3500

4000

4500

5000
10,800 26,931 7,239

0

500

(b) CFP2000.

Figure 3.5: The average trace length is 235 basic blocks for integer benchmarks and 4,565 basic
blocks for floating point benchmarks.

illustrates the percentage of basic blocks in the entire execution sequence that are not formed into

traces. For all applications, nearly all basic blocks are combined to construct longer traces and

can be parallelized for later reuse. The singleton basic blocks that do occur are primarily from

the prologue and epilogue of the program. Both of these results support the hypothesis that for

a typical program, a relatively small number of traces can almost cover all dynamic instructions,

which suggests good trace predictability.

3.3 Experimental Results 34

0.01%

0.02%

0.03%

0.04%

0.05%

0.06%

0.07%

0.08%

0.00%

0.01%

(a) CINT2000.

0.05%

0.10%

0.15%

0.20%

2.51%

0.00%

(b) CFP2000.

Figure 3.6: An average of 0.02% basic blocks for integer benchmarks and 0.19% basic blocks for
floating point benchmarks are not formed into traces.

3.3.2 Analysis of Trace Parallelization

The only difference between T-DBP−2 and T-DBP−1 is that T-DBP−2 performs dependency anal-

ysis on the CFG during the parallelization process while T-DBP−1 performs dependency analysis

on traces. Thus, the relative results of these two versions of the trace-based DBP implementation

indicate the degree to which parallelism increases when performing dependency analysis on traces at

run time instead of on the CFG at comple time. The average speedup of T-DBP−2 over sequential

execution is 4.68x and 9.36x for integer and floating point benchmarks, respectively, while it is 6.91x

and 17.12x of T-DBP−1. Thus, in this experimental condition, dependency analysis on traces can

3.4 Summary 35

produce an average speedup of 1.47x for integer benchmarks and 1.77x for floating point bench-

marks over dependency analysis on the CFG. These results validate the hypothesis that dependency

analysis on the CFG is a significant handicap for static parallelization.

3.3.3 Analysis of Constant Propagation and Value Prediction

The relative results of T-DBP and T-DBP+1 indicate the degree to which dynamic optimizations

such as constant propagation and value prediction could possibly improve the performance of trace-

based DBP. The results indicate that applying traditional constant propagation on traces before

parallelization and applying perfect value prediction during dependency analysis would improve exe-

cution speed by an average factor of 1.97x and 3.49x over standard trace-based DBP, for integer and

floating point benchmarks, respectively, and can improve the final speed by up to 174.30x (applu)

over sequential execution. These results approximate the absolute limit of trace-based DBP, when

unnecessary register dependencies are eliminated and all memory values can be predicted in advance.

State-of-the-art value prediction techniques can achieve approximately 90% prediction accuracy on

some applications [97, 103], although we expect that value prediction accuracy may be higher with

trace-based DBP, which could enable the development of new value prediction techniques that lever-

age runtime information about traces.

3.4 Summary

In this chapter, we study the performance limits of trace-based DBP by making three idealized

assumptions: 1) an unlimited number of cores and an unbounded amount of shared L1 cache, 2) the

construction of most frequently repeating traces at run time, and 3) perfect one-step prediction of

the trace that is about to run. Our results demonstrate the ability of trace-based DBP to produce

an average speedup of 9.36x and 22.34x for integer and floating point benchmarks, respectively. We

hypothesize that this improvement is due to the ability of trace-based DBP to overcome two key

handicaps of static parallelization: 1) it cannot parallelize across boundaries between application

and library code, and 2) analysis of the CFG identifies true dependencies that do not actually appear

during program execution. We quantify the effects of each of these handicaps by artificially applying

them to trace-based DBP, and show that when all handicaps are emulated, the average speedup does

indeed drop dramatically to 4.68x for integer benchmarks and 9.36x for floating point benchmarks.

On the other hand, dynamic optimizations such as constant propagation and value prediction could

3.4 Summary 36

potentially improve execution speed by another factor of 1.97x for integer benchmarks and 3.49x for

floating point benchmarks on average.

Trace-based DBP is not an alternative to most other parallelization techniques. It is an or-

thogonal technique that can be applied simultaneously to create a multiplicative gain. For ex-

ample, trace-based DBP can be combined with value prediction to remove memory dependencies

from traces [7, 68], and can be applied to each thread created by manual parallelization tech-

niques [51, 49, 48, 50, 52]. Trace-based DBP can also be combined with other program manipu-

lations that require program virtualization and/or dynamic binary translation, such as optimiza-

tion [14, 15, 18, 20, 21], ISA translation [26, 27], profiling [41, 42], or security monitoring [43, 44].

Combining such operations would amortize any overhead of the virtual execution engine.

Trace

Constructor

Trace

Parallelizer

Trace

Predictor

Dispatcher

Trace

Cache

Binary

Executable

Many-Core

Processor

Instruction

Traces

Parallelized

Traces

Parallelized

Traces
Predictions Parallel

Instruction

Streams

Execution

Monitoring

Sequential

Instruction

Stream

Figure 4.1: Tracy takes a sequential instruction stream and transparently converts it to a set of
parallel instruction streams.

Chapter 4

The Tracy Framework

This chapter proposesTracy, an innovative DBP technology that explores the possibility of leveraging

hot traces to provide a large instruction window without introducing spurious dependencies. Tracy

monitors a program at run time and dynamically identifies these hot traces, parallelizes them, and

caches them for later use so that the program can run in parallel every time a hot trace repeats.

Inspired by multi-path execution [104, 105, 106], Tracy exploits the unique power of many-core

architectures by launching multiple traces and executing them simultaneously on idle cores. The

major insight is that in many cases, speculation accuracy can be dramatically increased by only

trying a very small number of candidate traces.

37

Chapter 4 The Tracy Framework 38

P
re

d
ic

t
P

re
d

ic
t

P
re

d
ic

t
P

re
d

ic
t

Sequential

Execution

Success

Tracy

Dispatch

Abort

Parallelized Candidate

Traces

Abort

Skip

Dispatch

Abort

SuccessSkip

Dispatch

Dispatch

Core 1 Cores 2-7

Success

Continue

Figure 4.2: Tracy uses one core for trace management plus sequential execution, and the remaining
cores for speculative execution of parallelized candidate traces.

Figure 4.1 illustrates the overall framework of Tracy, which involves five algorithmic components.

A conceptual overview of Tracy is explained in Figure 4.2. In Figure 4.2, Core 1 is instrumented

with trace management functionality and starts to execute the unmodified, sequential binary. Simul-

taneously, the trace constructor monitors the instruction stream and identifies traces from frequently

repeating instruction sequences. The traces are then processed by the trace parallelizer and stored

in the trace cache. This parallelization process is offloaded to spare cores in order not to affect the

sequential execution. At every point during execution, the trace predictor checks for candidate traces:

parallelized traces in the trace cache that 1) begin with the instruction that is about to be executed

by the sequential binary, and 2) have a high probability of running to completion. If any exist, it

suspends the sequential execution and launches them on the remaining available cores (Cores 2 to

7). The speculated traces operate on copies of the actual program state. If a trace deviates from

the execution path which is actually taken, it aborts and its copy of program state is discarded. If

any traces run to completion, one of them is selected and its copy of program state is committed

to the suspended sequential execution, which “skips forward” in time to the end of the selected

trace. Figure 4.2 illustrates three example scenarios. First, the right trace aborts and the left trace

succeeds, causing the sequential execution to skip forward. Second, both traces abort and so the

4.1 Motivating Example 39

sequential binary continues running from the last dispatch point. Third, both traces succeed (it is

possible when one trace happens to be the prefix of the other trace) and the copy of program state

from the left trace is selected to commit.

4.1 Motivating Example

While it is relatively obvious that long traces expose more parallelism opportunities than the small

hardware instruction window used by DIS-based DBP techniques, Figure 4.3 illustrates an example

of how Tracy can successfully parallelize some applications when CFG-based DBP techniques fail to.

Figure 4.3(a) shows the CFG of a simple loop with a loop-carried dependency on index variable i.

Assuming the contents of array x are hard to predict, this dependency serializes every iteration of

the loop so that no parallelism can be extracted. During run time, Tracy observes that the program

continues repeating two traces (Figures 4.3(b) and 4.3(e)), each of which comprises two iterations of

the original loop. (In reality, Tracy would build much longer traces. Traces of two iterations are just

for illustrative purposes.) Because the interleaving of these two traces is unpredictable (otherwise,

the contents of array x are also predictable), Tracy has to execute both of them simultaneously to

achieve high speculation accuracy. Because each trace encapsulates only a single flow of control, con-

trol dependencies are eliminated and they can both be aggressively parallelized. Taking the second

trace as an example, it is first optimized to eliminate unnecessary data dependencies. As illustrated

in Figure 4.3(f), the value of variable i defined at statement 3 is propagated to statements 4, 7,

and 8, which breaks the dependency between the two iterations. Thus, these two iterations can

run in parallel as depicted by Figure 4.3(g). In Figure 4.3(h), Tracy further performs fine-grained

instruction scheduling by moving statements 7 and 8 to the first iteration, achieving better load

balance between the two threads.

4.2 Execution Model Justification

Although it dramatically increases speculation accuracy, multi-trace execution does require more

cores and possibly more energy that can otherwise be used to exeute other applications. In practice,

however, this execution model is reasonable and efficient in many computing environments. First,

in most server systems for high performance and research computing, once a job is scheduled, it

has dedicated use of the cores to which it was allocated. Modern applications usually contain both

sequential and parallel code regions, and users tend to request resources greedly to support the most

4
.2

E
x
ecu

tio
n
M
o
d
el

J
u
stifi

ca
tio

n
4
0

i = 0;

while (i < 100) {

a = x[i];

if (a > 0) {

b /= a;

c = i;

i += 1;

}

else {

i += 2;

}

}

(a) CFG.

1) a = x[i];

2) assert (a <= 0);

3) i += 2;

4) a = x[i];

5) assert (a <= 0);

6) i += 2;

live-ins: i

live-outs: a, i

(b) Trace 1.

1) a = x[i];

2) assert (a <= 0);

3)

4) a = x[i + 2];

5) assert (a <= 0);

6) i += 4;

live-ins: i

live-outs: a, i

(c) Optimized

Trace 1.

1) a = x[i];

2) assert (a <= 0);

live-ins: i

4) a = x[i + 2];

5) assert (a <= 0);

6) i += 4;

live-ins: i

live-outs: a, i

(d) Parallelized Trace 1 (coarse-grained).

1) a = x[i];

2) assert (a <= 0);

3) i += 2;

4) a = x[i];

5) assert (a > 0);

6) b /= a;

7) c = i;

8) i += 1;

live-ins: i

live-outs: a, b, c, i

(e) Trace 2.

1) a = x[i];

2) assert (a <= 0);

3)

4) a = x[i + 2];

5) assert (a > 0);

6) b /= a;

7) c = (i + 2);

8) i += 3;

live-ins: i

live-outs: a, b, c, i

(f) Optimized

Trace 2.

1) a = x[i];

2) assert (a <= 0);

live-ins: i

4) a = x[i + 2];

5) assert (a > 0);

6) b /= a;

7) c = (i + 2);

8) i += 3;

live-ins: i

live-outs: a, b, c, i

(g) Parallelized Trace 2 (coarse-grained).

4) a = x[i + 2];

5) assert (a > 0);

6) b /= a;

live-ins: i

live-outs: a, b

1) a = x[i];

2) assert (a <= 0);

7) c = (i + 2);

8) i += 3;

live-ins: i

live-outs: c, i

(h) Parallelized Trace 2 (fine-grained).

Figure 4.3: Based on multi-trace execution, Tracy can successfully parallelize some applications when CFG-based DBP techniques fail to.

4.3 Hardware Architecture 41

parallel parts of the program. These otherwise “wasted” cores can be readily leveraged by Tracy

to automatically parallelize the sequential parts of the program. Furthermore, these computing

environments do not impose any cost to users for energy, and they are often more concerned in the

provisioning stage to ensure sufficient power delivery under peak load. For users interested in getting

their results as quickly as possible, there is no disincentive, and every incentive, to use Tracy. Second,

the same dedicated-resource policy also applies to datacenters to ensure quality of service (QoS) [107].

Co-location on many-core machines is disallowed for user-facing and latency-sensitive applications

to avoid potential interference. As more computing moves into the cloud, these applications are

likely to dominate everyday computing in the future. Tracy, on the contrary, can exploit these

idle cores to provide better QoS. Energy consumption does matter in datacenters because profit is

heavily affected by operating efficiency. However, the CPU chip is only a small fraction of overall

energy consumption. Large DRAM, disk, power supply inefficiencies, etc. are also major factors

that impose a constant background “system leakage” while the machine is awake. “Wasting” some

energy on the CPU chip to complete the task further and thus reducing energy spent on these other

factors may be justifiable. For example, if the other factors are constant and the CPU chip consumes

30% of the total power, increasing the CPU chip power by 2x but reducing execution time by even

a mere 1.3x is break-even on energy.

4.3 Hardware Architecture

Tracy assumes that a many-core chip is organized into master clusters and slave clusters, as illus-

trated in Figure 4.4. Cores within each cluster are connected via a cluster bus, and different clusters

are connected via a backbone bus. Such a hierarchical bus design is inspired by [108], and can be

easily replaced by other on-chip networks (e.g., 2D Mesh [109]). The backbone bus is also segmented

and connected with simple tri-state gates to pipeline sequential transfer of bulk data between the

same source and destination core [108]. In each master cluser, at least one core is instrumented with

special hardware to support execution monitoring and trace management, which will be described

in Chapter 5. Several other cores are dedicated for trace parallelization, depending on the actual

workload during run time. Tracy does not rely on any centralized hardware to support collaborative

fetch, renaming, memory disambiguation, or commit, which is essential in existing DBP technologies

to enable fine-grained multithreading [3, 4, 5]. Besides trace construction and prediction, however,

Tracy does require some extra support from the underlying architecture, which will be described in

the following sections in detail.

4.3 Hardware Architecture 42

Slave

Cluster

Slave

Cluster

Slave

Cluster

Slave

Cluster

Slave

Cluster

Master

Cluster

Backbone Bus

Core

L1 $

Core

L1 $

Core

L1 $

Core

L1 $

Cluster Bus

Multi-Banked

Synchronization Array

Cluster Bus

Core

L1 $

Core

L1 $
Tracy

Binary

Executable

Core

L1 $

Figure 4.4: Tracy assumes that a many-core chip is organized into master clusters with a specially-
instrumented core and slave clusters that contain synchronization arrays.

0x80 1 ……

R1 =

ld [R2 + 4]

= R1

st [R2 + 4]

Synchronization Array

Thread 1 Thread 2

Figure 4.5: Each entry in the synchronization array is correlated to a unique register or memory
reference that needs to be synchronized. While the actual value of each synchronized register is
explicitly transferred through the array, a boolean value is just enough for a pair of dependent
memory references to maintain the correct order.

4.3.1 Supporting Low-Latency Intra-Cluster Communication

Because one important functionality of Tracy is to exploit fine-grained parallelism (e.g., ILP), it

requires low-latency communication channels among different cores on the same chip to transfer

scalar values. Software-based synchronization techniques such as locks, barriers, and monitors can

cause large runtime overhead due to the interactions with the operating system, but special hardware

such as synchronization array [98] and operand network [99] provide efficient, non-memory-based

communication between different cores on the same chip.

4.3 Hardware Architecture 43

Within each slave cluster, a multi-banked synchronization array [98] is also connected to all the

cores to provide low-latency communication via dedicated links, which are depicted as part of the

cluster bus. Each separate link connects one core to the array and does not interfere with cache

traffic. As illustrated in Figure 4.5, each entry in the array is correlated to a unique register or

memory reference that needs to be synchronized. Due to this one-to-one correlation, the array can

be aggressively multi-banked in order to maintain low access latency. During program execution,

explict produce and consume instructions inserted in each parallelized thread are used to copy data to

and from the array. While consume instructions can run speculatively, the copy back must happen at

the retire stage of the produce instruction. In the current design choice, after the produce instruction

is decoded, the processor extracts the entry number of the array (no address calculation is needed

as in normal memory loads and stores) and stores it with the instruction that actually produces

the value. When that instruction retires, the value is directly routed to the array. The hardware

cost for this architectural optimization is quite small. For example, in OoO cores, only some extra

bits are needed for each ROB entry. If the consumer arrives earlier than the producer, the core

number of the consumer is recorded and the data will be automatically redirected to it when the

producer finally arrives. While the actual value (e.g., 0x80 in the first entry) of each synchronized

register is explicitly transferred through the array, a boolean value (e.g., 1 in the second entry) is

just enough for a pair of dependent memory references to maintain the correct order. Note that if

one memory reference instruction is dependent on several memory reference instructions on another

core, it only needs to be synchronized with the last one because instructions are retired in order. If

an instruction needs to consume multiple values, they are encoded into one variable-length consume

instruction. In OoO execution, a separate issue queue is dedicated for consume instructions, which

has been adopted and proven important by prior research [3, 35].

4.3.2 Supporting Multi-Trace Execution

In order to predict long traces accurately, Tracy speculatively dispatches multiple candidate traces

at the same time. As long as one trace completes execution, the prediction is considered successful.

Tracy uses the L1 data cache to hold the speculative program state produced by memory accesses,

and each of its lines contains an extra bit to specify whether it has been speculatively modified.

The cluster bus is segmented [108] accordingly to ensure that the copies of program state from

different candidate traces can never be polluted by one another. Tracy also leverages and extends

the underlying cache conherence protocol (MESI in this case) to support multi-trace execution. Note

4.3 Hardware Architecture 44

State Description

Modified (M) line resides exclusively in this cache only
content is modified relative to main memory

Exclusive (E) line resides exclusively in this cache only
content is same as main memory

Shared (S) line resides in this cache but may be shared with other
content is same as main memory

Invalid (I) line contains no valid main memory copy

Table 4.1: In the MESI cache conherence protocol, each cache line is in one of four states: 1) modified,
2) exclusive, 3) shared, and 4) invalid.

Action Current State Next State Bus Activity

Read M M none (read hit)
Read E E none (read hit)
Read S S none (read hit)
Read I S/E line fill (read miss)

send inquiry to other caches
Write M M none (write hit)
Write E M none (write hit)
Write S S/E write through (write hit)

send invalidation signal to other caches
Write I I write through (write miss)

send invalidation signal to other caches

Table 4.2: State transfer of the cache line in the MESI cache conherence protocol when responding
to messages initialized from the processor.

Action Current State Next State Bus Activity

Read M S provide data on bus and write back
Read E S provide data on bus
Read S S provide data on bus
Read I I none
Write M I provide data on bus and write back
Write E I none
Write S I none
Write I I none

Table 4.3: State transfer of the cache line in the MESI cache conherence protocol when responding
to messages initialized from the snoopy bus.

that this modification does not have any inherent dependencies on snooping-based protocols and can

be ported easily to directory-based protocols.

In the MESI protocol, each cache line is in one of four states, which are described in Table 4.1.

Table 4.2 and 4.3 list the state transfer of each cache line when responding to messages initialized

from the processor and the snoopy bus, respectively. In order to support multi-trace execution, the

MESI protocol is modified as follows.

• If any read or write miss occurs in the L1 data cache of a slave core (i.e., slave cache) and the

4.4 Summary 45

cache line cannot be provided locally by other collaborative caches that are occupied by the

same candidate trace, the request is sent to the L1 data cache of the master core (i.e., master

cache). If the cache line still cannot be provided, the L2 cache is then accessed. This extra

process implicitly transfers live-in cache lines from squential execution to the candidate trace.

When receiving the write miss message, the master cache does not have to invalidate its own

copy of the cache line because the candidate trace may abort later due to mis-speculation.

On the contrary, when receiving the read miss message, the master cache does update the

state of its cache line because it will remain valid in the requesting slave cache even when the

corresponding candidate trace aborts.

• If any speculatively modified cache line is forced to be replaced in a slave cache, the candidate

trace aborts. According to our experience, this situation rarely happens in practice.

• If a candidate trace aborts or is not selected to commit, all of its speculatively modified cache

lines are invalidated. Otherwise, they are explicitly broadcasted to the master cache and all

other slave caches as live-out cache lines. If the master cache cannot hold all these cache

lines, they are written back to the L2 cache to become part of the permanent state. On the

contrary, if any slave cache cannot hold all these cache lines, they are simply discarded. Finally,

exclusive cache lines in all slave caches are changed to the shared state because they may have

been requested by different candidate traces.

4.4 Summary

Tarcy is an innovative DBP technology that explores the possibility of leveraging hot traces to pro-

vide a large instruction window without introducing spurious dependencies. Inspired by multi-path

execution [104, 105, 106], Tracy exploits the unique power of many-core architectures by launching

multiple traces and executing them simultaneously on idle cores. Multi-trace execution is essential

to Tracy’s capability to exploit more coarse- and fine-grained parallelism than DIS- and CFG-based

DBP techniques. For ILP, this technology enables the construction of very long tracs that expose

more distant parallelism and for LLP, this technology increases the possibility to break loop-carried

dependencies that can not be handled by value prediction.

Multi-trace execution does require more cores and possibly more energy that can otherwise

be used to exeute other applications. In practice, however, this execution model is reasonable and

efficient in many computing environments, such as high performance computing, research computing,

4.4 Summary 46

cloud computing, and data centers. Furthermore, the CPU chip is only a small fraction of overall

energy consumption. Large DRAM, disk, power supply inefficiencies, etc. are also major factors

that impose a constant background “system leakage” while the machine is awake. “Wasting” some

energy on the CPU chip to complete the task further and thus reduce energy spent on these other

factors may be justifiable. For example, if the other factors are constant and the CPU chip consumes

30% of the total power, increasing the CPU chip power by 2x but reducing execution time by even

a mere 1.3x is break-even on energy.

Tracy leverages and extends the underlying cache conherence protocol (MESI in this case) to

support multi-trace execution. If any speculatively modified cache line is forced to be replaced in

a slave cache, the candidate trace aborts. All cache lines that are speculatively modified by the

committed trace are broadcasted to the master cache and all other slave caches as live-out cache

lines. These cache lines become part of the permanent state and have to be written to the L2 cache

if the master cache cannot hold all of them.

Chapter 5

Trace Construction and Prediction

High quality traces are the prerequisite for Tracy to effectively exploit both coarse- and fine-grained

parallelism. More specifically, perfect traces have to simultaneously satisfy four requirements, which

can be contrary to one another. First, traces have to be as long as possible to expose more distant

parallelism opportunities. Second, traces have to be logically atomic. They should have a single

entry point, a single exit point, and the control flow cannot exit prematurely through side exits.

Thus, analysis can ignore all unnecessary control and data dependencies, enabling more aggressive

parallelization. Third, traces have to be predicted accurately so that valuable CPU cycles and energy

are not wasted on executing incorrect execution paths. Fourth, traces have to cover a large portion

of dynamic instructions so as to produce large overall speedups.

5.1 Extending Branch Promotion

In prior research, rePlay [21, 46] constructs the longest atomic traces that can be predicted accurately.

rePlay uses a bias table to keep track of whether each conditional branch has gone in the same

direction for 32 consecutive times. If it has, the bias table indicates that the conditional branch

should be promoted to an assertion, which is called branch promotion. Each instruction is appended

to the end of the trace construction buffer when it is retired. Once an unpromoted conditional branch

is encountered, the pending trace is considered complete. A separate bias table is maintained for

indirect branches and returns. For such control transfer instructions, a single bit for the last direction

does not suffice and the target address must be kept in each entry. rePlay also associates each control

transfer instruction with the global branch history [47]. This context sensitive information separates

each control transfer instruction into instances based on the execution path leading up to itself.

47

5.1 Extending Branch Promotion 48

Once separated this way, a greater number of control transfer instructions tend to exhibit biased

behavior. The starting branch history of each trace (i.e., the branch history associated with the first

control transfer instruction in the trace) is kept with the trace and only when the prior execution

path matches this history, the corresponding trace is predicted to run.

rePlay is not compatible with multi-trace execution because it only constructs one trace under

each different context. Thus, as the first step to further enlarge trace length, we relax the require-

ments of the original branch promotion heuristic so as to construct multiple longer traces under each

different context, which can be predicted to run simultaneously. During program execution, each

control transfer instruction is instrumented to track the frequency with which it jumps to each target

address. As each instruction is retired, it is appended to the end of the trace construction buffer,

causing the pending trace to grow. Whenever a control transfer instruction is encountered and the

frequency associated with its current target address exceeds 25%, it is promoted to be an assertion

and treated as a normal instruction. Otherwise, the pending trace is terminated. An 11-element

branch history is used to differentiate the same control transfer instruction under different contexts,

assuming perfect alias resolution. Each trace is limited to be between 16 and 16K instructions long,

and there are no restrictions on the number of traces that can be constructed. We use a simple

trace prediction heuristic that dispatches every trace that 1) starts with the next target address,

and 2) its starting branch history matches the prior execution path. If multiple candidate traces

run to completion, the longest one is selected to commit.

We evaluate the above trace construction and prediction heuristics using the SPEC CPU2000

benchmark suite with the test data sets as input. Experimental results listed in Table 5.1 indicate

that the constructed traces generally meet the four requirements to be considered high quality,

especially for floating point applications. However, a more comprehensive analysis shows that some

serious flaws exist by simply integrating branch promotion and multi-trace execution.

The third column of Table 5.1 lists the total size of unique traces that commit at least once

during program execution. This is a conservative estimate of the working set size of traces, because

a simple cache eviction policy [110, 111] could eliminate those traces that are constructed but never

commit. Benchmarks like perlbmk, swim, mgrid, applu, lucas, fma3d and apsi do not experience

serious code expansion through this technology. Because each trace can be always dispatched to the

same core, the collaboration of all cores on the same chip can provide a large enough L1 instruction

cache to hold the entire working set of traces. Furthermore, because traces only contain straight-line

sequences of instructions, the traditional Next-N-Line prefetching scheme [112] works perfectly to

fetch needed instructions into the L1 instruction cache on time. For half benchmarks, however, the

5
.1

E
x
ten

d
in
g
B
ra
n
ch

P
ro
m
o
tio

n
4
9

SPEC CPU2000 Trace Construction Trace Prediction Execution on
Benchmark Trace Size (MB) Avg. Trace Length Above 400 % Accuracy Avg. Candidate # Traces %

gzip 32.87 174.23 4.65% 96.61% 51.83, 5.41 99.49%
vpr 20.06 111.24 1.31% 92.78% 66.31, 8.35 98.43%
gcc 163.68 168.35 7.65% 85.18% 18.28, 4.10 94.07%
mcf 17.34 112.47 1.44% 81.40% 32.58, 4.11 95.33%
crafty 212.65 129.40 4.29% 91.51% 22.26, 3.19 95.92%

INT parser 137.71 96.35 1.46% 88.50% 35.92, 6.40 96.70%
eon 8.49 291.18 19.71% 88.94% 11.07, 3.00 90.37%

perlbmk 1.29 318.23 16.78% 99.17% 5.20, 1.28 99.49%
gap 45.08 153.37 4.79% 92.92% 16.92, 3.57 97.43%

vortex 13.66 153.76 5.34% 99.11% 7.25, 1.60 99.85%
bzip2 147.60 305.23 20.79% 98.53% 192.88, 14.85 99.75%
mcf 23.30 213.20 14.36% 86.34% 23.95, 4.99 92.15%

wupwise 20.91 555.08 28.73% 94.45% 4.61, 1.60 97.18%
swim 1.42 984.85 10.14% 99.57% 7.08, 1.26 99.88%
mgrid 3.95 7,548.63 98.60% 99.98% 8.03, 1.18 99.99%
applu 2.62 6,892.11 95.96% 96.24% 2.63, 1.15 97.90%
mesa 62.98 400.54 33.16% 99.71% 6.57, 2.60 99.60%
galgel 35.22 801.19 80.33% 94.27% 33.23, 4.54 96.20%

FP art 12.54 365.37 10.91% 98.65% 34.60, 2.30 99.84%
equake 22.90 385.90 21.37% 83.33% 8.30, 1.75 89.88%
facerec 13.89 2,745.72 79.88% 94.22% 11.25, 1.39 99.56%
ammp 39.71 233.80 13.73% 94.28% 31.26, 2.44 99.06%
lucas 2.97 363.19 1.83% 99.98% 52.04, 1.13 99.99%
fma3d 0.57 416.87 27.83% 54.87% 6.67, 2.96 69.46%
sixtrack 17.68 468.09 58.37% 96.42% 6.29, 1.95 99.10%
apsi 4.66 1,262.80 66.66% 99.90% 8.32, 1.56 99.97%

Table 5.1: This table shows 1) the total size of unique traces that commit at least once, 2) the average length of traces that commit in each correct
prediction, 3) the percentage of committed traces that are longer than 400 instructions, 4) the trace prediction accuracy, 5) the average size of the
candidate trace pool and the average sorted rank of the committed trace in that pool, and 6) the percentage of instructions executed by the unmodified
program that are covered by correctly predicted traces.

5.1 Extending Branch Promotion 50

total size of useful traces is more than 20 MB, which is not likely to be even fit entirely in the L3 cache

on modern microarchitectures. In most cases, a large portion of these traces are constructed within

a small number of code regions that have complicated control flows, which can not be predicted

accurately by only executing a small number of candidate traces. Thus, these code regions do not

benefit from trace-based DBP and should continue executing sequentially.

The fourth column of Table 5.1 lists the average length (in instructions) of committed traces,

weighted by the number of times that each trace commits. The fifth column lists the percentage

of times that the committed trace contains more than 400 instructions. This threshold is selected

due to our experience and such long traces have a higher probability to contain corase-grained par-

allelism (e.g., LLP) that may produce larger speedups. For four floating point benchmarks (mgrid,

applu, facerec, apsi), a majority of committed traces contain more than 400 instructions, with

the average trace length in the thousands. Other floating point benchmarks and all integer bench-

marks have shorter traces, in which fine-grained parallelism (e.g., ILP) is more likely to be exploited.

However, after manually inspecting the constructed traces, we find that traces are terminated pre-

maturely for most of the benchmarks. Recall that in the trace construction heuristic, only when the

frequency associated with the current target address of the control transfer instruction exceeds 25%,

it is promoted to an assertion and the pending trace continues growing. This requirement almost

guarantees that the pending trace will be terminated after the innermost loop is exited. If there are

not enough iterations in the innermost loop, the constructed trace is unnecessarily curtailed when

more instructions should have be appended.

The first number in the seventh column of Table 5.1 is the average number of candidate traces

per prediction, which forms the candidate pool. These numbers can be large, especialy for integer

benchmarks, which indicates that blindly executing all traces in the candidate pool would not be

energy proportional to the performance increase and in many cases, the underlying architecture

would not have that many cores to execute all of the candidate traces simultaneously. We then

sort the candidate pool in decreasing order of the number of times each trace commits in prior

program execution, with ties being broken by placing the longer traces first. The second number

in the seventh column of Table 5.1 shows the average rank of the committed trace in the sorted

candidate pool. Nine out of 14 floating point benchmarks have average rank of less than two and

almost all benchmarks have average rank less than five. Thus, a simple heuristic to only execute

a small number of high priority candidate traces in parallel is likely to substantially improve the

energy proportionality while maintaining high prediction accuracy.

Compared to the original rePlay implementation, multi-trace execution dramatically increases

5.2 Exploiting Hierarchical Code Structures 51

Parameter Definition

MinTrLeng minimum trace length
MaxTrLeng maximum trace length
MinLoopLeng minimum loop-derived trace length that is initially assigned
LoopDivisor divisor to reduce minimum loop-derived trace length until

minimum trace length is reached
MinBlkLeng minimum length of a basic block to be a valid code structure
MaxTrNum maximum number of traces that start with the same address

MinSpecAccuracy minimum speculation accuracy for a code structure to remain
valid when maximum trace number is reached

TrDiscThold number of times that traces derived from a code structure are
allowed be discarded consecutively

TrConstThold number of times that a trace has to repeat before being officially
constructed

Table 5.2: Parameter definition of the trace construction algorithm.

trace length while achieving higher speculation accuracy and larger coverage of dynamic instructions.

Simply integrating branch promotion and multi-trace execution, however, has two drawbacks. On

one hand, branch promotion sometimes overuses multi-trace execution by constructing traces from

code regions that have complicated control flows, which do not benefit from trace-based DBP and

should continue executing sequentially. On the other hand, branch promotion sometimes underuses

multi-trace execution by terminating traces prematurely when the innermost loop is exited. Thus,

it is both important and necessary to develop novel trace construction algorithms that fully but

carefully exploit the unique power of multi-trace execution.

5.2 Exploiting Hierarchical Code Structures

Based on the above observations, We develop an innovatative trace construction algorithm that

holistically balances among trace length, speculation accuracy, and coverage of dynamic instructions.

Tracy constructs the longest traces that can be accurately speculated on the available number of

cores. In certain code regions that have complicated control flows, Tracy stops constructing traces

and executes these code regions sequentially.

In order to reduce runtime overhead, Tracy implements dynamic instrumentation in hardware

by directly integrating trace construction with instruction pipeline execution, which has been widely

adopted by prior research [18, 20, 21, 25, 40]. As illustrated in Figure 5.1, Tracy constructs traces at

the retire stage of each instruction to avoid being on the critical path of pipeline execution. It stores

real traces in main memory and their metadata in the set associative trace cache on chip. Each

trace is indexed by its start address and placed in the corresponding set. These metadata are used

5
.2

E
x
p
lo
itin

g
H
iera

rch
ica

l
C
o
d
e
S
tru

ctu
res

5
2

Trace Cache (29 Bytes / Entry)

Signature LengthValid Live-in Regs.

……

Start Addr. Return Addr. Seg. Num. Const. Ctr. Corp. Ctr. Misp. Ctr.

……

Retired

Instructions

Trace Constructor

Execution Path Merging

Trace Buffer

Level 1 Level 2 ……

Call Stack (4 Bytes / Entry)

Level 3

Metadata of Traces

Store Addr.

Code Structure Table (13 Bytes / Entry)

Entry RangeValid Disc. Ctr.Type

……

Figure 5.1: Tracy constructs traces at the retire stage of each instruction. It stores traces in main memory and their metadata in the set associative
trace cache on chip.

5.2 Exploiting Hierarchical Code Structures 53

Main Function

L1

L2

L3

Main Function

L1

L2

L3

�

����

����

����

�

�

Figure 5.2: Tracy starts to exploit code structures in the outermost scope, and only enters the next
level if necessary.

for different purposes and will be explained through the entire section. Tracy constructs traces in

three steps, each of which will be described in detail in the following sections. All parameters used

in the algorithm are defined in Figure 5.2.

5.2.1 Selecting Starting and Ending Points

When a program starts running, Tracy launches a thread on a separate core to analyze the binary

executable and build the hierarchy of code structures [113], which are stored in main memory. Tracy

uses these code structures to define the starting and ending points of each primitive trace, which

may contain 1) one complete function invocation, 2) one or several complete iterations of the same

loop, or 3) one basic block of more than MinBlkLeng instructions. In order to maximize their length,

traces are intially restricted to start and end at the outermost functions or loops, whose entries and

ranges are loaded into the code structure table (CST) from main memory. During program execution,

if a code structure shows unpredictable internal execution paths, it is deleted from the CST and the

next level of inner code structures is loaded. For example, Figure 5.2 illustrates a simple program

comprising an outer loop L1 and two separate inner loops L2 and L3. Initially, traces can only start

with the head of L1. If these traces can not be accurately predicted, the head of L1 is no longer

used to initialize traces and the heads of L2 and L3 are used instead. These inner loops produce

a smaller number of shorter execution paths so that correct traces starting from the corresponding

program points will be easier to predict.

Tracy ends a primitive trace under one of two possible conditions: 1) the target of its last

instruction goes beyond the range of the corresponding code structure, and 2) it is derived from a

loop, the target of its last instruction goes back to the loop entry, and it is more than MinLoopLeng

instructions long. The second condition is used to partition the iteration space in case the entire

loop execution is too large to fit into a single primitive trace. If the first primitive trace is already

5.2 Exploiting Hierarchical Code Structures 54

more than MinTrLeng instructions long, the entire trace terminates. Otherwise, Tracy continues

appending instructions until the next found primitive trace ends. This process may repeat multiple

times until the compound trace finally reaches the minimum trace length. In order to construct

longer traces, MinLoopLeng is initially assigned a much larger value than MinTrLeng. Because both

functions and loops can include subroutine invocations, Tracy also maintains a call stack for the

primitive trace under construction. Only when the call stack becomes empty, the control flow is in

the correct core structure so that the end condition testing is necessary.

5.2.2 Appending Retired Instructions

Once the starting and ending points are selected, Tracy indexes the address of each retired instruc-

tion in the CST, and begins a new trace if it matches the entry of any code structure. After that,

every retired instruction is appended to the end of the trace buffer, with all control transfer in-

structions (e.g., conditional branches, indirect branches, returns) changed to assertions [21, 46]. An

assertion encodes the pre-determined target of the original control transfer instruction based on the

particular trace, and sends an abort signal to Tracy if it deviates from the execution path that is

actually taken. If an instruction invokes a system call whose effects may not be recoverable, or

the maximum trace length of MaxTrLeng instructions has already been reached, the trace under

construction is discarded. Each CST entry contains a field (Disc. Ctr.) to record the number of

consecutive times that a trace derived from this code structure is discarded.

5.2.3 Inserting into the Trace Cache

Four pieces of metadata in each trace cache entry uniquely determine a trace, including 1) the

address of its first instruction (Start Addr.), 2) the address of the next instruction to be executed

if it runs to completion (Return Addr.), 3) the signature by XORing all its instructions (Signature),

and 4) the total number of its instructions (Leng). All addresses are based on the original program.

Another piece of metadata is also maintained to count the number of times that the trace has

repeated (Const. Ctr.). If the newly terminated trace is found in the trace cache and has already

repeated TrConstThold times, it is officially constructed and the trace buffer is passed to the trace

parallelizer for further processing. If the trace has never been encountered before, Tracy then counts

the number of existing traces that start with the same address. If the value has already reached

MaxTrNum, the new trace can only replace an old trace with the same start address. Otherwise, it

can be inserted into an empty entry if available.

5.3 Adaptive Speculation 55

A code structure is considered inappropriate to construct traces when one of two conditions are

encountered. First, the derived traces have been discarded TrDiscThold times consecutively. Second,

the number of derived traces has reached MaxTrNum but the corresponding speculation accuracy

is below MinSpecAccuracy. Both conditions indicate that trace length needs to be reduced. If the

code structure is a loop and the value of MinLoopLeng divided by the constant LoopDivisor is still

larger or equal to the value of MinTrLeng, the code structure remains in the CST and MinLoopLeng

is updated with the newly calculated value. Otherwise, the code structure is deleted from the CST

and the next level of inner code structures is loaded. In both cases, all existing traces derived from

the code structure are deleted from the trace cache.

5.3 Adaptive Speculation

Trace prediction occurs simultaneously with normal instruction fetch and introduces negligible run-

time overhead [18, 20, 21, 25, 40]. Each trace cache entry contains two fields that are correlated to

trace prediction. The Corp. Ctr. field counts the number of times that a trace has been correctly

predicted. For traces that start with the same address, if one counter reaches the maximum value,

the values in all counters are halved in order to maintain the correct ranking of traces based on their

hotness. On the other hand, the Misp. Ctr. field counts the number of times that a trace has been

mispredicted consecutively. When the counter value exceeds the threshold (defined as TrDisbThold),

the trace is disabled temporarily and can only be enabled again after being identified several more

times (defiend as TrDisbPenalty). Tracy launches as many enabled traces as it can that start with

the next executed instruction. Priority is given to traces that are correctly predicted more frequently,

with ties being broken by selecting the longer traces.

During dispatching, each trace is assigned to a core that it has been executed on before, which is

maintained by Tracy. If it is not possible due to assignment conflicts or this is the first time that the

trace is speculated, Tracy dispatches it to the core that holds the least size of traces. This design is

to evenly distribute traces to different L1 instruction caches.

Each trace cache entry contains three fields that are necessary to execute the candidate trace:

1) the Live-in Regs field lists the live-in registers of the trace, 2) the Seg. Num. field designates the

number of parallelized threads, and 3) the Store Addr. field contains the real start address of the

trace in main memory. Live-in registers are transferred in bulk from sequential execution to all the

candidate traces. If multiple traces run to completion, program state from the longest one is selected

to commit, whose live-out registers are transferred back to sequential execution. Information of live-

5.4 Experimental Setup 56

out registers is patched at the end of each parallelized thread after parallelization is performed, so

that it does not need to be maintained in the trace cache. The transfer of live-in and -out cache

lines has been described in Section 4.3.2.

5.4 Experimental Setup

Tracy is implemented by heavily extending the SESC simulation framework [114]. In the following

subsections, we will describe in detail how the architectures, algorithms, benchmarks, and evaluation

methodology are selected and configured in our experiments.

5.4.1 Architectures

We evaluate Tracy on a symmetric many-core architecure with 34 2-issue IO cores. A single master

cluster contains two cores, one for trace management plus sequential execution, and the other one for

trace parallelization. The remaining 32 cores are equally divided into four slave clusters to execute

the parallelized candidate traces.

The design of putting a number of identical single-issue or dual-issue IO cores onto a single

chip has been adopted by many classic products, such as the Raw processor [33], the Tilera proces-

sor [115], the UltraSPARC T1/T2 processor [116], the Larrabee processor [117], and the OCTEON

processor [118]. More recently, Intel announces its MIC architecture [119], which follows the same

design direction. Knights Corner, the first commercial MIC architecture product, will be manufac-

tured using Intel’s latest 3D Tri-Gate 22nm transistor process and will feature more than 50 IO

cores. Thus, we believe that integrating a number of IO cores onto a single chip will continue to be

one of the major many-core architecture designs in the future.

The entire system can be configured by varying three independent parameters: 1) the number

of cores to use, 2) the number of parallel threads that each trace is decomposed into, and 3) the

core type. For example, if the architecture is composed of 2-issue IO cores and Tracy uses all 34

cores to support 4-way parallelization for each trace, the configuration is represented as Tracy434-io2.

Similarly, the corresponding single-threaded execution on this architecture is represented as ST-io2.

Table 5.3 shows the architectural parameters of Tracy434-io2, our major experimental system. Note

that Tracy is also effective even with much smaller core counts or much more advanced core types. In

order to comprehensively evaluate the performance of Tracy, we will also conduct various sensitivity

analyses using different system configurations.

5.4 Experimental Setup 57

2.0 GHz, 2/2/2 fetch/issue/retire width,
1/1/1/1 INT ALU/FP ALU/AGU/Branch Unit,
1/1 INT Multiplier/FP Multiplier

2-issue IO Core 1/1 INT Divider/FP Divider
32+40/32+40 INT/FP registers,
Hybrid Branch Predictor, 11-bit history,
16 KB Global/Local/Meta Table

L1 Instruction Cache 32 KB, 4-way associative, 2 cycles access latency,
16 MSHRs, WT, LRU

Substrate L1 Data Cache 64 KB, 4-way associative, 2 cycles access latency,
32 MSHRs, WT, LRU

Shared L2 Cache 8 MB, 16-way associative, 10 cycles access latency,
64 MSHRs, WB, LRU
256 bit width for cache access,

Cluster Bus 120 bit width per link for synchronization array access,
1 cycle delay

Backbone Bus 256 bit width, 3 cycles delay (1 cycle per segment)
Memory Bus 64 bit width, 15 cycles delay
Memory 400 cycles access latency

Code Structure Table 16K entries, 16-way associative, LRU
Tracy Trace Buffer 16K instructions

Trace Cache 16K entries, 64-way associative, LRU
Synchronization Array 16K entries, 4 banks, 1 cycle access latency

Table 5.3: Architectural parameters of Tracy434-io2.

MinTrLeng 64
MaxTrLeng 16,384
MinLoopLeng 4,096
LoopDivisor 4
MinBlkLeng 8
MaxTrNum 32

MinSpecAccuracy 93.75%
TrDiscThold 4
TrConstThold 16
TrDisbThold 32
TrDisbPenalty 1

Table 5.4: Algorithmic parameters of trace construction and prediction.

5.4.2 Algorithms

Figure 5.4 shows the parameters of the trace construction and prediction algorithms used by Tracy.

These parameters are selected because a combination of them achieves good performance on average

in our design space exploration of these algorithms.

5.4.3 Benchmarks

We evaluate Tracy on the SPEC CPU2000 (both integer and floating point) and MediaBench bench-

mark suites. This choice represents a wide range of programs in terms of parallelization difficulty,

5.4 Experimental Setup 58

where integer applications are the hardest to parallelize and floating point applications are the eas-

iest. For SPEC CPU2000, we select the test data sets as input, and for MediaBench, we use real

world images, audios, and videos downloaded from the Internet. All benchmarks that are supported

by our current implementation are selected and are compiled using GCC 4.4 -O2.

5.4.4 Evaluation Methodology

As described in Section 5.2.3, each constructed trace is passed to the trace parallelizer for further

processing. Thus, there is a lag between the time that the trace is constructed and the time that

the trace can be actually executed to provide parallel performance. Although this parallelization

time can be quickly amortized when the program runs long enough, it becomes significant if we

want to maintain a reasonable simulation time. If we do not count parallelization time, however,

some long traces with short lifetime may result in overstated performance. Thus, we execute each

benchmark two times. In the first time, the program runs under functional emulation mode and

trace parallelization time is configured to be zero. In the second time, the program runs under cycle-

accurate simulation mode (at most one billion instructions) by only using the traces that remain in

the trace cache at the end of the first run.

Prior research [14, 15, 18, 20, 21], including our own experimental results have demonstrated

that programs tend to repeat long sequences of instructions (i.e., traces). For each program phase,

a small set of traces usually covers most of dynamic instructions. As program phases repeat during

execution, these traces get executed continuously while their parallelization time only needs to be

charged once. After all program phases have been encountered several times so that all traces are

parallelized, the program enters the steady state and at that time, its performanec is considered

similar to that is simulated in our experiments. This evaluation methodology is also widely adopted

by prior research [6, 7, 13, 21] in the DBO and DBP area.

Two situations may cause the parallelization time to be charged multiple times. First, some

code regions may contain complicated control flows so that the same trace is first constructed, then

gets deleted from the trace cache, and later is constructed again. However, Tracy stops constructing

traces in these code regions and executes them sequentially. These effects are accurately captured

by our experiments. Second, the same code region may produce several different program phases

that are dominated by different set of traces. Because these set of traces probably share many

start addresses, they may frequently evict one another from the trace cache if these program phases

are tightly interleaved. However, Tracy can maintain the parallelized version of the trace in main

5.5 Experimental Results 59

memory even when it is deleted from the on-chip hardware trace cache. Thus, when the same trace

is constructed again due to program phase change, the parallelization process is actually turned into

hash table searching, whose runtime overhead is negligible. Furthermore, traces that are constructed

from prior runs of the program can be shipped with the binary executable and loaded into the trace

cache at the start of any future runs. If these traces do not match the execution paths which are

actually taken, they will be quickly evicted from the trace cache and new traces will be constructed

instead. However, if the program shows similar behaviors with those of prior runs, these traces

can be executed immediately because they are already parallelized. This technology has a high

probability to make short-running programs also benefit from trace-based DBP.

5.5 Experimental Results

Table 5.5 contains the statistical analysis of the trace construction and prediction algorithms for

each benchmark. The system is configured as Tracy4
34
-io2 so that at most eight candidate traces can

run simultaneously. Column 3 contains the percentage of instructions executed by the unmodified

program that are contained in correctly predicted traces. This number is typically over 90% for

floating point benchmarks, which indicates that almost all dynamic instructions can be executed

in parallel. However, the average percentage for media and integer benchmarks is only 62.04% and

48.56%, respectively, leaving a large portion of the program to run sequentially. Column 7 indicates

that the average trace length varies drastically for each benchmark, ranging from 100s of instructions

for integer benchmarks to 1000s of instructions for floating point benchmarks. Longer traces expose

more parallelism opportunities and typically lead to better parallel performance.

Column 6 illustrates that for most benchmarks, only five or fewer candidate traces are actually

dispatched on average, despite the possibility to execute up to eight traces on all available cores.

In practice, far fewer than five candidate traces actually run at any given time, because failed

speculations end more quickly on average while successful speculations run to completion. At the

same time, Column 5 shows that the fraction of dispatches for which all traces abort is less than 7% in

two-thirds of all benchmarks. Our trace construction algorithm sacrifices trace length and dynamic

execution coverage if necessary in order to achieve high speculation accuracy, so that valuable CPU

time and energy are not wasted on executing incorrect execution paths. Finally, Column 4 shows the

number of traces that are left in the trace cache at the end of the first run. Even though Tracy may

have constructed many more traces, most of them are deleted afterward and only a small number

of traces actually reside in the trace cache when the program enters the steady state of execution.

5
.5

E
x
p
erim

en
ta
l
R
esu

lts
6
0

Benchmark Exec. on Traces % Trace # Misp. Rate Avg. Candidate # Avg. Trace Length

wupwise 99.36 % 82 0.01 % 1.43 4,196
swim 95.68 % 129 7.96 % 2.55 521
mgrid 99.92 % 192 0.20 % 1.15 8,291

FP applu 99.35 % 95 2.60 % 1.84 4,251
mesa 99.52 % 58 0.37 % 2.57 1,497
equake 94.55 % 141 3.38 % 4.03 600
ammp 80.28 % 435 2.75 % 3.01 287
sixtrack 92.70 % 1,191 0.97 % 2.42 100

epic-dec 88.41 % 93 3.28 % 2.43 91
epic-enc 93.22 % 47 13.40 % 1.98 1,172
g721-dec 64.94 % 135 9.19 % 4.76 81
g721-enc 48.15 % 77 8.53 % 4.10 75

MEDIA gsm-dec 97.84 % 84 12.93 % 5.38 1,010
gsm-enc 94.90 % 222 5.18 % 4.56 519
jpeg-dec 77.18 % 203 3.31 % 2.77 562
jpeg-enc 35.80 % 171 9.12 % 2.47 357

mpeg2-dec 86.87 % 300 6.65 % 2.86 176
mpeg2-enc 14.71 % 354 13.50 % 3.95 193

gzip 50.35 % 493 13.03 % 3.05 92
crafty 57.69 % 3,778 2.54 % 3.33 72

INT parser 33.57 % 1,390 4.42 % 3.07 99
eon 74.95 % 437 2.58 % 3.60 104
bzip2 36.95 % 479 3.37 % 2.84 124

Table 5.5: This table shows trace-related statistical analysis of Tracy4
34
-io2, including 1) the percentage of instructions executed by the unmodified

program that are covered by correctly predicted traces, 2) the number of traces in the trace cache, 3) the trace misprediction rate, 4) the average
number of candidate traces for each prediction, and 5) the average length of the trace that commits in each correct prediction.

5
.5

E
x
p
erim

en
ta
l
R
esu

lts
6
1

Benchmark Exec. on Traces % Trace # Misp. Rate Avg. Candidate # Avg. Trace Length

Tracy4
10
-io2 92.00 % 186 2.20 % 1.56 1,063

FP Tracy4
18
-io2 93.93 % 172 1.72 % 2.03 1,092

Tracy434-io2 94.95 % 173 0.78 % 2.22 1,090

Tracy4
10
-io2 55.75 % 138 17.65 % 1.74 282

MEDIA Tracy418-io2 59.81 % 135 9.51 % 2.55 256
Tracy4

34
-io2 62.04 % 141 7.78 % 3.35 273

Tracy4
10
-io2 41.69 % 878 17.96 % 1.79 96

INT Tracy418-io2 47.43 % 877 7.46 % 2.64 97
Tracy4

34
-io2 48.56 % 885 4.18 % 3.17 97

Table 5.6: This table summarizes trace-related statistical analysis of 1) Tracy4
10
-io2, 2) Tracy4

18
-io2, and 3) Tracy4

34
-io2, including 1) the percentage

of instructions executed by the unmodified program that are covered by correctly predicted traces, 2) the number of traces in the trace cache, 3) the
trace misprediction rate, 4) the average number of candidate traces for each prediction, and 5) the average length of the trace that commits in each
correct prediction.

5.6 Summary 62

Except for three benchmarks (sixtrack, crafty, parser), all other applications generate fewer than

500 traces, and in more than half cases, the number is less then 200.

In summary, for all floating point benchmarks and more than half media benchmarks, the con-

structed traces are considered to have high quality by simultaneously satisfying four requirements.

For example, mgrid has an average trace length of 8,291 instructions together with 99.80% spec-

ulation accuracy and 99.92% coverage of dynamic instructions. Other media benchmarks and all

integer benchmarks, however, have relatively unpredictable control flows, leading to shorter trace

length and lower dynamic execution coverage. In the limit study, Figure 3.5(a) shows that the aver-

age trace length for integer benchmarks is 235 basic blocks and Figure 3.6(a) shows that only 0.02%

basic blocks are not formed into traces on average. This large performance gap is mainly caused by

the assumption of an unbounded number of cores in the limit study, in which speculation is always

successful as long as the correct trace has been constructed. In the real word, however, Tracy has

to shorten traces or even give up parallelizing certain code regions if the available number of cores

cannot execute all candidate traces simultaneously.

Table 5.6 summarizes the performance of the trace construction and prediction algorithms when

the system is configured as 1) Tracy4
10
-io2 (at most two candidate traces), 2) Tracy4

18
-io2 (at most

four candidate traces), and 3) Tracy4
34
-io2 (at most eight candidate traces), respectively. For floating

point benchmarks, decreasing the number of maximum candidate traces has limited impact on every

evaluated metric. In this case, even when cores are available to execute many candidate traces

simultaneously, it may be more economical for Tracy to only use part of them, which are just

enough to achieve near-optimal performance with much less energy consumption. For media and

integer benchmarks, however, the performance of Tracy is more sensitive to the number of available

cores. While four candidate traces are still enough to maintain high speculation accuracy in most

cases, the availability of only two candidate traces dramatically increases the misprediction rate to

17.65% for media benchmarks and 17.96% for integer benchmarks. In this case, Tracy has to be

provided with enough cores in order to achieve reasonable speedups.

5.6 Summary

In this chapter, we present an innovatative trace construction algorithm that holistically balances

among trace length, speculation accuracy, and coverage of dynamic instructions. Tracy constructs

the longest traces that can be accurately speculated on the available number of cores. In certain

code regions that have complicated control flows, Tracy stops constructing traces and executes these

5.6 Summary 63

code regions sequentially. Tracy exploits the unique power of many-core architectures by launching

multiple traces and executing them simultaneously on idle cores. The major insight is that in many

cases, speculation accuracy can be dramatically increased by only trying a very small number of

candidate traces. Simply integrating multi-trace execution with branch promotion, the state-of-

the-art trace construction strategy, has two drawbacks. On one hand, branch promotion sometimes

overuses multi-trace execution by constructing traces from code regions that have complicated control

flows, which do not benefit from trace-based DBP and should continue executing sequentially. On

the other hand, branch promotion sometimes underuses multi-trace execution by terminating traces

prematurely when the innermost loop is exited.

When eight candidate traces can be executed simultaneously, high quality traces can be generated

for all floating point benchmarks and more than half media benchmarks. Averaged over all floating

point benchmarks, for example, Tracy constructs traces of more than one thousand instructions

and simultaneously achieves speculation accuracy of 99% by only executing about two traces at the

same time. Furthermore, 95% of the instructions executed by the unmodified program are covered

by correctly predicted traces. Thus, a solid foundation is set for Tracy to achieve great speedups by

optimizing and parallelizing the constructed traces. When the number of maximum candidate traces

is decreased to two, however, the speculation accuracy is dramatically decreased for media (from

7.78% to 17.65%) and integer (from 4.18% to 17.96%) benchmarks, suggesting that the number of

available cores is not enough to operate Tracy effectively.

SSA Form

Construction

Parallelization

Register

Allocation

Dependency

Graph

Construction

Optimization

Symbolic

Evaluation

Memory

Disambiguation

Figure 6.1: Tracy optimizes and parallelizes the constructed trace in five steps.

Chapter 6

Trace Optimization

As illustrated in Figure 6.1, Tracy optimizes and parallelizes the constructed trace in five steps. First,

the single static assignment (SSA) form is constructed to eliminate anti and output data dependen-

cies among registers. Second, various optimizations are performed to eliminate unnecessary data

dependencies (both register and memory) or increase data dependency lengths, exposing more paral-

64

Chapter 6 Trace Optimization 65

lelism opportunities. After that, the dependency graph is constructed based on the optimized trace,

on which various parallelization strategies are then performed to partition and schedule instructions

across multiple cores and insert necessary synchronizations to maintain the correct register and

memory access order. Finally, a graph-based register allocation algorithm [120, 121] is performed to

each parallelized thread separately.

For each core, we dedicate a software-managed scratchpad memory to be the spill space [122, 123,

124, 125], because these memory references are always private (i.e., not affected by cache coherence as

well as multi-trace execution) and the values are simply discarded after the trace runs to completion

or aborts. The spill space is connected to the processor directly so that register spilling inserted by

Tracy does not interfere with normal data access. Furthermore, the dedicated space prevents spilled

registers from being polluted by other data. In the current design choice, Tracy ensures that the

number of spilled registers is less than the number of entries in the spill space so that every entry is

used to spill at most one register. Because each entry is written at most once during trace execution,

store buffering is no longer needed. This property is especially useful in OoO execution because

the spill instructions only have RAW dependencies and do not need to compete for the load/store

queue with normal memory loads and stores. Instead, a simple lookup table is maintained, which

contains one bit for each entry in the spill space. Every spill write instruction sets the corresponding

bit after it has been executed and broadcasts the entry tag to the dedicated issue queue for spill

read instructions, which only enter the execution stage if the corresponding bit is set. The same

architectural optimization applied to produce instructions is also applied to spill write instructions.

The entry number of the spill space is simply extracted after the decode stage and directly used by

the instruction that actually produces the value to perform spill writing.

The spill space described above is specially designed for atomic traces and cannot be generalized

to facilitate traditional program execution. Because any pair of functions has the possibility to be in

the same call stack, the entire space has to be divided among different functions with all parts being

mutually exclusive. This solution, however, still does not work for recursice function calls. Thus,

traditional compilers spill registers on the stack and the memory address must be calculated using

the stack pointer during run time.

This chapter describes two major optimizations performed by Tracy, which are symbolic evalu-

ation and memory disambiguation. The functionality of these optimizations is not only to directly

produce speedups, but more importantly, to prepare the code for future parallelization. Thus, the

performed code transformations may be suboptimal for increasing the program performance by

themselves, but they reformat the code to be more amenable to parallelism. Furthermore, these

6.1 Symbolic Execution 66

optimizations are designed to fully exploit the atomicity property of traces, within the confines of

the underlying architectural support.

6.1 Symbolic Execution

Like compilers, CFG-based DBP techniques typically rely on various data-flow analyses [29] to op-

timize programs. They set up data-flow equations for each node of the CFG and solve them by

repeatedly calculating the output from the input locally at each node until the entire system stabi-

lizes, i.e., it reaches a fixpoint. In order to handle the large number of execution paths represented

by the CFG, diverged program states are consertively merged at certain joint points. Furthermore,

the name space of data-flow functions is typically based on lexical names of variables, leaving many

optimization opportunities behind. Several DBO systems [21, 32] have also constructed atomic

traces, but they simply adopt some traditional optimization algorithms and do not customize them

to leverage the unique opportunity. Because each atomic trace only represents a single execution

path with all control dependencies and derived data dependencies being ignored, analysis scalability

is no longer a problem. Thus, it is both important and necessary to design heavyweight but powerful

optimization algorithms to fully exploit the atomicity property of traces.

Tracy, on the contrary, leverages symbolic evaluation [31] to aggressively optimize traces. This

technology assigns a symbolic value to each defined register or memory location (abbreviated as loc).

Code analysis and transformations are then performed through symbolically executing each program

path and updating these values. The path sensitivity characteristic of symbolic evaluation is not

scalable, and thus has not been used by the compiler that needs to optimize the entire CFG. However,

because symbolic evaluation performs path-sensitive program analysis and data-flow information is

based on symbolic values instead of lexical names, it performs more precise program analysis than

traditional data-flow analysis [29].

Tracy divides all MIPS (ISA supported by the SESC simulation framework) instructions into

four categories: 1) memory loads, 2) memory stores, 3) instructions that only perform integer

arithmetic and logical operations (including control transfer instructions that test integer registers),

and 4) all other instructions. Each symbolic value is represented as C0 ∗ V0 +C1 ∗ V1 + ...+Cn−1 ∗

Vn−1 + Cn, in which each Ci is a constant and each Vi is another symbolic value. The last Cn is

called the immediate part of the symbolic value. Thus, Tracy does not model any multiplications

and divisions, which require special registers to be updated. Furthermore, Tracy does not model

any calculations involving floating point registers, which are not associative due to conversion and

6.1 Symbolic Execution 67

Algorithm eval_load : load

01 addr = cal_addr (base, imme)

02 value = read_mem (addr)

03 reg = search_reg (value)

04

05 if reg exists then begin

06 replace load with register operation

07 end else begin

08 adjust_base (base)

09 end

10

11 write_reg (dest, value)

(a) Symbolic Evaluation of Load.

Algorithm eval_store : store

01 addr = cal_addr (base, imme)

02 value1 = read_mem (addr)

03 value2 = read_reg (dest)

04

05 if value1 == value2 then begin

06 delete store

07 end else begin

08 adjust_base (base)

09 update_alias (addr)

10 write_mem (addr, value2)

11 end

(b) Symbolic Evaluation of Store.

Algorithm eval_addu: add

01 value1 = read_reg (src1)

02 value2 = read_reg (src2)

03 value3 = add (value1, value2)

04 reg = search_reg (value3)

05

06 if reg exists then begin

07 replace add with register operation

08 end else begin

09 adjust_src (src1)

10 adjust_src (src2)

11 end

12

13 write_reg (dest, value)

(c) Symbolic Evaluation of Add.

Algorithm eval_other : other

01 adjust_src (src1)

02 adjust_src (src2)

03

04 write_reg (dest, fresh)

(d) Symbolic Evaluation of Other

Instruction.

Figure 6.2: Tracy divides all MIPS instructions into four categories: 1) memory loads, 2) memory
stores, 3) instructions that only perform integer arithmetic and logical operations (including control
transfer instructions that test integer registers), and 4) all other instructions. Tracy uses different
strategies to symbolically evaluate instructions in different categories.

rounding. Although some solutions have been proposed in the area of model checking [126, 127]

and formal verification [128, 129] to support non-linear arithmetic constraints and floating point

operations, they have not been used in program optimization.

Figure 6.2(a) illustrates the algorithm to symbolically evaluate memory loads. First of all, the

effective address is calculated (line 1) and the memory value is loaded from the corresponding

location (line 2). We then search for the earliest defined live register, whose value is either same

to the loaded value or only differs from it in the immediate part. If such substitute register exists,

this memory load is redundant and we simply replace it by adding the immediate difference to

the substitute register (line 6). Otherwise, the memory load cannot be eliminated and we instead

6.1 Symbolic Execution 68

search for the substitute to the base register itself and replace it with the one that is found (line 8).

Finally, the destination register is updated with the loaded value (line 11). Two major operations

need to be processed when symbolically evaluating memory stores, whose algorithm is illustrated

in Figure 6.2(b). First, if the pending value is the same as the value that is already stored in the

corresponding location, the memory store is redundant and can be simply eliminated (line 6). Second,

if the memory store cannot be eliminated, the stored value in all potentially aliased locations needs

to be updated (line 9). In Figure 6.2(c), we show how to symbolically evaluate the add operation,

which is one example of instructions that only perform integer arithmetic and logical operations.

Other instructions in this category are processed with similar but customized algorithms. Similarly,

we first seach for the substitute register of the added value (line 4) and if it does not exist, we instead

search for the substitute to each of the source register (lines 9 to 10). In the latter case, however,

the substitute register must hold the exactly same value as the orignal register because there is no

immediate field in the particular instruction. Figure 6.2(d) illustrates the algorithm to symbolically

evaluate all other instructions that include non-linear or floating point calculations, in which only

attempted substitution of source registers are performed (lines 1 to 2). After all instructions in the

trace have been symbolically evaluated, we then perform register coalescing to eliminate unnecessary

register copies. After that, we perform the final round of dead code elimination to remove instructions

whose destination register or memory values are no longer used in future program execution, except

those that need to live out of the trace.

The fundamental principle of the above optimizations is to reuse as many registers as possible

that are defined early in the trace, after which, unnecessary and dead register copies can be simply

eliminated to increase program performance. Tracking symbolic values instead of lexical names on

the single execution path, symbolic evaluation combines the effects of various traditional optimiza-

tions, including constant propagation, value propagation, value numbering, common subexpression

elimination, loop unrolling, loop-invariant code motion, redundancy elimination, and dead code elim-

ination. These optimizations not only produce speedups by themselves, but more importantly, they

also eliminate unnecessary data dependencies (both register and memory) or increase data depen-

dency lengths, exposing more parallelism opportunities. In an extreme case, if all instructions in the

trace can be transformed to only use live-in registers, they can be partitioned and scheduled with-

out any constraints to fully exploit the processing power of the underlying many-core architecture.

Finally, the optimizations performed on memory loads and stores always replace the base register

with an earlier defined register if possible. As a consequence, a larger number of memory loads and

stores share the same base register. As will be described in Section 6.2, this code transformation is

6
.1

S
y
m
b
o
lic

E
x
ecu

tio
n

6
9

1) st R1, [R2 + 8]

2) add R4, R2, 4

3) ld R5, [R4 - 8]

4) ld R6, [R4 + 4]

5) st R6, [R3]

1) st R1, [R2 + 8]

2) add R4, R2, 4

3) ld R5, [R2 - 4]

4) mov R6, R1

5) st R6, [R3]

1) st R1, [R2 + 8]

2) add R4, R2, 4

3) ld R5, [R2 - 4]

4)

5) st R1, [R3]

1) st R1, [R2 + 8]

2)

3) ld R5, [R2 - 4]

4)

5) st R1, [R3]

Symbolic Expression

Propagation

Register

Coalescing

Dead Code

Elimination

Group1 (instructions 1 and 3): base register = R2, address range = [R2 - 4, R2 + 12)

Group2 (instruction 5): base register = R3, address range = [R3, R3 + 4)

Non-Alias Condition Test: (R2 - 4 >= R3 + 4) || (R2 + 12 <= R3)

1

5

3

2

4

1

5

3 1 3 5

(a) Symbolic Evaluation.

(b) Memory Disambiguation.

(c) Dependency Graphs.

After Symbolic

Evaluation

After Memory

Disambiguation

Figure 6.3: Tracy performs symbolic evaluation and memory disambiguation before parallelization to eliminate unnecessary data dependencies (both
register and memory) or increase data dependency lengths, exposing more parallelism opportunities..

6.2 Memory Disambiguation 70

essential to the memory disambiguation algorithm used by Tracy.

Figure 6.3(a) illustrates a small trace snippet with five instructions. Initially, the live-in registers

R1 and R2 are assigned with symbolic values V1 and V2. After the first two instructions are executed,

V1 is stored in loc[V2+8] and R4 is assigned with V2+4 after symbolically executing the add operation.

At instruction 3, because R4 − 8 is evaluated to be V2 − 4, the load address can be transformed to

R2−4, which is only dependent on the live-in registers. Similarly, instruction 4 loads from loc[V2+8],

which happens to hold the symbolic value V1 stored by instruction 1. Thus, R6 can be directly copied

from R1 without any intermediate operations. After these symbolic values are propagated, register

coalescing and dead code elimination are further performed to eliminate instructions 2 and 4, which

are not useful in the program any more.

6.2 Memory Disambiguation

After symbolic evaluation has been performed, the dependency graph depicted in Figure 6.3(c) is

dramatically simplified. The only remaining dependencies are among memory loads and stores that

have different base registers, which, however, may not actually alias at run time. Inspired by [28],

Tracy performs another major optimization called speculative memory disambiguation to eliminate

these spurious memory dependencies. As illustrated in Figure 6.3(b), all memory references are

divided into groups with different base registers. If the ranges of addresses covered by two groups

are disjoint, memory references in one group are guaranteed not to alias with those in the other group.

For each trace, Tracy selects certain number of large reference groups and inserts non-alias condition

tests to each pair combination of them. If these tests are always passed during a profiling peroid,

the trace is re-parallelized assuming the corresponding memory references do not alias. These tests

also remain in the newly parallelized trace and abort the trace whenever they are not passed. As

illustrated in Figure 6.3(c), when the address ranges of R2 and R3 are not overlapped, all spurious

dependencies exist on the original CFG are eliminated.

One important prerequisite of correctly disambiguating memory references at the group granu-

larity is that the tested base registers must always receive the correct values. If any base registers

receive values that are actually produced by incorrect speculative memory accesses, these incorrect

values may pass the non-alias condition tests that should have failed, leading to undetected errors

during program execution. Thus, we require that memory references from two different groups can

only start running out of order if both base registers have been produced and thus the corresponding

test can be evaluated correctly. Figure 6.4(a) illustrates the sequential execution of seven instruc-

6.2 Memory Disambiguation 71

1) R1 =

2) ld [R1 + 4]

6) st [R1 + 8]

3) st [R1 - 4]

4) R2 =

5) ld [R2 + 4]

7) ld [R2 - 4]

1) R1 =

2) ld [R1 + 4]

6) st [R1 + 8]

3) st [R1 - 4]

4) R2 =

5) ld [R2 + 4]

7) ld [R2 - 4]

(a) Sequential Execution. (b) Required Dependencies.

Figure 6.4: Tracy inserts extra dependencies to ensure that every monitored base register receives
the correct value.

tions and Figure 6.4(b) shows two dependencies that are inserted by Tracy to ensure that every

monitored base register receives the correct value. These extra dependencies ensure that the execu-

tion of instructions 2, 3, and 6 can only be interleavedly with the execution of instructions 5 and 7

after base registers R1 and R2 have been produced. Thus, any violations of memory reference order

can always be detected at the earliest possible time.

Accurate alias analysis is usually the key factor to enable effective program optimization and

parallelization. DIS-based DBP techniques [3, 4, 5] usually rely on some centralized memory disam-

biguation unit to compare the address of each load or store instruction. Similarly, CFG-based DBP

techniques [6, 7, 9] require special hardware support such as transactional memory to automatically

detect violations of memory reference order. Tracy can insert all non-alias condition tests directly

into the trace and treat them as normal instructions, which, however, greatly restricts the number

of memory reference groups that can be tested in order to maintain reasonable monitoring overhead.

In fact, these tests have two characteristics that can make them run much more transparently and

efficiently. First, each test either passes silently or aborts the candidate trace if the corresponding

non-alias assumption has been proved incorrect. No value needs to be calculated and further used by

other instructions in the trace. Thus, the entire process can be safely offloaded to some special func-

tional units. Second, because all monitored base registers need to be tested against one another and

the test is always an integer comparison, the single instruction multiple data (SIMD) computational

model can be readily adopted to dramatically speed up the entire process.

Thus, within each slave cluster, an accelerator is also connected to the cores, which performs

6.3 Experimental Setup 72

multiple integer comparisons per clock cycle. When each monitored base register is produced by

the trace, its value and two offsets are transferred to the accelerator, which calculates its address

ranges and tests them against those of other base registers whose information has already been re-

ceived. This hardware support has two advantages: 1) the actual program execution is not affected,

and 2) incorrect non-alias assumptions can be quickly detected to reduce mis-speculation penalty.

Because only the information of monitored base registers need to be transferred between the pro-

cessor and the accelerator, this technology has better scalability than that used by DIS-based DBP

techniques, which requires every load and store instruction to be passed to the centralized memory

disambiguation unit. On the other hand, disambiguating memory references at the group granularity

introduces many false positives due to the approximation of memory addresses. This approximation,

however, is inevitable in Tracy because once distributed to different threads, the sequential order of

all memory references is lost. The TRIPS processor [19] redesigns the ISA by encoding the memory

reference order into each load and store instruction, which greatly restricts the trace length and is

not widely applicable to general many-core architectures.

6.3 Experimental Setup

Besides the experimental setup described in Section 5.5, we set the spill space to be 20 KB with

one clock cycle access latency, because scratchpad memory has very simple caching logic. Prior

research [123] has also shown that the chip area occupied by the scratchpad memory is less than

the cache memory by 34%. The accelerator is configured to comprise four functional units, each

of which can perform 32 integer comparisons per clock cycle. Thus, if the slave cluster is used to

execute four candidate traces, each trace is assigned with one functional unit. We allow a maximun

of 32 base registers to be monitored for traces that are shorter than 4K instructions and a maximun

of 64 base registers to be monitored for longer traces. It only takes 46 clock cycles to test every pair

combination of 32 base registers with one functional unit. This processing time is even negligible

for executing the shortest trace, which, of course, has a much smaller number of base registers to

be monitored. Similarly, it only takes 156 clock cycles to test every pair combination of 64 base

registers with one functional unit, far fewer than those needed to execute traces longer than 4K

instructions. Because one 64-bit single-clock-cycle integer comparator only needs 1,051 transistors

to implement [130], the chip area needed by a total of 128 integer comparators provided by the entire

accelerator is similar to that needed by about 88 32-byte cache lines. In order to compensate the

opportunity cost of the extra chip area needed by Tracy, we conservatively increase the L1 data cache

6
.3

E
x
p
erim

en
ta
l
S
etu

p
7
3

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

S
p
e
e
d
u
p

FP MEDIA INT GMEAN

w
u
p
w

is
e

s
w

im

m
g
ri
d

a
p
p
lu

m
e
s
a

e
q
u
a
k
e

a
m

m
p

s
ix

tr
a
c
k

e
p
ic

−
d
e
c

e
p
ic

−
e
n
c

g
7
2
1
−

d
e
c

g
7
2
1
−

e
n
c

g
s
m

−
d
e
c

g
s
m

−
e
n
c

jp
e
g
−

d
e
c

jp
e
g
−

e
n
c

m
p
e
g
2
−

d
e
c

m
p
e
g
2
−

e
n
c

g
z
ip

c
ra

ft
y

p
a
rs

e
r

e
o
n

b
z
ip

2

fp
−

g
m

e
a
n

m
e
d
ia

−
g
m

e
a
n

in
t−

g
m

e
a
n

a
ll−

g
m

e
a
n

Optimization Disabled

Optimization Enabled

Figure 6.5: This figure shows the speedup of Tracy434-io2 when 1) optimization is disabled, and 2) optimization is enabled. Results are normalized to
ST-io2.

6
.3

E
x
p
erim

en
ta
l
S
etu

p
7
4

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

S
p
e
e
d
u
p

FP MEDIA INT GMEAN

w
u
p
w

is
e

s
w

im

m
g
ri
d

a
p
p
lu

m
e
s
a

e
q
u
a
k
e

a
m

m
p

s
ix

tr
a
c
k

e
p
ic

−
d
e
c

e
p
ic

−
e
n
c

g
7
2
1
−

d
e
c

g
7
2
1
−

e
n
c

g
s
m

−
d
e
c

g
s
m

−
e
n
c

jp
e
g
−

d
e
c

jp
e
g
−

e
n
c

m
p
e
g
2
−

d
e
c

m
p
e
g
2
−

e
n
c

g
z
ip

c
ra

ft
y

p
a
rs

e
r

e
o
n

b
z
ip

2

fp
−

g
m

e
a
n

m
e
d
ia

−
g
m

e
a
n

in
t−

g
m

e
a
n

a
ll−

g
m

e
a
n

Memory Disambiguation Disabled

Memory Disambiguation Enabled

Figure 6.6: This figure shows the optimization-only speedup of Tracy434-io2 when 1) memory disambiguation is disabled, and 2) memory disambiguation
is enabled. Results are normalized to ST-io2.

6.4 Experimental Results 75

from 64 KB to 128 KB for single-threaded execution. Furthermore, we do not explicitly generate

spill instructions and produce/consume instructions. Every register that needs to access the spill

space or the synchronization array is marked on the original instruction, and the access latency is

directly inserted into the SESC simulation framework.

6.4 Experimental Results

Figure 6.5 illustrates the performance of Tracy434-io2 when 1) optimization is disabled, and 2) opti-

mization is enabled. Results are normalized to ST-io2. Thus, the first case actually shows the pure

overhead of our framework by executing non-optimized traces sequentially. The slowdown is 0.86x,

averaged over all benchmarks. Although optimization increases the program performance with pure

overhead by a factor of 1.14x, the overall speedup is only achieved from four floating point bench-

marks (wupwise, applu, mesa, equake) and one media benchmark (epic-enc). Trace-based DBO has

achieved better speedups in prior research [18, 20, 21, 32], however, the overhead of program state

transfer to and from the candidate traces impose a significant challenge on Tracy. One interesting

observation is that both swim and mgird have very long traces, but the performance increase due

to optimization is almost negligible. In fact, a large number of redundant or dead instructions are

eliminated from the constructed traces. For both benchmarks, the reason of the poor optimization

performance is that many L2 cache misses are encountered during program execution, which be-

comes the major bottleneck. On the contrary, optimization opportunities are transferred to great

speedups in applu (1.20x) and mesa (1.61x). Figure 6.6 compares the optimization-only perfor-

mance of Tracy434-io2 when 1) memory disambiguation is disabled, and 2) memory disambiguation

is enabled. The same trend that memory disambiguation only slightly increases the optimization

performance can be observed in almost all benchmarks.

The above experimental results may incorrectly lead to the conclusion that both symbolic eval-

uation and memory disambiguation are not critical to the general performance of Tracy. This is

true when only optimization is performed because program execution is still restricted the one single

core. However, the functionality of these optimizations is not only to directly produce speedups, but

more importantly, to prepare the code for future parallelization. Both optimizations actually focus

on eliminating unnecessary data dependencies (both register and memory) or increasing data de-

pendency lengths, exposing more parallelism opportunities. Although these effects are not manifest

when only optimization is performed, they are extremely critical to the overall parallel performance,

which will be evaluated in Section 7.5.5.

6.5 Summary 76

6.5 Summary

In this chapter, we propose two optimizations, symbolic evaluation and memory disambiguation,

which are specially customized for atomic traces. Because symbolic evaluation performs path-

sensitive program analysis and data-flow information is based on symbolic values instead of lexical

names, it performs more precise program analysis than traditional data-flow analysis. Disambiguat-

ing memory references at the group granularity introduces many false positives due to the approx-

imation of memory addresses. This approximation, however, is inevitable in Tracy because once

distributed to different threads, the sequential order of all memory references is lost.

Although optimization alone is generally not enough to speed up applications (0.98x slowdown

on average) due to the overhead of program state transfer, it sets a solid foundation for future

parallelization by dramatically releasing dependent constraints.

Chapter 7

Trace Parallelization

Although DIS- and CFG-based DBP techniques are complementary to each other, no prior research

has tried to implement both technologies under a unified system. Such a system can achieve large

speedups from code regions that contain coarse-grained LLP or TLP, and exploit ILP from the

remainder of the program. This combination is quite vital. As Amdahl’s Law shows, even a small

fraction of non-parallelizable code can drastically inhibit overall speedups.

This chapter describes the parallelization strategy adopted by Tracy, which leverages traces as

the unified representation of program execution to exploit both LLP and ILP. Tracy does not intend

to develop totally innovative parallelization algorithms, but to customize off-the-shelf algorithms to

make them suitable for parallelizing atomic traces.

7.1 Exploiting ILP

Tracy adopts the traditional list scheduling algorithm [36] to exploit ILP by partitioning and schedul-

ing instructions among different cores. First, the dependency graph is built. Next, priorities are

assigned to each instruction in the graph based on its ALST. Instructions with smaller ALST are

scheduled first. Finally, the list scheduler places instructions into the schedule cycle by cycle, start-

ing from cycle zero. Any instruction whose operands have been computed at cycle X is a candidate

to be scheduled at that cycle, within the confines of hardware availablity. The priorities computed

in the prior step are used to determine which ready instruction to schedule, with ties being broken

arbitrarily. For list scheduling, the more accurate the machine model is, the better performance

can be achieved because the predicted schedule more precisely matches the exact execution order

of instructions on the real machine. Tracy only considers two major factors in the machine model:

77

7.2 Exploiting LLP 78

1) the issue width, and 2) the number of functional units and the corresponding execution latency.

The list scheduling algorithm becomes much more complicated when considering more factors in the

machine model, which may not be appropriate to be performed at run time.

The traditional list scheduling algorithm only reorders instructions on the same core to fully

utilize the hardware. Tracy, however, also has to partition instructions among different cores. Thus,

we make two modifications to the original algorithm. First, inter-core communication overhead is

inserted if the value needs to be transferred from one core to another. Second, all memory loads and

stores with the same base register are assigned to the same core so as to minimize cache coherence

traffic, which may greatly hurt the program performance [131]. Furthermore, in order to fully utilize

the L1 data cache of all cores, memory loads and stores with different base registers are evenly

assigned to the parallelized threads.

7.2 Exploiting LLP

Unlike ILP that can be exploited in all traces, LLP can only be exploited in traces that comprise

multiple loop iterations. As in trace construction, Tracy starts to parallelize the outermost loop

by evenly distributing its iterations to the available number of cores. If the outer loop is not

parallelizable, Tracy then starts to parallelize the inner loops. Even if the outer loop is parallelizable,

those iterations that are left from the even distribution are further parallelized using the inner loops

if possible. Tracy performs two major code transformations, accumulator expansion and dependent

code motion to handle loop-carried dependencies that are not eliminated by prior optimization,

which are essential to make more loops parallelizable.

An accumulator is a variable that is repeatedly updated during every iteration of the loop.

Figure 7.1(a) illustrates the source code of a small loop with eight iterations, in which sum is an

accumulator. Unfortunately, when the entire loop is formed into a trace and partitioned into two

threads by exploiting LLP, the code is almost serialized because each update of sum cannot proceed

until the prior update is performed. Figure 7.1(b) depicts the two threads with the offending

dependency, in which sum is stored in R1. Figure 7.1(c) shows the same parallelized trace after

accumulator expansion. The accumulator sum is replaced by two different variables, stored in

R1 and R2, respectively. These two variables become private accumulators in different threads so

that the offending dependency is broken. Each private accumulator must be initialized to zero.

Furthermore, an extra instruction must be inserted to calculate the final value of sum by adding

two private accumulators together. Although one dependency still exists, the value from the first

7.2 Exploiting LLP 79

sum = 0;

for (i = 0; i < 8; i++) {

sum++;

}

(a) Source Code.

1) mov R1, 0

2) add R1, R1, 1

3) add R1, R1, 1

4) add R1, R1, 1

5) add R1, R1, 1

1) add R1, R1, 1

2) add R1, R1, 1

3) add R1, R1, 1

4) add R1, R1, 1

(b) Loop-Carried Dependencies Before

Accumulator Expansion.

1) mov R1, 0

2) add R1, R1, 1

3) add R1, R1, 1

4) add R1, R1, 1

5) add R1, R1, 1

1) mov R2, 0

2) add R2, R2, 1

3) add R2, R2, 1

4) add R2, R2, 1

5) add R2, R2, 1

6) add R1, R1, R2

(c) Loop-Carried Dependencies After Accumulator Expansion.

Figure 7.1: Accumulator expansion replaces the single shared accumulator with multiple private
accumulators.

Producer

Consumer

Producer

Consumer

(a) Before Dependent Code Motion. (b) After Dependent Code Motion.

Figure 7.2: Dependent code motion pushes every producer to be executed earlier and every consumer
to be executed later.

thread is only needed at the end of the second thread, making the trace quite parallelizable. It is

extremely difficult to find all cases where accumulator expansion can be applied. Tracy searches for

opportunities by checking every add or addu instruction in MIPS.

Dependent code motion is a much more general technology than accumulator expansion because

it can be performed on any dependencies between two threads. Figure 7.2(a) illustrates the original

synchronization between the producer and consumer when the trace is partitioned into two threads.

7.3 Combining ILP and LLP 80

Tracy reschedules the producer (with all its predecessors) to be executed as early as possible and the

consumer (with all its successors) to be executed as late as possible. As depicted in Figure 7.2(b),

the overlapped part of the two threads becomes much larger, leading to better parallel performance.

Dependent code motion is similar to code prematerization [6, 132], which, however, re-calculates

the live-in values in the logically later thread instead of pushing them to be calculated as soon as

possible in the logically earlier thread.

7.3 Combining ILP and LLP

Tracy selects the optimal parallelization strategy at the trace level. It first parallelizes the trace

by exploiting LLP, which has the potential to produce larger speedups. If limited LLP exists,

however, Tracy extracts ILP from the trace instead. During preliminary experiments, we have

observed that exploiting LLP typically only leads to better parallel performance than exploiting

ILP if two requirements are satisfied simultaneously. First, the outermost loop in the trace should

be itself parallelizable. Only parallelizing the inner loops would make a large portion of the trace run

sequentially. Second, the outermost loop in the trace should be nearly a DOALL loop [56] with zero

or very few loop-carried dependencies. When a relatively large number of loop-carried dependencies

exist, exploiting ILP usually generates larger speedups because instructions can be scheduled at

finer granularity. Based on the above observations, Tracy uses a simple heuristic to determine the

optimal parallelization strategy. After all LLP has been extracted from the trace, Tracy divides the

sequential execution time by the parallel execution time, assuming that each instruction takes one

clock cycle to run. If the estimated speedup is greater than or equal to 1.75 for 2-way parallelization,

LLP is more appropriate to be exploited in the trace. Otherwise, Tracy abandons the parallelized

trace and starts to exploit ILP instead. Similarly, the strategy selection threshold for 4-way and

8-way parallelization is 3.5 and 7.25, respectively.

Because Tracy performs the list scheduling algorithm before register allocation, it is traditionally

known to generate much more register spills [33]. Similarly, dependent code motion would also extend

the live range of certain regsiters. However, this problem is substantially alleviated in Tracy due to

three reasons. First, because the trace is partitioned among multiple cores, the number of registers

is also increased proportionally. Second, if several instructions on the same core need the value

in the same entry of the synchronization array, each instruction has to fetch the value separately.

This prevents the value from being stored locally, greatly reducing the register pressure. Third,

the dedicated spill space made of scratchpad memory causes reads and writes of spilled registers to

7.4 Experimental Setup 81

INT/FP Issue Queue Entry 16/16
ROB Entry 48

Load/Store Queue Entry 12/12

Table 7.1: Extra architectural parameters of 2-issue OoO cores.

always have very low latency, dramatically reducing the overhead caused by register spills. Although

the phase ordering problem of instruction scheduling and register allocation is not the topic of this

dissertation, prior research [133, 134] has proposed several algorithms to reduce register pressure

without affecting the ultimate schedule length.

7.4 Experimental Setup

Besides the experimental setup described in Sections 5.5 and 6.3, this section also evaluates the

performance of Tracy on different types of OoO cores. A 2-issue OoO core shares all the architectural

parameters of a 2-issue IO core listed in the third column of the first row in Table 5.3, with extra

parameters related to OoO execution listed in Table 7.1, separately. A 4-issue OoO core has two

times the amount of OoO-related resources as a 2-issue OoO core. In all configurations, the L1

caches, L2 cache, interconnect, memory subsystem, and Tracy remain exactly the same.

We use the Wattch [135] and CACTI [136] models attached to the SESC simulation framework

to calculate dynamic power consumption and assume that aggressive clock gating is supported in

all processor structures. When Tracy is operating, idle cores consume 5% of their original dynamic

power [137]. However, this dynamic power leakage of idle cores is not counted in single-threaded

execution to act as a challenging comparison base.

7.5 Experimental Results

Although parallelization is the final and major step to speed up single-threaded software, the per-

formance of Tracy is holistically dependent on trace construction, trace prediction, and trace opti-

mization, whose effectiveness has been separately evaluated in Sections 5.5 and 6.4. This section, on

the other hand, mainly evaluates Tracy as an entire system. We first compare the performance of

Tracy434-io2, our major experimental system, when it is configured to adopt different parallelization

strategies. The IO cores are also upgraded to more advanced OoO cores to test its generality. We

then compare the performance of Tracy with the performance of existing DIS- and CFG-based DBP

techniques. For a comprehensive evaluation, Tracy is throughly evaluated afterward using different

7
.5

E
x
p
erim

en
ta
l
R
esu

lts
8
2

0

0.5

1

1.5

2

2.5

3

3.5

S
p
e
e
d
u
p

FP MEDIA INT GMEAN

w
u
p
w

is
e

s
w

im

m
g
ri
d

a
p
p
lu

m
e
s
a

e
q
u
a
k
e

a
m

m
p

s
ix

tr
a
c
k

e
p
ic

−
d
e
c

e
p
ic

−
e
n
c

g
7
2
1
−

d
e
c

g
7
2
1
−

e
n
c

g
s
m

−
d
e
c

g
s
m

−
e
n
c

jp
e
g
−

d
e
c

jp
e
g
−

e
n
c

m
p
e
g
2
−

d
e
c

m
p
e
g
2
−

e
n
c

g
z
ip

c
ra

ft
y

p
a
rs

e
r

e
o
n

b
z
ip

2

fp
−

g
m

e
a
n

m
e
d
ia

−
g
m

e
a
n

in
t−

g
m

e
a
n

a
ll−

g
m

e
a
n

LLP only

ILP only

LLP and ILP

Figure 7.3: This figure shows the speedup of Tracy434-io2 when it is configured to exploit 1) LLP only, 2) ILP only, and 3) both LLP and ILP. Results
are normalized to ST-io2.

7.5 Experimental Results 83

Benchmark Exec. on LLP %

wupwise 2.51 %
swim 84.87 %
mgrid 33.64 %

FP applu 0.09 %
mesa 0.00 %
equake 0.03 %
ammp 0.00 %
sixtrack 0.47 %

epic-decode 10.12 %
epic-encode 1.18 %
g721-decode 0.00 %
g721-encode 0.00 %

MEDIA gsm-decode 0.28 %
gsm-encode 49.05 %
jpeg-decode 19.91 %
jpeg-encode 50.60 %

mpeg2-decode 29.90 %
mpeg2-encode 32.59 %

gzip 1.59 %
crafty 0.03 %

INT parser 19.29 %
eon 0.33 %
bzip2 0.28 %

Table 7.2: This tables shows the percentage of instructions executed by the unmodified program
that are covered by correctly predicted traces in which LLP is exploited over instructions that are
covered by any correctly predicted traces.

system configurations and architectural parameters. Finally, we analyze the prformance of Tracy in

detail by isolating the overheads and benefits caused by different factors.

7.5.1 Overall Performance using Different Parallelization Startegies

Figure 7.3 illustrates the speedup of Tracy434-io2 when it is configured to exploit 1) LLP only, 2) ILP

only, and 3) both LLP and ILP. Results are normalized to ST-io2. When hybrid parallelism is ex-

ploited in the third case, Table 7.2 shows the percentage of instructions executed by the unmodified

program that are covered by correctly predicted traces in which LLP is exploited over instructions

that are covered by any correctly predicted traces. Generally speaking, only exploiting ILP pro-

duces greater speedups than only exploiting LLP, which is not surprising because it can schedule

instructions at finer granularity. While the ILP-only speedup is 1.35x, averaged over all benchmarks,

the LLP-only speedup is only 1.19x. The three obvious outliers are swim, mgrid, and jpeg-enc,

all of which comprise highly parallelizable loops with zero or very few loop-carried dependencies.

The specific situation, however, is quite different for these three benchmarks. In swim, LLP can be

7
.5

E
x
p
erim

en
ta
l
R
esu

lts
8
4

0

0.5

1

1.5

2

2.5

3

3.5

E
n
e
rg

y

FP MEDIA INT GMEAN

w
u
p
w

is
e

s
w

im

m
g
ri
d

a
p
p
lu

m
e
s
a

e
q
u
a
k
e

a
m

m
p

s
ix

tr
a
c
k

e
p
ic

−
d
e
c

e
p
ic

−
e
n
c

g
7
2
1
−

d
e
c

g
7
2
1
−

e
n
c

g
s
m

−
d
e
c

g
s
m

−
e
n
c

jp
e
g
−

d
e
c

jp
e
g
−

e
n
c

m
p
e
g
2
−

d
e
c

m
p
e
g
2
−

e
n
c

g
z
ip

c
ra

ft
y

p
a
rs

e
r

e
o
n

b
z
ip

2

fp
−

g
m

e
a
n

m
e
d
ia

−
g
m

e
a
n

in
t−

g
m

e
a
n

a
ll−

g
m

e
a
n

Tracy
34

4
−io2

Adjusted Tracy
34

4
−io2

Figure 7.4: This figure shows the energy consumption of Tracy434-io2 when it is configured to exploit both LLP and ILP. Results are normalized to
ST-io2. The adjusted energy consumption is achieved by counting in “system leakage” from other machine components and power supply inefficiencies.

7.5 Experimental Results 85

extracted from 81.94% of dynamic instructions, leading to the great speedup of 3.34x. In mgrid,

however, only 39.35% of dynamic instructions contain exploitable LLP so that the speedup is only

1.39x, slightly better than the speedup achieved by only exploiting ILP. The power of LLP is dra-

matically diluted by those sequentially executed instructions. The same problem is exaggerated in

jpeg-enc, in which only 24.75% of dynamic instructions can be parallelized by only exploiting LLP.

Thus, the performance increase over ILP-only speedup is negligible.

For five out of eight floating point benchmarks with very limited LLP, the speedup achieved

by exploiting both LLP and ILP is almost the same as the speedup achieved by only exploiting

ILP. On the other extreme, although LLP is extracted from 84.87% of the instructions covered by

correctly predicted traces in swim, ILP in the remaining instructions still imporves the program

performance by another factor of 1.02x. A more balanced distribution exists in mgrid, in which

LLP is extracted from 33.64% of the instructions covered by correctly predicted traces. Thus, the

hybrid speedup (1.80x) is much better than the speedup achieved by only exploiting LLP (1.39x)

or ILP (1.36x). More interestingly, LLP is only exploited in 2.51% of the instructions covered by

correctly predicted traces in wupwise, but the hybrid speedup is 1.12x of the ILP-only speedup. The

potential reason is that the corresponding code region has higher CPI so that the relative importance

of these instructions is dramatically increased. For media benchmarks, Tracy actually predicts that

more traces should be parallelized by extracting LLP. The relatively shorter trace length, however,

reduces the problem of local optimization in the list scheduling algorithm, making the ILP-only

speedup typically better. Over-estimating the power of LLP, Tracy mispredicts the optimal paral-

lelization strategy in several cases, including epic-enc, gsm-enc, and mpeg2-dec. Because the hybrid

parallelization strategy produces the best speedup averaged over all benchmarks, we only evaluate

this strategy in the remaining of this section.

The hybrid speedup of floating point benchmarks can exceed 1.4x for six out of eight applications,

with an average number of 1.75x. Similarly, an average speedup of 1.42x can also be achieved for

media benchmarks. However, Tracy can speed up only one integer benchmark (crafty) and actually

slows down all the remaining ones. This is not surprising because integer programs normally have

more complicated control flows that are hard to predict and pointer-based memory references that

are hard to disambiguate. Furthermore, the average trace length for integer benchmarks is only 97,

hardly exposing any distant parallelism. Some media benchmarks (e.g., epic-dec, g721-dec, g721-enc)

or even floating point benchmarks (e.g., sixtrack) also have relatively short traces, which, however,

contain more ILP so that mediocre speedups can still be achieved. Because Tracy generally does

not produce reasonable speedups for integer benchmarks, we only evaluate floating point and media

7.5 Experimental Results 86

0

0.5

1

1.5

2

2.5

3

3.5

4

S
p
e
e
d
u
p

FP MEDIA GMEAN

w
u
p
w

is
e

s
w

im

m
g
ri
d

a
p
p
lu

m
e
s
a

e
q
u
a
k
e

e
p
ic

−
e
n
c

g
s
m

−
d
e
c

g
s
m

−
e
n
c

jp
e
g
−

d
e
c

fp
−

g
m

e
a
n

m
e
d
ia

−
g
m

e
a
n

a
ll−

g
m

e
a
n

Tracy
34

4
−ooo2

Figure 7.5: This figure shows the speedup of Tracy4
34
-ooo2 when it is configured to exploit both LLP

and ILP. Results are normalized to ST-ooo2.

benchmarks in the remaining of this section.

Although speeding up most benchmarks, Tracy does consume more energy due to multi-trace

execution and inter-core synchronization. Figure 7.4 illustrates that Tracy consumes 1.65x and 2.24x

energy for floating point and media benchmarks, respectively. As described in Section 4.2, however,

the CPU chip is only a small fraction of overall energy consumption. Large DRAM, disk, power

supply inefficiencies, etc. are also major factors that impose a constant background “system leakage”

while the machine is awake. If we assume the CPU chip consumes 34% of the system power [138]

and the machine wastes 30% of the power it consumes due to supply inefficiencies [139], the speedup

achieved by Tracy means that the average energy consumed is actually reduced to 0.83x (floating

point benchmarks) and 1.09x (media benchmarks) of that consumed by single-threaded execution.

When the speedup is large enough, Tracy actually saves energy (sometimes dramatically) in several

cases, including swim, mgrid, applu, epic-enc, and gsm-dec.

7.5.2 Upgrading to OoO Cores

Although we believe that IO cores are more suitable to be the building block of throughput-oriented

many-core architectures in the future, we also evaluate Tracy by upgrading 2-issue IO cores to

2-issue OoO cores (Tracy4
34
-ooo2) and 4-issue OoO cores (Tracy4

34
-ooo4). The other parts of the

7.5 Experimental Results 87

0

0.5

1

1.5

2

2.5

3

3.5

S
p
e
e
d
u
p

FP MEDIA GMEAN

w
u
p
w

is
e

s
w

im

m
g
ri
d

a
p
p
lu

m
e
s
a

e
q
u
a
k
e

e
p
ic

−
e
n
c

g
s
m

−
d
e
c

g
s
m

−
e
n
c

jp
e
g
−

d
e
c

fp
−

g
m

e
a
n

m
e
d
ia

−
g
m

e
a
n

a
ll−

g
m

e
a
n

Tracy
34

4
−ooo4

Figure 7.6: This figure shows the speedup of Tracy4
34
-ooo4 when it is configured to exploit both LLP

and ILP. Results are normalized to ST-ooo4.

FP MEDIA
Improved # Speedup Improved # Speedup

Tracy4
34
-io2 8 / 8 1.75x 10 / 10 1.42x

Tracy4
34
-ooo2 6 / 8 1.89x 4 / 10 1.47x

Tracy434-ooo4 6 / 8 1.70x 4 / 10 1.29x

Table 7.3: This table summaries the performance of 1) Tracy4
34
-io2, 2) Tracy4

34
-ooo2, and 3) Tracy4

34
-

ooo4. Results are normalized to ST-io2, ST-ooo2, and ST-ooo4, respectively. Two metrics are
evaluated for each category of benchmarks: 1) the number of programs with improved performance,
and 2) the speedup averaged over programs with improved performance.

system remain unchanged. The results are depicted in Figures 7.5 and 7.6, respectively. Table 7.3

summaries the performance of Tracy using all three configurations and speedup is normalized to the

corresponding single-threaded execution.

The performance of Tracy is quite sensitive to core type. When using OoO cores instead of IO

cores, Tracy can speed up six out of eight floating point benchmarks and four out of ten media

benchmarks. These benchmarks that have speedups all share one common characteristic that the

average trace length is larger than 500 instructions. Based on this observation, Tracy can be config-

ured to always construct traces, but only parallelize and predict them when the average trace length

exceeds the threshold. As a result, Tracy becomes a “hippocratic” technique that never hurts the

performance achieved by single-threaded execution.

7.5 Experimental Results 88

0

1

2

3

4

5

6

S
p
e
e
d
u
p

s
w

im

m
g
ri
d

a
p
p
lu

m
e
s
a

e
q
u
a
k
e

g
m

e
a
n

Core Fusion

Tracy
34

4
−ooo2

Tracy
66

4
−ooo2

Figure 7.7: This figure compares the performance of Core Fusion, one representative of DIS-based
DBP, with Tracy4

34
-ooo2 and Tracy8

66
-ooo2 when they are configured to exploit both LLP and ILP.

Results are normalized to ST-ooo2.

For most of the benchmarks that can benefit from Tracy using OoO cores, the speedup still

decreases dramatically as the issue width increases. The reason is that when the trace is partitioned

into different threads by extracting ILP, the amount of ILP that remains on each core is decreased

simultaneously. As a result, the OoO core extracts much less ILP from each thread than it does

from single-threaded execution, leading to diminishing returns. When LLP is the major type of

parallelism, however, the benchmark is much less sensitive to core type. For example, while the

speedup of Tracy4
34
-io2 is 3.42x in swim, the speedup of Tracy4

34
-ooo2 is even increased to 3.75x and

the speedup of Tracy4
34
-ooo4 is only decreased to 3.27x.

7.5.3 Comparing to DIS- and CFG-Based DBP Techniques

Figure 7.7 illustrates the performance comparison of Tracy with Core Fusion [3], one representative

of existing DIS-based DBP techniques. The experimental data of Core Fusion is directly obtained

from the cited publication. Both systems are implemented in the SESC simulation framework and

share the same architectural parameters so that the comparison is relatively fair. Because Core

Fusion combines four 2-issue OoO cores to provide an increased issue with, our system is configured

as both Tracy4
34
-ooo2 and Tracy8

66
-ooo2 accordingly. Core Fusion relies on centralized hardware to

support collaborative fetch, renaming, memory disambiguation, and commit, so that we believe it

7.5 Experimental Results 89

is hard to be scaled to combine eight cores simultaneously.

Although not included in Figure 7.7, Core Fusion can actually achieve an average speedup of

1.3x for integer benchmarks, greatly outforming the performance of Tracy. One major reason is that

a large portion of dynamic instructions is not covered by parallelized traces in integer benchmarks,

which, however, can benefit from Core Fusion through the entire program execution. Furthermore,

integer benchmarks typically have complicated control flows, resulting in short traces (97 instructions

on average). These traces do not contain enough parallelism to overcome the overheads of inter-core

synchronization and program state transfer.

For floating point benchmarks, however, Tracy can achieve an average speedup of 1.99x (4-way

parallelization), 1.39x better than the speedup achieved by Core Fusion. When Tracy performs 8-

way parallelization, the speedup is further increased to 2.31x. The relative performance of Tracy and

Core Fusion is highly dependent on the availability of distant parallelism. If only local parallelism

exists, the instruction issue mechanism of OoO execution is much more efficient than pre-inserted

synchronizations. Core Fusion outperforms Tracy in two benchmarks, both of which mainly contain

ILP. Although mesa has an average trace length of 1,497 instructions and equake has an average

trace length of 600 instructions, the lack of distant parallelism greatly restricts the capability of

Tracy. An opposote example is applu, whose long traces (4,251 instructions on average) expose

a large amount of distant ILP so that the performance of Tracy is 1.33x (4-way parallelization)

and 1.43x (8-way parallelization) better than the performance achieved by Core Fusion. On the

other hand, Tracy can extract a large amount of LLP from both swim and mgrid, resulting in

much greater speedups than the speedup achieved by Core Fusion. For example, the speedup of

swim achieved by Tracy is 3.75x based on 4-way parallelization, while it is only 1.44x achieved by

Core Fusion. When Tracy performs 8-way parallelization, the speedup is further increased to 5.10x,

demonstrating quite good scalability that is hardly reachable by any DIS-based tachniques.

Figure 7.8 illustrates the performance comparison of Tracy with one representative CFG-based

DBP technique [6]. The experimental data (transactional memory is implemented at cache line

granularity) of CFG-based DBP is directly obtained from the cited publication. Because CFG-

based DBP performs 2-way parallelization using IO cores, our system is configured as Tracy2
18
-io2.

Although the absolute performance is less meaningful because different simulation frameworks are

used, we believe the overall trend is widely applicable.

Although the average speedup achieved by Tracy is only 1.08x better than the speedup achieved

by CFG-based DBP, Tracy can speed up all floating point benchmarks while CFG-based DBP fails

to parallelize three out of eight applications at all. The reason is that when no LLP is exploitable,

7.5 Experimental Results 90

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

S
p
e
e
d
u
p

w
u
p
w

is
e

s
w

im

m
g
ri
d

a
p
p
lu

m
e
s
a

e
q
u
a
k
e

a
m

m
p

s
ix

tr
a
c
k

g
m

e
a
n

CFG−Based DBP

Tracy
18

2
−io2

Figure 7.8: This figure compares the performance of CFG-based DBP with Tracy2
18
-io2 when it is

configured to exploit both LLP and ILP. Results are normalized to ST-io2.

CFG-based DBP lacks the capability to schedule instructions at finer granularity. We believe that

general applicability is very important for the success of any DBP techniques. On the other hand,

CFG-based DBP has the capability to exploit more LLP because it can parallelize any loops instead

of only those restricted by trace length. When enough LLP is available, CFG-based DBP typically

produces great speedups. The most obvious examples are mgird and equake, in which CFG-based

DBP outperms Tracy by a factor of 1.12x and 1.27x, respectively.

7.5.4 Changing System Configurations and Architectural Parameters

In order to test the performance stability of Tracy, we conduct four sets of sensitive analysis by

varying 1) the number of candidate traces that can be executed simultaneously, 2) the number of

parallel threads that each trace is decomposed into, 3) the access latency of the synchronization

array, and 4) the transfer delay of the backbone bus.

Figure 7.9 shows the performance of Tracy by varying the number of candidate traces that can

be executed simultaneously. The average speedup for media benchmarks is more sensitive than the

speedup for floating point benchmarks to the maximum number of candidate traces, because they

typically speculate larger number of candidate traces on average. However, the capability to spec-

ulate more candidate traces simultaneously does not necessary lead to better parallel performance.

In many cases, parallelization actually slows down the program when the corresponding code region

7
.5

E
x
p
erim

en
ta
l
R
esu

lts
9
1

0

0.5

1

1.5

2

2.5

3

3.5

S
p

e
e

d
u

p

FP MEDIA GMEAN

w
u

p
w

is
e

s
w

im

m
g

ri
d

a
p

p
lu

m
e

s
a

e
q

u
a

k
e

a
m

m
p

s
ix

tr
a

c
k

e
p

ic
−

d
e

c

e
p

ic
−

e
n

c

g
7

2
1

−
d

e
c

g
7

2
1

−
e

n
c

g
s
m

−
d

e
c

g
s
m

−
e

n
c

jp
e

g
−

d
e

c

jp
e

g
−

e
n

c

m
p

e
g

2
−

d
e

c

m
p

e
g

2
−

e
n

c

fp
−

g
m

e
a

n

m
e

d
ia

−
g

m
e

a
n

a
ll−

g
m

e
a

n

Tracy
10

4
−io2

Tracy
18

4
−io2

Tracy
34

4
−io2

Figure 7.9: This figure shows the speedup of 1) Tracy4
10
-io2, 2) Tracy4

18
-io2, and 3) Tracy4

34
-io2 when they are configured to exploit both LLP and

ILP. Results are normalized to ST-io2.

7
.5

E
x
p
erim

en
ta
l
R
esu

lts
9
2

0

0.5

1

1.5

2

2.5

3

3.5

S
p

e
e

d
u

p

FP MEDIA GMEAN

w
u

p
w

is
e

s
w

im

m
g

ri
d

a
p

p
lu

m
e

s
a

e
q

u
a

k
e

a
m

m
p

s
ix

tr
a

c
k

e
p

ic
−

d
e

c

e
p

ic
−

e
n

c

g
7

2
1

−
d

e
c

g
7

2
1

−
e

n
c

g
s
m

−
d

e
c

g
s
m

−
e

n
c

jp
e

g
−

d
e

c

jp
e

g
−

e
n

c

m
p

e
g

2
−

d
e

c

m
p

e
g

2
−

e
n

c

fp
−

g
m

e
a

n

m
e

d
ia

−
g

m
e

a
n

a
ll−

g
m

e
a

n

Tracy
18

2
−io2

Tracy
34

4
−io2

Tracy
66

8
−io2

Figure 7.10: This figure shows the speedup of 1) Tracy218-io2, 2) Tracy
4

34-io2, and 3) Tracy866-io2 when they are configured to exploit both LLP and
ILP. Results are normalized to ST-io2.

7
.5

E
x
p
erim

en
ta
l
R
esu

lts
9
3

0

0.5

1

1.5

2

2.5

3

3.5

S
p

e
e

d
u

p

FP MEDIA GMEAN

w
u

p
w

is
e

s
w

im

m
g

ri
d

a
p

p
lu

m
e

s
a

e
q

u
a

k
e

a
m

m
p

s
ix

tr
a

c
k

e
p

ic
−

d
e

c

e
p

ic
−

e
n

c

g
7

2
1

−
d

e
c

g
7

2
1

−
e

n
c

g
s
m

−
d

e
c

g
s
m

−
e

n
c

jp
e

g
−

d
e

c

jp
e

g
−

e
n

c

m
p

e
g

2
−

d
e

c

m
p

e
g

2
−

e
n

c

fp
−

g
m

e
a

n

m
e

d
ia

−
g

m
e

a
n

a
ll−

g
m

e
a

n

8 Cycles

4 Cycles

1 Cycle

Figure 7.11: This figure shows the speedup of Tracy4
34
-io2 when the synchronization has access latency of 1) 8 clock cycles, 2) 4 clock cycles, and 3) 1

clock cycle. The system is configured to exploit both LLP and ILP. Results are normalized to ST-io2.

7
.5

E
x
p
erim

en
ta
l
R
esu

lts
9
4

0

0.5

1

1.5

2

2.5

3

3.5

S
p

e
e

d
u

p

FP MEDIA GMEAN

w
u

p
w

is
e

s
w

im

m
g

ri
d

a
p

p
lu

m
e

s
a

e
q

u
a

k
e

a
m

m
p

s
ix

tr
a

c
k

e
p

ic
−

d
e

c

e
p

ic
−

e
n

c

g
7

2
1

−
d

e
c

g
7

2
1

−
e

n
c

g
s
m

−
d

e
c

g
s
m

−
e

n
c

jp
e

g
−

d
e

c

jp
e

g
−

e
n

c

m
p

e
g

2
−

d
e

c

m
p

e
g

2
−

e
n

c

fp
−

g
m

e
a

n

m
e

d
ia

−
g

m
e

a
n

a
ll−

g
m

e
a

n

12 Cycles

6 Cycles

3 Cycle

Figure 7.12: This figure shows the speedup of Tracy4
34
-io2 when the backbone bus has transfer delay of 1) 12 clock cycles, 2) 6 clock cycles, and 3) 3

clock cycle. The system is configured to exploit both LLP and ILP. Results are normalized to ST-io2.

7.5 Experimental Results 95

is covered by short traces. When the number of available cores is reduced, the same code region

is considered non-parallelizable by Tracy and starts to run sequentially, leading to improved overall

performance. The most interesting example is gsm-enc. When only two candidate traces are sup-

ported, some code regions are not parallelized by Tracy because the speculation accuracy is relatively

low. When four candidate traces are supported, these code regions are just above the threshold to

be parallelized, but the traces are so short that the the program is actually slowed down. When

eight candidate traces are supported, the traces that cover the same code regions become longer,

which finally has positive contributions to the overall performance.

However, a more important takeaway from Figure 7.9 is that Tracy does not require a large

number of cores to operate effectively. Using only ten cores, an average speedup of 1.73x and 1.35x

can still be achieved for floating point and media benchmarks, repectively. When using 34 cores, the

speedup for floating point benchmarks is only increased by another factor of 1.01x and the speedup

for media benchmarks is only increased by another factor of 1.05x. As described in Section 5.5, it is

more economical for Tracy to only use part of the available cores, which are just enough to achieve

near-optimal performance with much less energy consumption.

Figure 7.10 shows the performance of Tracy by varying the number of parallel threads that

each trace is decomposed into. Increasing the parallelization width generally benefit all benchmarks

because more hardware resources are available to execute the same candidate trace. For 2-way

parallelization, the speedup is only 1.25x, averaged overall benchmarks. It is greatly increased

to 1.56x and 1.72x when 4-way and 8-way parallelization is performed. The actual speedup for

each benchmark, however, is highly dependent on the amount of existing distant parallelism. For

example, wupwise has an average trace length of 4,196 instructions, but the performance of 8-

way parallelization is actually worse than the speedup of 4-way parallelization. Lacking enough

distant parallelism, over-parallelization using pre-inserted synchronizations actually hurts parallel

performance. On the contrary, applu has an average trace length of 4,251 instructions, but the

speedup achieved by 8-way parallelization is 1.81x and 1.24x better than the speedup achieved

by 2-way and 4-way parallelization, respectively. The best performance scalability is observed in

benchmarks that contain a large amount of LLP, which is not surprising because the same number

of loop iterations can be distributed to a larger number of cores. The most obvious example is swim,

whose parallel performance is almost increased proportionally to the increase of parallelization width.

Thus, it is important to dynamically identify the “saturation point” for each program and only

decomposes it into enough threads to exploit the available parallelism.

Figure 7.11 shows the performance of Tracy by varying the access latency of the synchronization

7
.5

E
x
p
erim

en
ta
l
R
esu

lts
9
6

0

0.5

1

1.5

2

2.5

3

3.5

S
p

e
e

d
u

p

FP MEDIA GMEAN

w
u

p
w

is
e

s
w

im

m
g

ri
d

a
p

p
lu

m
e

s
a

e
q

u
a

k
e

a
m

m
p

s
ix

tr
a

c
k

e
p

ic
−

d
e

c

e
p

ic
−

e
n

c

g
7

2
1

−
d

e
c

g
7

2
1

−
e

n
c

g
s
m

−
d

e
c

g
s
m

−
e

n
c

jp
e

g
−

d
e

c

jp
e

g
−

e
n

c

m
p

e
g

2
−

d
e

c

m
p

e
g

2
−

e
n

c

fp
−

g
m

e
a

n

m
e

d
ia

−
g

m
e

a
n

a
ll−

g
m

e
a

n

Symbolic Evaluation Disabled

Symbolic Evaluation Enabled

Figure 7.13: This figure shows the speedup of Tracy4
34
-io2 when 1) symbolic evaluation is disabled, and 2) symbolic evaluation is enabled. The system

is configured to exploit both LLP and ILP. Results are normalized to ST-io2.

7
.5

E
x
p
erim

en
ta
l
R
esu

lts
9
7

0

0.5

1

1.5

2

2.5

3

3.5

S
p

e
e

d
u

p

FP MEDIA GMEAN

w
u

p
w

is
e

s
w

im

m
g

ri
d

a
p

p
lu

m
e

s
a

e
q

u
a

k
e

a
m

m
p

s
ix

tr
a

c
k

e
p

ic
−

d
e

c

e
p

ic
−

e
n

c

g
7

2
1

−
d

e
c

g
7

2
1

−
e

n
c

g
s
m

−
d

e
c

g
s
m

−
e

n
c

jp
e

g
−

d
e

c

jp
e

g
−

e
n

c

m
p

e
g

2
−

d
e

c

m
p

e
g

2
−

e
n

c

fp
−

g
m

e
a

n

m
e

d
ia

−
g

m
e

a
n

a
ll−

g
m

e
a

n

Memory Disambiguation Disabled

Memory Disambiguation Enabled

Figure 7.14: This figure shows the speedup of Tracy4
34
-io2 when 1) memory disambiguation is disabled, and 2) memory disambiguation is enabled.

The system is configured to exploit both LLP and ILP. Results are normalized to ST-io2.

7
.5

E
x
p
erim

en
ta
l
R
esu

lts
9
8

E
x
e

c
u

ti
o

n
 T

im
e

 B
re

a
k
d

o
w

n

FP MEDIA MEAN

w
u

p
w

is
e

s
w

im

m
g

ri
d

a
p

p
lu

m
e

s
a

e
q

u
a

k
e

a
m

m
p

s
ix

tr
a

c
k

e
p

ic
−

d
e

c

e
p

ic
−

e
n

c

g
7

2
1

−
d

e
c

g
7

2
1

−
e

n
c

g
s
m

−
d

e
c

g
s
m

−
e

n
c

jp
e

g
−

d
e

c

jp
e

g
−

e
n

c

m
p

e
g

2
−

d
e

c

m
p

e
g

2
−

e
n

c

fp
−

g
m

e
a

n

m
e

d
ia

−
g

m
e

a
n

a
ll−

g
m

e
a

n

0%

20%

40%

60%

80%

100%

Useful Execution

Mis−speculation

Program State Transfer

Figure 7.15: This figure shows the execution time overhead of Tracy4
34
-io2 caused by mis-speculation and program state transfer. The system

is configured to exploit both LLP and ILP. Useful execution includes the time spent on both sequential execution and parallel execution that is
speculated correctly.

7
.5

E
x
p
erim

en
ta
l
R
esu

lts
9
9

E
n

e
rg

y
 B

re
a

k
d

o
w

n

FP MEDIA MEAN

w
u

p
w

is
e

s
w

im

m
g

ri
d

a
p

p
lu

m
e

s
a

e
q

u
a

k
e

a
m

m
p

s
ix

tr
a

c
k

e
p

ic
−

d
e

c

e
p

ic
−

e
n

c

g
7

2
1

−
d

e
c

g
7

2
1

−
e

n
c

g
s
m

−
d

e
c

g
s
m

−
e

n
c

jp
e

g
−

d
e

c

jp
e

g
−

e
n

c

m
p

e
g

2
−

d
e

c

m
p

e
g

2
−

e
n

c

fp
−

g
m

e
a

n

m
e

d
ia

−
g

m
e

a
n

a
ll−

g
m

e
a

n

0%

20%

40%

60%

80%

100%

Useful Execution

Mis−speculation

Program State Transfer

Figure 7.16: This figure shows the energy overhead of Tracy4
34
-io2 caused by mis-speculation and program state transfer. The system is configured to

exploit both LLP and ILP. Useful execution includes the time spent on both sequential execution and parallel execution that is speculated correctly.

7.5 Experimental Results 100

array. Although five out of 18 benchmarks are actually slowed down when the access latency is

eight clock cycles, an average speedup of 1.25x and 1.14x can still be achieved for floating point

and media benchmarks, respectively. Thus, Tracy has the potential to be used on more commodity

hardware that usually has relatively large synchronization overhead. On the contrary, such high

synchronization overhead typically prevents most existing DIS-based DBP techniques from operating

effectively. For benchmarks that contain a large amount of LLP, the access latency has the smallest

impact on the program performance. For example, with eight-cycle access latency, the speedup of

swim and mgrid is still 3.30x and 1.62x, respectively, which is very close to the speedup (3.42x and

1.80x, respectively) when the access latency is only one clock cycle.

Figure 7.12 shows the performance of Tracy by varying the transfer delay of the backbone bus.

When it is increased to 12 clock cycles (four clock cycles per segment), an average speedup of 1.43x

can still be achieved, which is only 1.09x worse the speedup with three clock cycles (one clock

cycle per segment). Thus, Tracy has the potential to master slave clusters that are placed distantly

from one another on the single chip. For each benchmark, the sensitivity of its performance to the

transfer delay is highly dependent on the amount of live-in and -out registes and cache lines. For

example, 10.63% of the total execution time of sixtrack is used to transfer program state, so that

the application is actually slowed down when the transfer delay is 12 clock cycles.

7.5.5 Isolating Overheads and Benefits

In Section 6.4, we conclude that optimization alone is generally not enough to speed up applica-

tions. Both symbolic evaluation and memory disambiguation, however, eliminate unnecessary data

dependencies (both register and memory) or increase data dependency lengths, preparing the code

for future parallelization. As illustrated in Figures 7.13 and 7.14, the average speedup is dramati-

cally reduced to 0.97x and 1.06x when symbolic evaluation and memory disambiguation is disabled,

respectively. For many benchmarks, the non-optimized traces only expose very limited parallelism,

and the corresponding speedup can hardly overweigh the overhead caused by mis-speculation and

program state transfer. In several cases, Tracy makes incorrect decisions and over-parallelizes traces,

which may dramatically slow down the application. For example, when no code transformation is

performed, the slowdown of swim and mgrid is only 0.94x and 0.94x, respectively. When either

symbolic evaluation or memory disambiguation is disabled, the slowdown of swim drops below 0.72x

and the slowdown of mgird drops below 0.83x.

It is interesting that symbolic evaluation has a larger impact on the parallel performance than

7.6 Summary 101

memory disambiguation. In fact, symbolic evaluation is an important preparation to achieve effective

memory disambiguation. Tracy divides all memory references into groups with different base registers

and disambiguate them at the group granularity. Because the number of monitored based registers

is limited, it is extremely important to make as many memory reference instructions as possible to

share the same base register. One functionality of symbolic evaluation on memory loads and stores

is to replace the base register with another register that is defined earliest in the trace and can be

used to calculate the same effective address, automatically fulfilling this task.

Figures 7.15 and 7.16 illustrates the execution time and energy overheads caused by misspecu-

lation and program state transfer, respectively. Useful execution includes the time spent on both

sequential execution and parallel execution that is speculated correctly. Both overheads are generally

small compared to useful execution. On average, only 1.52% of the total execution time and 1.91%

of the total energy is caused by mis-speculation, and only 2.88% of the total execution time and

1.20% of the total energy is caused by program state transfer. For each benchmark, however, the

overhead of execution time is not necessarily proportional to the overhead of energy. For example,

apply has relatively low execution time overhead but relatively high energy overhead on program

state transfer. The reason is that applu produces a large number of speculatively modified cache

lines, which leads to more energy-consuming cache operations when the trace commits. On the

contrary, sixtrack shows the exact opposite overhead characteristic because it has relatively short

traces, each of which contains many live-in and -out registers that need to be transferred.

7.6 Summary

In this chapter, we leverage traces as the unified representation of program execution to exploit

both coarse- and fine-grained parallelism. For exploiting ILP, Tracy customizes the traditional list

scheduling algorithm [36] to partition and schedule instructions among different cores. For exploit-

ing LLP, Tracy performs two major code transformations, accumulator expansion and dependent

code motion, to eliminate loop-carried dependencies or at least to increase the execution overlap of

multiple threads so as to achieve better parallel performance.

Generally speaking, only exploiting ILP produces greater speedups than only exploiting LLP,

which is not surprising because it can schedule instructions at finer granularity. While the ILP-only

speedup is 1.35x, averaged over all benchmarks, the LLP-only speedup is only 1.19x. When enough

LLP is available, however, much larger speedups can be achieved. For example, LLP can be extracted

from 81.94% of dynamic instructions in swim, leading to the great speedup of 3.34x. Although

7.6 Summary 102

speeding up all floating point and media benchmarks, Tracy can hardly increase the performance

of integer benchmarks due to their short trace length and low dynamic execution coverage, which

is necessary to maintain high speculation accuracy. On the other hand, Tracy does comsume more

energy due to multi-trace execution and inter-core synchronization. When the background “system

leakage” is accounted, however, Tracy only consumes 0.83x and 1.09x energy for floating point

and media benchmarks, respectively. The performance of Tracy is quite sensitive to the core type.

When using OoO cores instead of IO cores, Tracy can only speed up six out of eight floating point

benchmarks and four out of ten media benchmarks.

For floating point benchmarks, Tracy can achieve an average speedup of 1.99x (4-way paral-

lelization), 1.39x better than the speedup achieved by Core Fusion. When Tracy performs 8-way

parallelization, the speedup is further increased to 2.31x. For integer benchmarks, however, Core

Fusion can actually achieve an average speedup of 1.3x, greatly outforming the performance of

Tracy. Thus, as we have hypothesized, Tracy outperms DIS-based DBP when long traces can be

constructed, which expose more distant ILP or even LLP opportunities.

Although the average speedup achieved by Tracy is only 1.08x better than the speedup achieved

by CFG-based DBP, Tracy can speed up all floating point benchmarks while CFG-based DBP fails

to parallelize three out of eight applications at all. When source code is not avaliable, the necessity

of conservative analysis on the CFG makes it much harder to extract LLP and CFG-based DBP

lacks the capability to exploit ILP instead. Thus, we believe that Tracy is a favorable alternative

because general applicability is very important for the success of any DBP techniques.

Chapter 8

Conclusions and Future Work

This dissertation explores the novel idea of trace-based DBP, which provides a large instruction

window without introducing spurious dependencies. We hypothesize that traces provide a generally

good trade-off between code visibility and analysis accuracy for a wide variety of applications so as

to achieve better parallel performance. Compared to DIS-based DBP, trace-based DBP can exploit

more distant parallelism because the average length of traces is typically much larger than the size

of the hardware instruction window. Compared to CFG-based DBP, trace-based DBP does not

need to respect control and data dependencies that are not on the execution path which is actually

taken. More importantly, while DIS-based DBP typically only exploits fine-grained parallelism and

CFG-based DBP typically only exploits coarse-grained parallelism, traces can be used as a unified

representation of program execution to seamlessly incorporate the exploitation of both coarse- and

fine-grained parallelism.

We first conduct a limit study to identify the performance limits of trace-based DBP. Based

on the idealized assumption that an unlimited number of cores are available, the next executed

trace can be accurately predicted by simply executing in parallel all existing traces that begin with

the next target address. Thus, the average trace length is 235 basic blocks for integer benchmarks

and 4,565 basic blocks for floating point benchmarks. Furthermore, only an average of 0.02% basic

blocks for integer benchmarks and 0.19% basic blocks for floating point benchmarks are not formed

into traces. Assuming one clock cycle for inter-core synchronization and one clock cycle to execute

each instruction, the average speedup over sequential execution is 9.36x and 22.34x for integer and

floating point benchmarks, respectively. Thus, the limit study demonstrates that trace-based DBP

is a very promising technology for further exploration.

103

8.1 Merits of the Dissertation 104

We then develop Tracy, an innovative DBP framework which monitors a program at run time

and dynamically identifies hot traces, parallelizes them, and caches them for later use so that the

program can run in parallel every time a hot trace repeats. Tracy supports multi-trace execu-

tion and holistically balances among trace length, speculation accuracy, and coverage of dynamic

instructions. Tracy also performs two major optimizations, symbolic evaluation and memory disam-

biguation, which not only produce speedups directly, but also reformat the code to be more amenable

to parallelism. Furthermore, Tracy customizes off-the-shelf algorithms to make them suitable for

parallelizing atomic traces. When the system is configured as Tracy434-io2, the average speedup is

1.75x and 1.42x for floating point and media benchmarks, respectively. However, Tracy can hardly

speed up integer benchmarks due to their short trace length and low dynamic execution coverage,

which is necessary to maintain high speculation accuracy.

8.1 Merits of the Dissertation

History has shown that the HPC community will use all kinds of parallelization techniques to

exploit the latest advances in many-core architectures that start to dominate the microarchitecture

market. However, there is no precedent to show that non-DBP techniques will be adopted for

mainstream computing, and in fact there are many reasons to believe otherwise. Some companies

will undoubtedly continue to produce sequential programs due to the high cost of porting existing

software, updating tool chains, and re-training employees. Furthermore, many legacy programs will

be difficult or impossible to update with non-DBP techniques because source code is not available.

Finally, transparency is important for portability and forward compatibility of the program, as the

range and diversity of many-core architectures grow. These and other factors may be important

enough that non-DBP techniques are not adopted in the mainstream, despite the lack of viable

alternatives. The quality of transparent parallelization may be the limiting factor on the impact of

many-core architectures on mainstream computing.

For floating point benchmarks, Tracy can achieve an average speedup of 1.99x (4-way paral-

lelization), 1.39x better than the speedup achieved by Core Fusion. When Tracy performs 8-way

parallelization, the speedup is further increased to 2.31x. For integer benchmarks, however, Core

Fusion can actually achieve an average speedup of 1.3x, greatly outforming the performance of

Tracy. Thus, as we have hypothesized, Tracy outperms DIS-based DBP when long traces can be

constructed, which expose more distant ILP or even LLP opportunities.

8.2 Future Work 105

Although the average speedup achieved by Tracy is only 1.08x better than the speedup achieved

by CFG-based DBP, Tracy can speed up all floating point benchmarks while CFG-based DBP fails

to parallelize three out of eight applications at all. When source code is not avaliable, the necessity

of conservative analysis on the CFG makes it much harder to extract LLP and CFG-based DBP

lacks the capability to exploit ILP instead. Thus, we believe that Tracy is a favorable alternative

because general applicability is very important for the success of any DBP techniques.

The current performance of Tracy neither matches the performance upper bound achieved by the

limit study nor is always better than the speedup of existing DIS- and CFG-based DBP techniques.

However, it takes the first step to dynamically parallelize the binary executable without using either

the raw DIS or the complete CFG. Thus, this dissertation is expected have a broad impact on future

researchers that explore other representations of program execution for DBP purposes. As depicted

in Figure 1.1, any point on the design spectrum between the two extremes (DIS and complete CFG)

may be the one that achieves the optimal trade-off between code visibility and analysis accuracy.

Furthermore, the trace construction, prediction, optimization, and parallelization algorithms can be

readily adopted by other dynamic trace-based systems.

8.2 Future Work

This dissertation only explores the possibility of using traces to provide a generally good trade-off

on the design spectrum to a wide variety of applications so as to achieve better parallel performance.

However, our experimental results have demonstrated that in order to maintain high speculation

accuracy, traces generated from integer applications are typically too short to produce any speedups

even on IO cores. This problem starts to affect floating point and media applications when the IO

cores are upgraded to more advanced OoO cores.

One potential solution to the above problem is to merge traces into partial CFGs, which typically

represent the execution of smaller code structures (e.g., part of a function instead of the entire

function) than static CFGs in order to maintain a practical number of unmerged control flows for

aggressive parallelization. On the other hand, these partial CFGs represent much longer program

execution than traces, exposing more parallelism opportunities. The challenge, however, is how to

balance the number of execution paths that the partial CFG represents and speculation accuracy so

as to achieve the optimal trade-off. For example, if the partial CFG compries one iteration of the

outermost loop of a program, it may be easy to decide that an execution path that accounts for only

1% of all iterations should always be incorporated into the partial CFG if it does not introduce any

8.2 Future Work 106

more dependencies. However, it is a much harder decision if the execution path accounts for 10%

of all iterations but introduces two more dependencies, which may or may not affect the ultimate

schedule length. As traces, partial CFGs can act as the unified representation of program execution

to exploit both coarse- and find-grained parallelism. In the following sections, we will describe the

future research of effectively parallelizing partial CFGs in detail.

8.2.1 Balancing and Integrating Coarse- and Fine-Grained Parallelism

In the ideal case where a loop has many iterations and very low likelihood of loop-carried depen-

dencies, all available cores should be allocated to execute loop iterations. In practice, however, the

number of iterations is usually limited so that not all resources of the chip can be effectively utilized.

Three scenarios exaggerate this problem. First, multiple iterations usually have to be packed into

a single tile and executed on the same core, so that each parallel thread is large enough to toler-

ate large communication latencies. Loop tiling is also dictated by data locality and cache capacity

considerations. Second, when loop-carried dependencies are more likely, only a few iterations are

independent, and succeeding iterations must wait for values from their predecessors, limiting the de-

gree of useful LLP to the loop dependency distance. Third, imperfect speculation accuracy interferes

with execution of many subsequent iterations. For example, speculation accuracy of 90% means that

parallel loop execution has to be suspended once every ten speculations on average. This aborted

tile is executed sequentially and then parallel loop execution can be continued. This again limits

the degree of useful LLP to the expected number of consecutive iterations that can be speculated

successfully without any intervention.

In the above cases, it may be optimal to launch only a small number of iterations, and achieve

further parallelism by using multiple cores to exploit ILP within each iteration. In future work, we

can study how to balance the coarse- and fine-grained parallelism. The major challenge is to make

trade-offs among various interacting factors, including average number of iterations, iteration size,

loop-carried dependencies, speculation accuracy, and the potential benefits of allocating another

core to exploit either LLP and ILP. Based on the achieved insights, we can then explore various

decision algorithms based on performance prediction and runtime auto-tuning, and can develop new

algorithms to exploit ILP within loop tiles.

8.2 Future Work 107

8.2.2 Resource Allocation

Because Tracy uses additional cores at run time, it poses challenges for resource allocation. The

challenges are of two types. The first one only applies when an application does not have the entire

machine reserved, and other applications are contending for the same resources. Overall throughput

and energy efficiency should be optimized subject to QoS constraints. This will require support in

the task scheduler. For example, when an application creates a new thread, it should be able to

convey its expected performance benefit as a result of the extra thread, allowing the scheduler to

allocate resources among tasks of the same priority in a way that maximizes the system’s desired

figure of merit. Tracy then adapts based on whether the extra resources are allocated. Cheating can

be prevented by the scheduler by monitoring performance and/or some form of credit system. The

expected performance benefit can be based on a performance model or from historical information.

If history is allowed to be maintained, an application using Tracy can also have its binary, or some

associated metadata, augmented with prior performance as a function of the number of cores, allow-

ing the additional cores to be requested when the application is first launched. Furthermore, when

QoS constraints are present, the scheduler can use performance hints to judge whether allocating

more resources would help an application that is falling behind its QoS target. We can evaluate

these concepts in a prototype scheduler.

The second challenge pertains to energy efficiency. Tracy will be more widely adopted if it can

monitor its own energy efficiency and throttle speculation as needed to maximize the system’s desired

figure of merit. We can implement this adaptation, using heuristics based on speculation accuracy,

as well as exploring the value of more detailed information from performance counters.

8.2.3 Portability and Robustness to Runtime Dynamics

As a dynamic approach, Tracy already adjusts its parallelization strategy according to the number

and type of cores available. We can extend this parameterization to support various asymmetric

architectures, cost of inter-core communication, cache sizes, and so forth, and, via simulation of

various architectures, test Tracy’s portability. We can also test its ability to respond to runtime

dynamics, such as core availability (e.g., some cores may be unavailable due to hardware faults,

power constraints, or contention with other applications), workload profile, etc.

Tracy can further adapt to runtime dynamics by observing data access patterns. Previous re-

search has raised several orthogonal solutions, including 1) assigning operations that access similar

data to the same processor [131], 2) building separate function versions to be executed on different

8.2 Future Work 108

core types in an asymmetric or heterogeneous processor [76], and 3) co-scheduling appropriate tasks

to reduce resource contention [140, 141]. All these approaches have achieved a great performance

improvement by considering resource diversity and availability during program parallelization, which

can be explored in tuning the performance and robustness of Tracy.

8.2.4 Scalability

In cases where sufficient LLP is present (with high speculation accuracy), it may be worthwhile

to launch work across multiple sockets or even multiple machines in a cluster. However, even

though sockets on the same board share memory, parallelizing across sockets will incur high costs

on inter-socket data transfers. We can develop heuristics that determine, based on trace-launch

overheads, data-locality considerations, and possibly performance prediction and auto-tuning, how

many resources to use, and the optimal size of loop tiles or other tasks. For multi-machine cases,

Tracy will need to generate the appropriate MPI code; furthermore, unless the MPI standard is

extended, speculation on remote machines will need to be managed purely by software. While

feasible in principle, these additional overheads will be prohibitive in many cases. However, in the

interests of allowing users to achieve maximum performance, we can characterize cases in which this

is beneficial and analyze whether MPI, operating system, or hardware support could increase the

viability of trace-based DBP across multiple machines.

8.2.5 Combining Tracy with Native Parallelization

Often only regions of code that are easy to reason about are manually parallelized. Tracy can still

be useful in parallelizing the rest of the code, including libraries and so forth that are not visible

to the programmer. However, Tracy must not interfere with the user’s explicit parallelization. This

can easily be achieved by limiting Tracy to code regions with only one active thread. However, this

may be unnecessarily limiting. One challenge to support Tracy with more than one live thread is

that each thread must be traced. We can explore techniques for Tracy in the presence of multiple

threads, including rotating active threads through the master core (as one thread reaches steady

state, another thread can start tracing), cost-benefit analysis of providing tracing capabilities in

multiple cores, and limiting tracing to long-running traces. Another challenge is contention for

space of the trace cache. We hypothesize that this again can be addressed by waiting for threads to

reach steady state before tracing a new thread, because the working set of useful traces will be much

smaller than the set of candidates constructed when a thread is first traced. The third challenge is

8.2 Future Work 109

contention for cores. Explicit threads must of course be assigned cores, but some threads will benefit

more from Tracy than others. We can explore the use of performance prediction as well as runtime

training to identify the most useful traces.

8.2.6 Implementing Tracy on Contemporary Hardware

To evaluate the potential of Tracy, we have assumed the presence of hardware such as support

for trace construction, inter-core synchronization, register spilling, and memory disambiguation. If

Tracy is sufficiently promising, hardware vendors may explore adding these features, and one line of

our investigation can seek to evaluate the cost/benefit of such hardware as well as how to minimize

the need for hardware support. But in many cases, especially for coarse-grained parallelism or high

degrees of ILP, Tracy may be able to provide useful benefits without hardware support. This would

increase the likelihood of adoption for Tracy and provide more immediate societal impact, which

may subsequently make it easier to justify adding hardware support. Thus, we can develop a version

of Tracy that can run on contemporary hardware.

Bibliography

[1] Phillip Gibbons. Theory: Asleep at the Switch to Many-Core. http://www.umiacs.umd.

edu/~vishkin/T&MC5-2009/PRESENTATIONS/Gibbons.ppt, May 2009.

[2] Leland Freeman. Recover Missing Source Code to Overcome ”Leaky-Roof Syndrome”. En-
terprise Systems Journal, October 1997.

[3] Engin Ipek, Meyrem Kirman, Nevin Kirman, and Jose Martinez. Core Fusion: Accommodat-
ing Software Diversity in Chip Multiprocessors. In Proceedings of the International Sympo-
sium on Computer Architecture, June 2007.

[4] Rakesh Ranjan, Fernando Latorre, Pedro Marcuello, and Antonio Gonzalez. Fg-STP: Fine-
Grain Single Thread Partitioning on Multicores. In Proceedings of the International Sympo-
sium on High Performance Computer Architecture, February 2011.

[5] David Tarjan, Michael Boyer, and Kevin Skadron. Federation: Repurposing Scalar Cores for
Out-of-Order Instruction Issue. In Proceedings of the Design Automation Conference, June
2008.

[6] Matthew DeVuyst, Dean Tullsen, and Seon-Wook Kim. Runtime Parallelization of Legacy
Code on A Transactional Memory System. In Proceedings of the International Conference
on High Performance and Embedded Architectures and Compilers, January 2011.

[7] Ben Hertzberg and Kunle Olukotun. Runtime Automatic Speculative Parallelization. In
Proceedings of the the International Symposium on Code Generation and Optimization, April
2011.

[8] Kanemitsu Ootsu, Takashi Yokota, Takafumi Ono, and Takanobu Baba. Preliminary Eval-
uation of a Binary Translation System for Multithreaded Processors. In Proceedings of the
International Workshop on Innovative Architecture for Future Generation High-Performance
Processors and Systems, January 2002.

[9] Cheng Wang, Youfeng Wu, Edson Borin, Shiliang Hu, Wei Liu, Dave Sager, Tin-Fook Ngai,
and Jesse Fang. Dynamic Parallelization of Single-Threaded Binary Programs using Specula-
tive Slicing. In Proceedings of the International Conference on Supercomputing, June 2009.

[10] Efe Yardimci and Michael Franz. Dynamic Parallelization and Mapping of Binary Executa-
bles on Hierarchical Platforms. In Proceedings of the International Conference on Computing
Frontiers, May 2006.

[11] Michael Gschwind. The Cell Broadband Engine: Exploiting Multiple Levels of Parallelism in
A Chip Multiprocessor. International Journal of Parallel Programming, 35(3), June 2007.

[12] M. Aater Suleman, Onur Mutlu, Moinuddin Qureshi, and Yale Patt. Accelerating Critical
Section Execution with Asymmetric Multi-Core Architectures. In Proceedings of the Inter-
national Conference on Architectural Support for Programming Languages and Operating
Systems, March 2009.

110

Bibliography 111

[13] Brian Fahs, Aqeel Mahesri, Francesco Spadini, Sanjay Patel, and Steven Lumetta. The Per-
formance Potential of Trace-based Dynamic Optimization. Technical Report UILU-ENG-04-
2208, University of Illinois at Urbana-Champaign, November 2004.

[14] Vasanth Bala, Evelyn Duesterwald, and Sanjeev Banerjia. Dynamo: A Transparent Dynamic
Optimization System. In Proceedings of the Conference on Programming Language Design
and Implementation, June 2000.

[15] Derek Bruening, Timothy Garnett, and Saman Amarasinghe. An Infrastructure for Adaptive
Dynamic Optimization. In Proceedings of the International Symposium on Code Generation
and Optimization, March 2003.

[16] Richard Hank, Scott Mahlke, Roger Bringmann, John Gyllenhaal, and Wen-Mei Hwu. Su-
perblock Formation Using Static Program Analysis. In Proceedings of the International Sym-
posium on Microarchitecture, December 1993.

[17] Scott Mahlke, David Lin, William Chen, Richard Hank, and Roger Bringmann. Effective
Compiler Support for Predicated Execution using the Hyperblock. In Proceedings of the
International Symposium on Microarchitecture, November 1992.

[18] Matthew Merten, Andrew Trick, Erik Nystrom, Ronald Barnes, and Wen-Mei Hwu. A Hard-
ware Mechanism for Dynamic Extraction and Relayout of Program Hot Spots. In Proceed-
ings of the International Symposium on Computer Architecture, June 2000.

[19] Karthikeyan Sankaralingam, Ramadass Nagarajan, Haiming Liu, Changkyu Kim, Jaehyuk
Huh, Doug Burger, Stephen Keckler, and Charles Moore. Exploiting ILP, TLP, and DLP
with the Polymorphous TRIPS Architecture. In Proceedings of the International Symposium
on Computer Architecture, June 2003.

[20] Weifeng Zhang, Brad Calder, and Dean Tullsen. An Event-Driven Multithreaded Dynamic
Optimization Framework. In Proceedings of the International Conference on Parallel Archi-
tectures and Compilation Techniques, September 2005.

[21] Sanjay Patel and Steven Lumetta. rePLay: A Hardware Framework for Dynamic Optimiza-
tion. IEEE Transactions on Computers, 50(6), June 2001.

[22] Haitham Akkary and Michael Driscoll. A Dynamic Multithreading Processor. In Proceedings
of the International Symposium on Microarchitecture, December 1998.

[23] Pedro Marcuello and Antonio Gonzalez. Clustered Speculative Multithreaded Processors. In
Proceedings of the International Conference on Supercomputing, June 1999.

[24] Pedro Marcuello, Antonio Gonzalez, and Jordi Tubella. Speculative Multithreaded Proces-
sors. In Proceedings of the International Conference on Supercomputing, June 1998.

[25] Eric Rotenberg, Quinn Jacobson, Yiannakis Sazeides, and James Smith. Trace Processors.
In Proceedings of the International Symposium on Microarchitecture, December 1997.

[26] James Dehnert, Brian Grant, John Banning, Richard Johnson, Thomas Kistler, Alexander
Klaiber, and Jim Mattson. The Transmeta Code Morphing Software: Using Speculation,
Recovery, and Adaptive Retranslation to Address Real-Life Challenges. In Proceedings of the
International Symposium on Code Generation and Optimization, March 2003.

[27] Kemal Ebcioglu and Erik Altman. DAISY: Dynamic Compilation for 100% Architectural
Compatibility. In Proceedings of the International Symposium on Computer Architecture,
June 1997.

[28] Bolei Guo, Youfeng Wu, Cheng Wang, Matthew Bridges, Guilherme Ottoni, Neil Vachhara-
jani, Jonathan Chang, and David August. Selective Runtime Memory Disambiguation in
A Dynamic Binary Translator. In Proceedings of the International Conference on Compiler
Construction, March 2006.

Bibliography 112

[29] Gary Kildall. A Unified Approach to Global Program Optimization. In Proceedings of the
Symposium on Principles of Programming Languages, October 1973.

[30] Rastisalv Bodik and Sadun Anik. Path-Sensitive Value-Flow Analysis. In Proceedings of the
Symposium on Principles of Programming Languages, January 1998.

[31] Manuvir Das, Sorin Lerner, and Mark Seigle. ESP: Path-Sensitive Program Verification in
Polynomial Time. In Proceedings of the Conference on Programming Language Design and
Implementation, June 2002.

[32] Brian Fahs, Satarupa Bose, Matthew Crum, Brian Slechta, Francesco Spadini, Tony Tung,
Sanjay Patel, and Steven Lumetta. Performance Characterization of a Microarchitectural
Framework for Dynamic Optimization. In Proceedings of the International Symposium on
Microarchitecture, December 2001.

[33] Walter Lee, Rajeev Barua, Matthew Frank, Devabhaktuni Srikrishna, Jonathan Babb, Vivek
Sarkar, and Saman Amarasinghe. Space-Time Scheduling of Instruction-Level Parallelism on
A Raw Machine. In Proceedings of the International Conference on Architectural Support for
Programming Languages and Operating Systems, October 1998.

[34] Walter Lee, Diego Puppin, Shane Swenson, and Saman Amarasinghe. Convergent Schedul-
ing. In Proceedings of the International Symposium on Microarchitecture, November 2002.

[35] Hongtao Zhong, Steven Lieberman, and Scott Mahlke. Extending Multicore Architectures to
Exploit Hybrid Parallelism in Single-thread Applications. In Proceedings of the International
Symposium on High Performance Computer Architecture, February 2007.

[36] Keith Cooper, Philip Schielke, and Devika Subramanian. An Experimental Evaluation of
List Scheduling. Technical Report CS-98-326, Rice University, September 1998.

[37] John Ellis. Bulldog: A Compiler for VLIW Architectures. PhD Dissertation, Massachusetts
Institute of Technology, February 1985.

[38] Joseph Fisher. Trace Scheduling: A Technique for Global Microcode Compaction. IEEE
Transactions on Computers, 30(7), July 1981.

[39] Wen-Mei Hwu, Scott Mahlke, William Chen, Pohua Chang, Nancy Warter, Roger Bring-
mann, Roland Ouellette, Richard Hank, Tokuzo Kiyohara, Grant Haab, John Holm, and
Daniel Lavery. The Superblock: An Effective Technique for VLIW and Superscalar Compila-
tion. The Journal of Supercomputing, 7(1), January 1993.

[40] Eric Rotenberg, Steve Bennett, and James Smith. Trace Cache: A Low Latency Approach
to High Bandwidth Instruction Fetching. In Proceedings of the International Symposium on
Microarchitecture, December 1996.

[41] ChiKeung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff Lowney,
Steven Wallace, Vijay Janapareddi, and Kim Hazelwood. Pin: Building Customized Pro-
gram Analysis Tools with Dynamic Instrumentation. In Proceedings of the Conference on
Programming Language Design and Implementation, June 2005.

[42] Jing Yang, Shukang Zhou, and Mary Lou Soffa. Dimension: An Instrumentation Tool for
Virtual Execution Environments. In Proceedings of the International Conference on Virtual
Execution Environments, June 2006.

[43] Wei Hu, Jason Hiser, Dan Williams, Adrian Filipi, Jack Davidson, David Evans, John
Knight, Anh Nguyen-Tuong, and Jonathan Rowanhill. Secure and Practical Defense Against
Code-Injection Attacks. In Proceedings of the International Conference on Virtual Execution
Environments, June 2006.

Bibliography 113

[44] Vladimir Kiriansky, Derek Bruening, and Saman Amarasinghe. Secure Execution Via Pro-
gram Shepherding. In Proceedings of the USENIX Security Symposium, August 2002.

[45] Jason Mars and Mary Lou Soffa. Mats: MultiCore Adaptive Trace Selection. In Proceedings
of the Workshop on Software Tools for MultiCore Sysems, April 2008.

[46] Sanjay Patel, Tony Tung, Satarupa Bose, and Matthew Crum. Increasing the Size of Atomic
Instruction Blocks using Control Flow Assertions. In Proceedings of the International Sym-
posium on Microarchitecture, December 2000.

[47] Kevin Skadron. Characterizing and Removing Branch Mispredictions. PhD Dissertation,
Princeton University, June 1999.

[48] Rohit Chandra, Ramesh Menon, Leo Dagum, David Kohr, Dror Maydan, and Jeff McDon-
ald. Parallel Programming in OpenMP. Morgan Kaufmann Publishers, October 2000.

[49] Bradford Chamberlain, David Callahan, and Hans Zima. Parallel Programmability and
the Chapel Language. International Journal of High Performance Computing Applications,
21(3), August 2007.

[50] Niklas Gustafsson. Axum Language Overview. http://download.microsoft.com/

download/B/D/5/BD51FFB2-C777-43B0-AC24-BDE3C88E231F/Axum%20Language%20Spec.

pdf, June 2009.

[51] Antal Buss, Harshvardhan, Ioannis Papadopoulos, Olga Pearce, Timmie Smith, Gabriel
Tanase, Nathan Thomas, Xiabing Xu, Mauro Bianco, Nancy Amato, and Lawrence Rauch-
werger. STAPL: Standard Template Adaptive Parallel Library. In Proceedings of the Haifa
Experimental Systems Conference, May 2010.

[52] Monk-Ping Leong, Chi-Chiu Cheung, Chin-Wang Cheung, Polly Wan, Ivan Leung, Winnie
Yeung, Wing-Seung Yuen, Kenneth Chow, Kwong-Sak Leung, and Philip Leong. CPE: A
Parallel Library for Financial Engineering Applications. Computer, 38(10), October 2005.

[53] Nuje Rucciuti. Y2K Cost Estimate Cut by $2 Billion. http://news.cnet.com/

Y2K-cost-estimate-cut-by-2-billion/2100-1091_3-235131.html, December 1999.

[54] Jung Ahn, William Dally, Brucek Khailany, Ujval Kapasi, and Abhishek Das. Evaluating
the Imagine Stream Architecture. In Proceedings of the International Symposium on Com-
puter Architecture, June 2004.

[55] Farhana Aleen and Nathan Clark. Commutativity Analysis for Software Parallelization: Let-
ting Program Transformations See the Big Picture. In Proceedings of the International Con-
ference on Architectural Support for Programming Languages and Operating Systems, March
2009.

[56] Randy Allen and Ken Kennedy. Optimizing Compilers for Modern Architectures: A
Dependence-Based Approach. Morgan Kaufmann Publishers, October 2001.

[57] Guilherme Ottoni and David August. Global Multi-Threaded Instruction Scheduling. In
Proceedings of the International Symposium on Microarchitecture, December 2007.

[58] Guilherme Ottoni, Ram Rangan, Adam Stoler, and David August. Automatic Thread Ex-
traction with Decoupled Software Pipelining. In Proceedings of the International Symposium
on Microarchitecture, November 2005.

[59] Easwaran Raman, Guilherme Ottoni, Arun Raman, Matthew Bridges, and David August.
Parallel-Stage Decoupled Software Pipelining. In Proceedings of the International Sympo-
sium on Code Generation and Optimization, April 2008.

Bibliography 114

[60] Shane Ryoo, SainZee Ueng, Christopher Rodrigues, Robert Kidd, Matthew Frank, and Wen-
mei Hwu. Automatic Discovery of Coarse-Grained Parallelism in Media Applications. Trans-
actions on High Performance Embedded Architectures and Compilers, 1(1), January 2007.

[61] Gurindar Sohi, Scott Breach, and T. N. Vijaykumar. Multiscalar Processors. In Proceedings
of the International Symposium on Computer Architecture, June 1995.

[62] Anasua Bhowmik and Manoj Franklin. A General Compiler Framework for Speculative Mul-
tithreading. In Proceedings of the Symposium on Parallel Algorithms and Architectures, Au-
gust 2002.

[63] Chen Ding, Xipeng Shen, Kirk Kelsey, Chris Tice, Ruke Huang, and Chengliang Zhang.
Software Behavior Oriented Parallelization. In Proceedings of the Conference on Program-
ming Language Design and Implementation, June 2007.

[64] Troy Johnson, Rudolf Eigenmann, and T. N. Vijaykumar. Min-Cut Program Decomposition
for Thread-Level Speculation. In Proceedings of the Conference on Programming Language
Design and Implementation, June 2004.

[65] Wei Liu, James Tuck, Luis Ceze, Wonsun Ahn, Karin Strauss, Jose Renau, and Josep Tor-
rellas. POSH: A TLS Compiler that Exploits Program Structure. In Proceedings of the
Symposium on Principles and Practice of Parallel Programming, March 2006.

[66] Karthikeyan Sankaralingam, Ramadass Nagarajan, Haiming Liu, Changkyu Kim, Jaehyuk
Huh, Doug Burger, Stephen Keckler, and Charles Moore. Exploiting ILP, TLP, and DLP
with the Polymorphous TRIPS Architecture. In Proceedings of the International Symposium
on Computer Architecture, June 2003.

[67] Gregory Steffan, Christopher Colohan, Antonia Zhai, and Todd Mowry. A scalable approach
to thread-level speculation. In Proceedings of the International Symposium on Computer
Architecture, June, 2000.

[68] Gregory Steffan, Christopher Colohan, Antonia Zhai, and Todd Mowry. Improving Value
Communication for Thread-Level Speculation. In Proceedings of the International Sympo-
sium on High-Performance Computer Architecture, February 2002.

[69] Chen Tian, Min Feng, Vijay Nagarajan, and Rajiv Gupta. Copy Or Discard Execution
Model For Speculative Parallelization On Multicores. In Proceedings of the International
Symposium on Microarchitecture, November 2008.

[70] Neil Vachharajani, Ram Rangan, Easwaran Raman, Matthew Bridges, Guilherme Ottoni,
and David August. Speculative Decoupled Software Pipelining. In Proceedings of the Inter-
national Conference on Parallel Architectures and Compilation Techniques, September 2007.

[71] Anshuman Dasgupta. Vizer: A Framework to Analyze and Vectorize Intel x86 Binaries.
Master of Science Thesis, Rice University, November 2002.

[72] Aparna Kotha, Kapil Anand, Matthew Smithson, Greeshma Yellareddy, and Rajeev Barua.
Automatic Parallelization in A Binary Rewriter. In Proceedings of the International Sympo-
sium on Microarchitecture, December 2010.

[73] Benoit Pradelle, Alain Ketterlin, and Philippe Clauss. Polyhedral Parallelization of Binary
Code. ACM Transactions on Architecture and Code Optimization, 8(4), January 2012.

[74] Amitabh Srivastava and Alan Eustace. ATOM: A System for Building Customized Program
Analysis Tools. In Proceedings of the Conference on Programming Language Design and
Implementation, June 1994.

Bibliography 115

[75] Diego Llanos, David Orden, and Belen Palop. Just-In-Time Scheduling for Loop-based Spec-
ulative Parallelization. In Proceedings of the Euromicro Conference on Parallel, Distributed
and Network-Based Processing, February 2008.

[76] Michael Linderman, James Balfour, Teresa Meng, and William Dally. Embracing Hetero-
geneity – Parallel Programming for Changing Hardware. In Proceedings of the Workshop on
Hot Topics in Parallelism, March 2009.

[77] Nathan Clark. Why Should I Rewrite My Software When Dynamic Compilation Can Be
Good Enough? In Proceedings of the Workshop on Software Tools for Multi-Core Systems,
April 2008.

[78] David Penry. You Can’t Parallelize Just Once: Managing Manycore Diversity. In Proceed-
ings of the Workshop on Manycore Computing, June 2007.

[79] John Hennessy, David Patterson, and David Goldberg. Computer Architecture: A Quantita-
tive Approach. Morgan Kaufmann Publishers, September 2006.

[80] Michael Quinn. Parallel Programming in C with MPI and OpenMP. McGraw-Hill Compa-
nies, June 2003.

[81] Borys Bradel and Tarek Abdelrahman. Automatic Trace-Based Parallelization of Java Pro-
grams. In Proceedings of the International Conference on Parallel Processing, September
2007.

[82] Borys Bradel and Tarek Abdelrahman. The Potential of Trace-Level Parallelism in Java
Programs. In Proceedings of the International Symposium on Principles and Practice of
Programming in Java, September 2007.

[83] Borys Bradel and Tarek Abdelrahman. The Use of Hardware Transactional Memory for the
Trace-Based Parallelization of Recursive Java Programs. In Proceedings of the International
Conference on Principles and Practice of Programming in Java, September 2009.

[84] Raymond Buse and Westley Weimer. The Road Not Taken: Estimating Path Execution Fre-
quency Statically. In Proceedings of the International Conference on Software Engineering,
May 2009.

[85] James Larus. Whole Program Paths. In Proceedings of the Conference on Programming
Language Design and Implementation, June 1999.

[86] Xiangyu Zhang and Rajiv Gupta. Whole Program Traces. In Proceedings of the Interna-
tional Symposium on Microarchitecture, December 2004.

[87] Samuel King, George Dunlap, and Peter Chen. Debugging Operating Systems with Time-
Traveling Virtual Machines. In Proceedings of the USENIX Annual Technical Conference,
April 2005.

[88] Min Xu, Rastislav Bodik, and Mark Hill. A “Flight Data Recorde” for Enabling Full-System
Multiprocessor Deterministic Replay. In Proceedings of the International Symposium on
Computer Architecture, June 2003.

[89] Qin Zhao, Ioana Cutcutache, and WengFai Wong. Pipa: Pipelined Profiling and Analysis
on Multi-Core Systems. In Proceedings of the International Symposium on Code Generation
and Optimization, April 2008.

[90] Martin Burtscher. VPC3: A Fast and Effective Trace-Compression Algorithm. In Proceed-
ings of the International Conference on Measurement and Modeling of Computer Systems,
June 2004.

Bibliography 116

[91] Jarek Nieplocha. Horizons in Extreme Scale Computing Software for Petascale Systems.
http://multiscale.emsl.pnl.gov/docs/presentations/wsu-08.ppt, August 2008.

[92] Jesper Larsson and Alistair Moffat. Offline Dictionary-Based Compression. In Proceedings of
the Conference on Data Compression, March 1999.

[93] Quinn Jacobson, Eric Rotenberg, and James Smith. Path-Based Next Trace Prediction. In
Proceedings of the International Symposium on Microarchitecture, December 1997.

[94] YuKwong Kwok and Ishfaq Ahmad. Dynamic Critical-Path Scheduling: An Effective Tech-
nique for Allocating Task Graphs to Multiprocessors. Transactions on Parallel and Dis-
tributed Systems, 7(5), May 1996.

[95] ChiKeung Luk. Memory Disambiguation for General-Purpose Applications. In Proceedings
of the Conference of the Centre for Advanced Studies on Collaborative Research, November
1995.

[96] Mikko Lipasti, Christopher Wilkerson, and John Shen. Value Locality and Load Value Pre-
diction. In Proceedings of the International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, October 1996.

[97] Yiannakis Sazeides and James Smith. The Predictability of Data Values. In Proceedings of
the International Symposium on Microarchitecture, December 1997.

[98] Ram Rangan, Neil Vachharajani, Manish Vachharajani, and David August. Decoupled Soft-
ware Pipelining with the Synchronization Array. In Proceedings of the International Confer-
ence on Parallel Architectures and Compilation Techniques, September 2004.

[99] Michael Bedford Taylor, Walter Lee, Saman Amarasinghe, and Anant Agarwal. Scalar
Operand Networks: On-Chip Interconnect for ILP in Partitioned Architectures. In Proceed-
ings of the International Symposium on High Performance Computer Architecture, February
2003.

[100] Jason Hiser, Daniel Williams, Adrian Filipi, Jack Davidson, and Bruce Childers. Evaluat-
ing Fragment Construction Policies for SDT Systems. In Proceedings of the International
Conference on Virtual Execution Environments, June 2006.

[101] Jason Hiser, Daniel Williams, Wei Hu, Jason Mars, Bruce Childers, and Jack Davidson.
Evaluating Indirect Branch Handling Mechanisms in Software Dynamic Translation Systems.
In Proceedings of the International Symposium on Code Generation and Optimization, April
2008.

[102] Shimin Chen, Michael Kozuch, Theodoros Strigkos, Babak Falsafi, Phillip Gibbons, Todd
Mowry, Vijaya Ramachandran, Olatunji Ruwase, Michael Ryan, and Evangelos Vlachos.
Flexible Hardware Acceleration for Instruction-Grain Program Monitoring. In Proceedings
of the International Symposium on Computer Architecture, June 2008.

[103] Brad Calder, Glenn Reinman, and Dean Tullsen. Selective Value Prediction. In Proceedings
of the International Symposium on Computer Architecture, May 1999.

[104] Pritpal Ahuja, Kevin Skadron, Margaret Martonosi, and Douglas Clark. Multipath Execu-
tion: Opportunities and Limits. In Proceedings of the International Conference on Supercom-
puting, July 1998.

[105] Artur Klauser and Dirk Grunwald. Instruction Fetch Mechanisms for Multipath Execution
Processors. In Proceedings of the International Symposium on Microarchitecture, December
1999.

[106] Steven Wallace, Brad Calder, and Dean Tullsen. Threaded Multiple Path Execution. In
Proceedings of the International Symposium on Computer Architecture, June 1998.

Bibliography 117

[107] Jason Mars, Lingjia Tang, Robert Hundt, Kevin Skadron, and Mary Lou Soffa. Bubble-Up:
Increasing Utilization in Modern Warehouse Scale Computers via Sensible Co-locations. In
Proceedings of the International Symposium on Microarchitecture, December 2011.

[108] Aniruddha Udipi, Naveen Muralimanohar, and Rajeev Balasubramonian. Towards Scalable,
Energy-Efficient, Bus-Based On-Chip Networks. In Proceedings of the International Sympo-
sium on High Performance Computer Architecture, February 2010.

[109] Sriram Vangal, Jason Howard, Gregory Ruhl, Saurabh Dighe, Howard Wilson, James
Tschanz, David Finan, Priya Iyer, Arvind Singh, Tiju Jacob, Shailendra Jain, Sriram
Venkataraman, Yatin Hoskote, and Nitin Borkar. An 80-Tile 1.28 TFLOPS Network-on-
Chip in 65nm CMOS. In Proceedings of the International Solid State Circuits Conference,
February 2007.

[110] Apala Guha, Kim Hazelwood, and Mary Soffa. Balancing Memory and Performance through
Selective Flushing of Software Code Caches. In Proceedings of the International Conference
on Compilers, Architectures and Synthesis for Embedded Systems, October 2010.

[111] Kim Hazelwood and Michael Smith. Generational Cache Management of Code Traces in
Dynamic Optimization Systems. In Proceedings of the International Symposium on Microar-
chitecture, December 2003.

[112] Alan Smith. Sequential Program Prefetching in Memory Hierarchies. Computer, 11(12),
December 1978.

[113] Vugranam Sreedhar, Guang Gao, and Yong-Fong Lee. Identifying Loops using DJ Graphs.
ACM Transactions on Programming Languages and Systems, 18(6), November 1996.

[114] Pablo Ortego and Paul Sack. SESC: SuperESCalar Simulator. http://iacoma.cs.uiuc.

edu/~paulsack/sescdoc/, December 2004.

[115] Carl Ramey. TILE-Gx ManyCore Processor: HW Acceleration Interfaces and Mechanisms.
In Keynotes of the Symposium on High Performance Chips, August 2011.

[116] Robert Golla. Niagara2: A Highly Threaded Server-on-A-Chip. http://www.opensparc.

net/pubs/preszo/06/04-Sun-Golla.pdf, October 2006.

[117] Larry Seiler, Doug Carmean, Eric Sprangle, Tom Forsyth, Michael Abrash, Pradeep Dubey,
Stephen Junkins, Adam Lake, Jeremy Sugerman, Robert Cavin, Roger Espasa, Ed Gro-
chowski, Toni Juan, and Pat Hanrahan. Larrabee: A Many-Core x86 Architecture for Visual
Computing. ACM Transactions on Graphics, 27(3), August 2008.

[118] David Kanter. Cavium MIPSes Network and Security Processing. http://www.

realworldtech.com/page.cfm?ArticleID=RWT061206011113&p=2, June 2006.

[119] Marcus Yam. Intel’s Knights Corner: 50+ Core 22nm Co-processor. http://www.

tomshardware.com/news/intel-knights-corner-mic-co-processor,14002.html,
November 2011.

[120] Preston Briggs, Keith Cooper, and Linda Torczon. Coloring Register Pairs. ACM Letters on
Programming Languages and Systems, 1(1), March 1992.

[121] Gregory Chaitin. Register Allocation and Spilling via Graph Coloring. SIGPLAN Notices,
39(4), April 2004.

[122] Oren Avissar, Rajeev Barua, and Dave Stewart. An optimal memory allocation scheme for
scratch-pad-based embedded systems. ACM Transactions in Embedded Computing Systems,
1(1), November 2002.

Bibliography 118

[123] Rajeshwari Banakar, Stefan Steinke, Bo-Sik Lee, M. Balakrishnan, and Peter Marwedel.
Scratchpad memory: Design alternative for cache on-chip memory in embedded systems. In
Proceedings of the International Symposium on Hardware/Software Codesign, May, 2002.

[124] Hsien-Hsin Lee and Gary Tyson. Region-Based Caching: An Energy-Delay Efficient Memory
Architecture for Embedded Processors. In Proceedings of the International Conference on
Compilers, Architecture, and Synthesis for Embedded Systems, November 2000.

[125] Rajiv Ravindran, Michael Chu, and Scott Mahlke. Compiler-Managed Partitioned Data
Caches for Low Power. In Proceedings of the Conference on Languages, Compilers, and
Tools for Embedded Systems, June 2007.

[126] Dirk Beyer, Adam Chlipala, Thomas Henzinger, Ranjit Jhala, and Rupak Majumdar. The
Blast Query Language for Software Verification. In Proceedings of the International Confer-
ence on Static Analysis, August 2004.

[127] Alexander Malkis, Andreas Podelski, and Andrey Rybalchenko. Thread-Modular
Counterexample-Guided Abstraction Refinement. In Proceedings of the International Con-
ference on Static Analysis, September 2010.

[128] Malay Ganai and Franjo Ivancic. Efficient Decision Procedure for Non-Linear Arithmetic
Constraints using CORDIC. In Proceedings of the Conference on Formal Methods in Com-
puter Aided Design, November 2009.

[129] Sicun Gao, Malay Ganai, Franjo Ivancic, Aarti Gupta, Sriram Sankaranarayanan, and Ed-
mund Clarke. Integrating ICP and LRA Solvers for Deciding Nonlinear Real Arithmetic
Problems. In Proceedings of the Conference on Formal Methods in Computer Aided Design,
October 2010.

[130] Stefania Perri and Pasquale Corsonello. Fast Low-Cost Implementation of Single-Clock-
Cycle Binary Comparator”. IEEE Transactions on Circuits and Systems, 55(12), December
2008.

[131] Michael Chu, Rajiv Ravindran, and Scott Mahlke. Data Access Partitioning for Fine-Grain
Parallelism on Multicore Architectures. In Proceedings of the International Symposium on
Microarchitecture, December 2007.

[132] Hongtao Zhong, Mojtaba Mehrara, Steve Lieberman, and Scott Mahlke. Uncovering Hid-
den Loop Level Parallelism in Sequential Applications. In Proceedings of the International
Symposium on High Performance Computer Architecture, February 2008.

[133] Gang Chen. Effective Instruction Scheduling with Limited Registers. PhD Dissertation, Har-
vard University, March 2001.

[134] Khaing Kyi and Weng-Fai Wong. Cooperative Instruction Scheduling with Linear Scan Reg-
ister Allocation. In Proceedings of the International Conference on High Performance Com-
puting, December 2005.

[135] David Brooks, Vivek Tiwari, and Margaret Martonosi. Wattch: A Framework for
Architectural-Level Power Analysis and Optimizations. In Proceedings of International Sym-
posium on Computer Architecture, June 2000.

[136] Premkishore Shivakumar and Norman Jouppi. CACTI 3.0: An Integrated Cache Timing,
Power and Area Model. Technical Report WRL-2001-2, HP Labs, August 2001.

[137] Jose Renau, Karin Strauss, Luis Ceze, Wei Liu, Smruti Sarangi, James Tuck, and Josep Tor-
rellas. Thread-Level Speculation on A CMP Can Be Energy Efficient. In Proceedings of the
International Conference on Supercomputing, June 2005.

Bibliography 119

[138] Jiang Lin, Hongzhong Zheng, Zhichun Zhu, Eugene Gorbatov, Howard David, and Zhao
Zhang. Software Thermal Management of DRAM Memory for Multicore Systems. In Pro-
ceedings of the International Conference on Measurement and Modeling of Computer Sys-
tems, June 2008.

[139] Urs Hoelzle and Bill Weihl. High-Efficiency Power Supplies for Home Computers and
Servers. http://www.flowdas.com/blog/wp-content/uploads/2009/10/PSU_white_paper.
pdf, September 2006.

[140] Jason Mars, Lingjia Tang, and Mary Lou Soffa. Directly Characterizing Cross Core Interfer-
ence Through Contention Synthesis. In Proceedings of the International Conference on High
Performance Embedded Architectures and Compilers, January 2011.

[141] Sergey Zhuravlev, Sergey Blagodurov, and Alexandra Fedorova. Addressing Shared Resource
Contention in Multicore Processors via Scheduling. In Proceedings of the International Con-
ference on Architectural Support for Programming Languages and Operating Systems, March
2010.

