
1

Mitigating Resource Contention in Warehouse

Scale Computers

A Dissertation

Presented to

the faculty of the School of Engineering and Applied Science

University of Virginia

In Partial Fulfillment

of the requirements for the Degree

Doctor of Philosophy

Computer Science

by

Lingjia Tang

May 2012

Approvals

This dissertation is submitted in partial fulfillment of the requirements for

the degree of Doctor of Philosophy in Computer Science

Lingjia Tang

Approved:

Mary Lou Soffa (Advisor)

Jack Davidson

Westley Weimer (Chair)

Kamin Whitehouse

Joanne Bechta Dugan

Accepted by the School of Engineering and Applied Science:

Dean, School of Engineering and Applied Science

April 2012

Abstract

The class of modern datacenters hosting large-scale Internet services such as

web-search, mail, and social networking has gained significant momentum

in today’s computing environments. However, these datacenters, recently

coined as warehouse scale computers (WSCs), are extremely expensive to

construct and operate. Improving software performance and server utiliza-

tion is key to improving the efficiency and reducing the enormous cost in

WSCs.

ModernWSCs are constructed using commodity multicore processors, on

which part of the memory subsystem is shared. When multiple applications

are co-located on a multicore machine, contention for the shared memory re-

sources, such as caches and memory bandwidth, may occur. This contention

can cause severe cross-core performance interference, and significantly de-

grade application performance. Mitigating resource contention is critical for

improving application performance. However, despite the wealth of research

effort on contention management, little is known about how emerging large-

scale web-service applications interact with the shared memory resources on

commodity processors, and how this contention can be mitigated to improve

the performance of these applications.

In addition to performance, mitigating contention is also critical for im-

proving the server utilization in WSCs. As multicore processors with ex-

panding core counts continue to dominate the server market, the overall

3

4

utilization of WSCs depends heavily on the consolidation of workloads to

take advantage of the total computing potential provided by modern proces-

sors. However, many of the applications running in WSCs are user-facing,

latency-sensitive applications with quality of service (QoS) requirements.

These QoS requirements can be violated by the performance interference

that can occur when multiple applications are consolidated on a single ma-

chine. As a result, the current common practice in WSCs is to disallow the

co-location of latency-sensitive applications with other applications. This

approach is undesirable as it results in low machine utilization in WSCs and

millions of dollars wasted.

This dissertation presents novel compilation and runtime approaches to

significantly mitigating contention and improving performance, QoS and ma-

chine utilization in datacenters. Specifically, the main contributions of this

dissertation include: 1) comprehensive investigation and characterization of

the impact of memory resource sharing on industry-strength large-scale dat-

acenter workloads, which expose new characteristics and insights contrary

to recent literature; 2) the design of a heuristic based system and a runtime

system to intelligently map application threads to cores to promote positive

resource sharing and mitigate resource contention to improve application

performance; and 3) the design of novel compilation techniques and run-

time systems that statically and dynamically manipulate applications’ con-

tentious nature to enable the co-location of applications with varying QoS

requirements, and as a result, greatly improve server utilization in WSCs.

Acknowledgements

To Jason Mars.

To Dr. Soffa.

To Google folks.

To committee members.

To fellow graduate students.

To my parents.

5

Contents

1 Introduction 1

1.1 Memory Resource Sharing and Contention 2

1.2 Implications of Memory Resource Contention 3

1.2.1 The Impact of Contention on Performance 4

1.2.2 The Impact of Contention on Server Utilization 4

1.2.3 Trade-offs Between Performance and Utilization . . . 5

1.3 Mitigating Contention . 6

1.4 Two Strategies for Mitigating Contention 7

1.4.1 Mitigating Contention to Improve Performance 8

1.4.2 Mitigating Contention to Improve Utilization 10

1.5 Summary of Contributions . 12

2 Background and Related Work 16

2.1 Warehouse Scale Computers 16

2.1.1 Cost . 17

2.1.2 Application QoS . 17

2.1.3 Job Scheduling, Application Colocation and Utilization 18

2.1.4 Machine Level . 21

2.2 Related Work . 22

2.2.1 Impact of Memory Resource Sharing 22

2.2.2 Novel Hardware Solutions to Mitigate Contention . . . 22

6

Contents 7

2.2.3 Software Runtime and OS Approaches to Mitigating

Contention . 23

2.2.4 Cache Contention Aware Compilation 25

3 The Impact of Memory Resource Sharing 27

3.1 Memory Resource Sharing . 28

3.2 Intra-Application Sharing . 29

3.2.1 Experiment Methodology 30

3.2.2 Measurement and Findings 32

3.2.3 Investigating Performance Variability 36

3.2.4 Summary . 38

3.3 Inter-Application Sharing . 38

3.3.1 Experiment Design . 39

3.3.2 Measurement and Findings 39

3.3.3 Varying Thread Count and Architecture 44

3.3.4 Summary . 48

4 Thread-to-core Mapping 49

4.1 A Heuristic Approach to TTC Mapping 50

4.1.1 Evaluating the Heuristics 55

4.2 An Adaptive Approach to TTC Mapping 56

4.2.1 Evaluating AToM . 57

5 Compiling for Niceness 59

5.1 QoS-Compile Overview . 61

5.2 Identify Contentious Code Regions 63

5.2.1 Contentiousness and Sensitivity 64

5.2.2 Identify Contentious Regions 70

5.3 Compiler Transformations for Rate Reduction 74

Contents 8

5.3.1 Padding . 74

5.3.2 Nap Insertion . 76

5.3.3 Understanding Cooldown and Warmup 78

5.4 Evaluation . 79

5.4.1 Setup and Methodology 79

5.4.2 Model for Code Region Identification 80

5.4.3 Compiler Transformations 84

5.4.4 QoS-Compile: Put it All Together 88

5.4.5 Google Applications 94

5.5 Summary . 95

6 Reactive Niceness 97

6.1 Reactive-Niceness Overview 98

6.2 RN-Compile: Compiling for Reactive Niceness 102

6.3 RN-Runtime: Dynamic Detection and Reaction to QoS

Degradation . 104

6.3.1 Runtime . 104

6.3.2 Detection and Reaction 106

6.4 Evaluation . 110

6.4.1 Setup and Methodology 111

6.4.2 Effectiveness of Reactive-Niceness: Simple Heuristic . 112

6.4.3 Effectiveness of Reactive-Niceness: Targeted Heuristic 115

6.4.4 Effectiveness of Reactive-Niceness: Phase Level Be-

havior . 117

6.4.5 Overhead . 121

6.4.6 Energy Efficiency of using Reactive-Niceness 122

6.4.7 Varying Architecture 123

6.5 Summary . 125

Contents 9

7 Conclusions and Future Directions 127

7.1 Summary of Themes and Results 128

7.2 Future Direction . 130

7.2.1 Managed Runtime for QoS and utilization in WSCs . 131

7.2.2 Runtime systems and research infrastructure for WSCs 131

List of Figures

1.1 Topology of a Dual Socket Intel Clovertown 3

1.2 Current Two Options in WSCs. Option A, disallowing colo-

cation of applications, achieves peak application performance

at the sacrifice of machine utilization. Option B improves

machine utilization and reduces the number of server ma-

chines needed. However, applications may suffer significant

performance degradation, which can impair latency-sensitive

applications’ capability to deliver acceptable QoS. 6

1.3 Dissertation Overview - Understanding the impact of con-

tention and 2 strategies to mitigate contention to improve

performance and utilization 8

1.4 Enabled capabilities by our software systems. (A) illustrates

the strategy 1, the TTC mapper’s effect - improved perfor-

mance comparing to baseline colocation situation, shown in

Figure 1.2. (B) illustrates the strategy 2, Static/Dynamic

Compilation for Niceness’s effect. Strategy 2 improves the

QoS of the high priority application to meet its QoS require-

ment. By doing so, strategy 2 turns previous forbidden colo-

cations into “safe” colocations and thus improves the server

utilization, comparing to the baseline of disallowing coloca-

tion shown in Figure 1.2. 9

10

List of Figures 11

2.1 TCO (Total Cost of Ownership) cost breakdown for a data-

center using commodity servers 18

2.2 Task placement in a cluster. The cluster manager does not

co-locate latency-sensitive applications with others to protect

their QoS from performance interference, causing low machine

utilization. 19

2.3 Server Utilization Histogram from HP datacenters. 20

2.4 Activity profile of a sample of 5,000 Google servers over a

period of 6 months. 21

3.1 Sharing Cache, Separate FSBs (XX..XX..) 30

3.2 Sharing Cache, Sharing FSB (XXXX....) 30

3.3 Separate Caches, Separate FSBs (X.X.X.X.) 30

3.4 Performance of different thread-to-core mappings when each

application is running alone. The higher the bars, the better

performance. The performance variability is up to 20% for

each application, indicating that the memory resource sharing

has a significant performance impact on these applications.

Also, notice that bigtable is benefiting from sharing last level

cache; while contentAnalyzer and webSearch suffer from the

contention for memory resource among sibling threads. 33

3.5 LLC misses per million instrs 34

3.6 Normalized average LLC misses per million instructions . . . 34

3.7 Bus ratio . 35

3.8 Normalized bus ratio . 35

3.9 L2 Requests in MESI States and in Prefetch State 36

3.10 ContentAnalyzer. Normalized to solo performance 40

3.11 Websearch. Normalized to solo performance 40

List of Figures 12

3.12 Bigtable. Normalized to solo performance 40

3.13 ContentAnalyzer. Normalized to solo performance with

{X.X.X.X.} . 41

3.14 Websearch. Normalized to solo performance with {X.X.X.X.} 41

3.15 Bigtable. Normalized to solo performance with {X.X.X.X.} . 41

3.16 Topology of Dual Socket Intel Westmere 44

3.17 2 threads of a latency sensitive application colocated with

6 threads of a batch application, normalized to the latency

sensitive application’s solo performance in {X...X...}mapping 45

3.18 6 threads of a latency sensitive application colocated with 2

threads of a batch application, normalized to the latency sen-

sitive application’s solo performance in {XXX.,XXX.} mapping 45

3.19 2 threads of latency sensitive applications running alone on

Westmere . 47

3.20 6 threads of latency sensitive applications running alone on

Westmere . 47

3.21 6 threads of latency sensitive applications co-running with 6

threads of batch applications on Westmere; 47

4.1 Bus Burst Transactions (full cache line) per millisecond per

one thread . 52

4.2 LLC misses/ms, LLC requests Share/ms and LLC reference/ms 52

4.3 Decision Tree . 55

4.4 Adaptive Thread-To-Core Mapping on Clovertown 58

4.5 Adaptive Thread-To-Core Mapping on Westmere 58

5.1 QoS-Compile Overview . 61

5.2 Contentiousness. Each bar shows the performance degrada-

tion of a corunner caused by the application across x-axis. . . 66

List of Figures 13

5.3 Sensitivity. Each bar shows the performance degradation of

the application across x-axis caused by each of the 8 different

corunners. 66

5.4 Average Contentiousness vs. Sensitivity 68

5.5 PMUs used for predicting contentiousness 72

5.6 L3 Miss Rate is not strongly correlated with the real measured

contentiousness . 80

5.7 L3 Reference rate is not strongly correlated with the real mea-

sured contentiousness . 80

5.8 Predicted contention score using our model is highly corre-

lated with the real measured contentiousness for SPEC bench-

marks . 81

5.9 Sphinx’s PMU contention score calculated using our predic-

tion model . 83

5.10 Bst8mb’s degradation when running with sphinx. The higher,

the more degradation. Figure 7 trends similarly with this

figure, indicating the profiler is identifying the correct con-

tentious code regions. 83

5.11 This graph shows the accuracy of the contention score given

by our prediction model in predicting the contentiousness of

milc. 83

5.12 Padding sledge l’s effect on its co-runner blockie and bst.

As padding thickness increases, sledge l’s execution rate de-

ceases, blockie and bst’s QoS improves. The padding gran-

ularity is every 5 instructions 85

List of Figures 14

5.13 Napping sledge l’s effect on co-runners, blockie and

bst. Nap granularity is 1ms. As nap duration increases,

sledge l’s execution rate deceases, blockie and bst’s QoS

improves. 85

5.14 Napping sledge l’s effect on co-runners. Nap granularity is

10ms. 85

5.15 sledge l padding vs. nap for bst4mb 86

5.16 sledge l padding vs. nap for bst8mb 86

5.17 sledge l padding vs. nap for bst50mb. 86

5.18 SPEC benchmark’s performance when it is co-located with

the original lbm, lbm with nap insertion (10ms, 10ms) and

nap insertion (10ms, 20ms), normalized by each benchmark’s

performance when it is running alone 89

5.19 SPEC benchmark’s performance when it is co-located with

the original milc, milc with nap insertion (10ms, 10ms) and

nap insertion (10ms, 20ms), normalized by each benchmark’s

performance when it is running alone 89

5.20 Gained Utilization when allow co-location. 91

5.21 bst8mb running with sphinx 92

5.22 Google benchmark’s performance when it is co-located with

the original sledge3, sledge3 with nap insertion (10ms, 10ms)

and nap insertion (10ms, 20ms), normalized by each bench-

mark’s performance when it is running alone 93

5.23 Google benchmark’s performance when it is co-located with

the original er-naive4mb, er-naive4mb with nap insertion

(10ms, 10ms) and nap insertion (10ms, 20ms), normalized

by each benchmark’s performance when it is running alone . 94

List of Figures 15

6.1 Reactive-Niceness Overview 100

6.2 Reactive-Niceness Compilation 102

6.3 Reactive-Niceness Runtime Architecture 104

6.4 DFA for targeted Heuristic 108

6.5 QoS of each benchmark co-running with sledge, normalized

to solo QoS. (simple) . 112

6.6 Utilization of sledge with each configuration. (simple) . . . 112

6.7 QoS of each benchmark co-running with lbm. (simple) . . . 112

6.8 Utilization of lbm with each configuration. (simple) 112

6.9 QoS of each benchmark co-running with milc. (simple) . . . 113

6.10 Utilization of milc with each configuration. (simple) 113

6.11 QoS of each benchmark co-running with sledge, normalized

to solo QoS. (targeted) . 115

6.12 Utilization of sledge with each configuration. (targeted) . . 115

6.13 QoS of each benchmark co-running with lbm. (targeted) . . 115

6.14 Utilization of lbm with each configuration. (targeted) 115

6.15 QoS of each benchmark co-running with milc. (targeted) . 116

6.16 Utilization of milc with each configuration. (targeted) . . . 116

6.17 Sphinx normalized IPC with original sledge and with

sledge with RN H1 . 118

6.18 Sphinx normalized IPC with original sledge and with

sledge with RN H2 . 118

6.19 Sphinx normalized IPC with original milc and with simple

milc . 120

6.20 Sphinx normalized IPC with original milc and with

targeted milc . 120

6.21 Average nap duration for milc with simple vs. milc with

targeted . 120

List of Figures 16

6.22 Overhead of monitoring for high-priority application. 121

6.23 Overhead of nap engine for low-priority application. 121

6.24 Efficiency of allowing co-location with Reactive-Niceness vs

over-provisioning. (targeted) 123

6.25 QoS of each benchmark co-running with sledge, lbm, and

milc. (targeted) . 124

6.26 Utilization of sledge, lbm and milc with each configuration.

(targeted) . 124

List of Tables

3.1 Sharing configurations for sets of 2 cores and sets of 4 cores . 30

3.2 Experiment Platform . 30

3.3 Production Datacenter Applications 31

3.4 Optimal Thread-To-Core Mapping in Solo and Co-location

Situations . 44

4.1 Predicted Thread-To-Core Mapping Using the Heuristic Ap-

proach . 56

5.1 Contention Benchmarks Suite: SmashBench 73

5.2 Comparing our contentiousness predictor to predictors used

in prior works. Our predictor was trained with the Smash-

Bench suite of contentious kernels and tested against all

SPEC 2006 benchmarks. 81

5.3 Production Warehouse Scale Computer Applications 92

6.1 Three configurations for simple heuristic 113

6.2 Three configurations of targeted heuristic 116

17

Chapter 1

Introduction

Contents

1.1 Memory Resource Sharing and Contention 2

1.2 Implications of Memory Resource Contention 3

1.2.1 The Impact of Contention on Performance 4

1.2.2 The Impact of Contention on Server Utilization . . 4

1.2.3 Trade-offs Between Performance and Utilization . 5

1.3 Mitigating Contention 6

1.4 Two Strategies for Mitigating Contention 7

1.4.1 Mitigating Contention to Improve Performance . . 8

1.4.2 Mitigating Contention to Improve Utilization . . . 10

1.5 Summary of Contributions 12

Webservice datacenters and cloud computing economies of scale have

gained significant momentum in today’s computing environments. Compa-

nies such as Google, Microsoft, Yahoo, Facebook, Apple and Amazon host

large-scale data intensive applications including search, email, maps, docs,

video, social networking and other cloud services that require execution

on a Warehouse Scale Computer (WSC) [5]. A warehouse scale computer

often houses tens of thousands of machines to provide the computing re-

sources needed to serve millions of users and typically costs hundreds of

1

Chapter 1. Introduction 2

millions of dollars to construct and operate. This large cost stems from

purchasing servers, power, cooling and other infrastructural and operational

cost [13, 17].

To reduce the cost and to improve the efficiency of WSCs, it is important

to improve both software performance and server utilization [5]. For

example, improving performance and server utilization can reduce the cost

for infrastructure construction, server purchase and power consumption. At

the massive scale of modernWSCs of web-services companies such as Google,

1% improvement in either performance or utilization translates to millions

of dollars saved. However, memory resource sharing and contention inhibits

the efficiency of WSCs.

1.1 Memory Resource Sharing and Contention

One of the major challenges that limit the efficiency in WSCs is the con-

tention for memory subsystem resources on the servers that populate WSCs.

Modern WSCs are constructed using commodity multicore machines as they

are inexpensive and easily replaceable. Typically, these server machines have

multiple sockets hosting processors with multiple cores. The processing cores

may share a number of caches, buses and controllers. As an example, Fig-

ure 1.1 shows a typical dual-socket machine configuration found in produc-

tion WSCs. Each socket on this system has two separate L2 caches shared

by a pair of cores and all four cores on a socket share a Front Side Bus (FSB).

This type of machine organization is commonplace in state-of-the-art server

processors. The sharing of these memory resources across multiple cores

often has a significant impact on application performance. This impact may

be constructive or destructive.

• When multiple cores share a resource, the threads running on those

Chapter 1. Introduction 3

Server Rack

0 1

4 MB L2

FSB

2 3

4 MB L2

Memory Controller Hub

2x333 MHZ FSB (Quad

Pumped)

10.6 GB/s per FSB

 4X FB-DDR2-533

4.3GB/s/Channel

 4 DIMMS/Channel

Machine

Mem Bus

4 5

4 MB L2

6 7

4 MB L2

Figure 1.1: Topology of a Dual Socket Intel Clovertown

cores can constructively use this resource in a number of ways. For

example, when threads share a cache, data sharing requires only one

copy of the data in the shared cache rather than multiple copies spread

out across private caches. Furthermore, memory bus and coherence

traffic is reduced since data is fetched from memory only once and

does not ping-pong back and forth between separate private caches.

• However, multiple threads, either from an individual application or

multiple applications, can also contend for shared resources. Mem-

ory resource contention has a destructive impact on performance.

For example, a thread can bring its own data into a shared cache,

evicting the data of a neighboring thread and resulting in performance

interference and degradation. Threads can also contend for prefetch-

ers, memory controllers and bus bandwidth, detrimentally affecting

performance.

1.2 Implications of Memory Resource Contention

Memory resource contention has a negative impact on both application per-

formance and server utilization, significantly limiting the efficiency of mod-

ern warehouse scale computers.

Chapter 1. Introduction 4

1.2.1 The Impact of Contention on Performance

The destructive performance impact caused by contention can often be sig-

nificant. Prior work reports up to 60% performance degradation due to

contention using SPEC CPU2006 benchmarks and state-of-the-art server

machines [65, 15, 40]. Therefore, it is greatly beneficial to mitigate con-

tention and to exploit the potential positive resource sharing to improve

application performance.

However, currently, there is little understanding about the interaction

between the shared memory subsystem and the emerging large-scale data-

center workloads. Prior work largely relies on popular small-scale benchmark

suites such as SPEC and PARSEC, and has reached conflicting conclusions

about whether cache sharing has a significant performance impact, espe-

cially for contemporary multi-threaded applications [62]. To the best of our

knowledge, no prior work has investigated the memory resource sharing for

industry-strength emerging datacenter workloads. Although modern WSCs

have generally adopted the policy of disallowing colocation of certain ap-

plications to avoid potential performance interference, the severity of the

interference due to contention is unclear. Due to the lack of understand-

ing, current software systems in WSCs do not acknowledge or manage the

resources sharing among application threads, resulting in potential perfor-

mance inefficiencies.

1.2.2 The Impact of Contention on Server Utilization

In addition to performance, the interference caused by memory resource

contention also proves particularly problematic to large-scale web service

applications as it may prevent these applications from providing satisfac-

tory quality of service (QoS). On one hand, in order to reduce the machine

and operational cost, it is essential for datecenters to consolidate various

Chapter 1. Introduction 5

workloads on multicore servers to improve machine utilization [46]. On the

other hand, warehouse scale computer workloads are composed of diverse

applications with varying QoS requirements and priorities. Key applica-

tions, usually those that are user-facing and provide interactive service such

as search, mail and maps, are latency sensitive and have fairly strict QoS

requirements. Other applications such as backup service and file compres-

sion are batch applications that are not latency sensitive or have a lower

QoS priority. When co-locating applications on a multicore platform, the

performance and QoS of high priority applications may suffer unacceptable

amounts of degradation due to resource contention and interference [58, 38].

Moreover, high priority applications may even suffer more QoS degradation

than low priority applications, resulting in unacceptable priority inversion.

As a result, modern warehouse scale computers often resort to disallow-

ing co-location of latency-sensitive applications with any other applications,

which leads to costly low machine utilization [6]. This over-provisioning of

compute resources is one of the major reasons the utilization in modern

WSCs remains low, recently reported to be below 30% on average [42].

1.2.3 Trade-offs Between Performance and Utilization

Figure 1.2 further illustrates the performance interference caused by con-

tention and its implications for the tradeoffs between performance, QoS

and utilization in WSCs. Disallowing colocation of applications, shown as

Option A, achieves peak application performance at the sacrifice of ma-

chine utilization. The alternative, allowing colocation, shown as Option B,

improves machine utilization at the risk of impairing latency sensitive ap-

plications’ capability to deliver acceptable QoS. The current approach in

modern warehouse scale computers is fairly ad-hoc with a mix of these two

options. WSCs may allow colocation of applications that do not necessarily

Chapter 1. Introduction 6

s
o

lo

 Q
o

S

P
e
rf

o
rm

a
n

ce

s
o

lo

1x

 Q
o

S

P
e
rf

o
rm

a
n

ce

High Priority
Application

Low Priority
Application

1x

c
o

-
lo

c
a

ti
o

n

c
o

-
lo

c
a

ti
o

n

Option A:
Disallow Colocation.

Option B:
Allow Colocation.

application A

application B QoS requirement
0.9x

Figure 1.2: Current Two Options in WSCs. Option A, disallowing colocation of ap-
plications, achieves peak application performance at the sacrifice of machine utilization.
Option B improves machine utilization and reduces the number of server machines needed.
However, applications may suffer significant performance degradation, which can impair
latency-sensitive applications’ capability to deliver acceptable QoS.

have strict QoS requirements, and simply submit to suffering performance

degradation for the sake of better machine utilization. However, for latency-

sensitive applications, WSCs often resort to disallowing co-location of these

types of applications with any other applications which translates to low

machine utilization at the cost of millions of dollars.

In conclusion, memory resource contention has significantly limited the

application performance and server utilization in WSCs; and consequently,

mitigating memory resource contention is critical for improving efficiency in

WSCs.

1.3 Mitigating Contention

This dissertation argues for the design of novel software systems that are

aware of the impact of resource sharing on applications, intelligently mit-

igate potential memory contention and promote positive resource sharing

to improve software performance. In addition, this dissertation argues for

Chapter 1. Introduction 7

novel software systems to mitigate contention to provide QoS management

on multicore machines for applications with various QoS requirements to

improve server utilization.

In addition to the current lack of understanding, there are multiple chal-

lenges for designing systems that can mitigate contention to improve per-

formance or QoS on multicore platforms. Applications may contend for a

plethora of memory components including a hierarchy of caches, prefetch-

ers, memory controllers and buses. The interaction between the applications

and these various components can be fairly complicated. In addition, due

to the current limited transparency and monitoring capabilities for hard-

ware behaviors, it is challenging for system software to dynamically detect

and diagnose the occurrences of memory resource contention. System soft-

ware also does not have control over hardware resources such as caches and

memory bandwidth, which renders responding to contention and manag-

ing applications’ QoS quite challenging. As a result, despite the amount

of research attention given to contention problems on multicore platforms

[29, 45, 10, 19, 44, 51, 52, 28, 34, 15, 30, 24, 65, 23, 24, 7, 3, 61], miti-

gating the impact of contention on an application’s performance and QoS,

enforcing the relative QoS priorities of co-running applications, while max-

imizing machine utilization, remains key challenges in modern warehouse

scale computers.

1.4 Two Strategies for Mitigating Contention

This dissertation first comprehensively investigates the impact of memory

resource sharing on industry-strength large-scale datacenter workloads and

provides new information and insights. The result of our investigations

demonstrate that, contrary to conclusions from recent work [62], across sev-

Chapter 1. Introduction 8

Understand the interaction
 between WSC applications and

the memory subsystem

Manage resource
sharing among

application threads to
improve software

performance

Manipulate
applications’

characteristics to
improve server

utilization

Figure 1.3: Dissertation Overview - Understanding the impact of contention and 2
strategies to mitigate contention to improve performance and utilization

eral key datacenter applications including web-search, there is both a sizable

benefit and a potential degradation from improperly sharing microarchitec-

tural resources on a single machine, such as on-chip caches and bandwidth

to memory. This dissertation then presents two complementary software

strategies, shown in Figure 1.3, to mitigate memory resource contention for

improving performance and server utilization of WSCs.

1.4.1 Mitigating Contention to Improve Performance

Strategy 1: Manage resource sharing among threads to improve performance

using Intelligent Thread-to-Core Mapping.

The basic idea of an intelligent thread-to-core mapper is to take ad-

vantage of the memory resource topologies (an example is shown in Fig-

ure 1.1) to promote more positive sharing and reduce negative sharing among

threads. The processing cores on this machine do not share the same re-

sources. For example, as shown in the figure, core 0 and 1 share a L2 cache,

front side bus (FSB) and a memory controller. However, core 0 and 2 do

not share L2 cache, and core 0 and 4 do not share FSB. Therefore, when

mapping threads to cores, the mapper essentially manages what resources

Chapter 1. Introduction 9

(A) Mitigate contention:
improve performance

 Q
o

S

P
e
rf

o
rm

a
n

ce

1x

c
o

-
lo

c
a

ti
o

n

c
o

-
lo

c
a

ti
o

n

 Q
o

S

P
e
rf

o
rm

a
n

ce

1x

c
o

-
lo

c
a

ti
o

n

c
o

-
lo

c
a

ti
o

n

(B) Mitigate contention:
improve QoS and server utilization

High Priority
Application

Low Priority
Application

QoS requirement
0.9x

Figure 1.4: Enabled capabilities by our software systems. (A) illustrates the strategy
1, the TTC mapper’s effect - improved performance comparing to baseline colocation
situation, shown in Figure 1.2. (B) illustrates the strategy 2, Static/Dynamic Compilation
for Niceness’s effect. Strategy 2 improves the QoS of the high priority application to meet
its QoS requirement. By doing so, strategy 2 turns previous forbidden colocations into
“safe” colocations and thus improves the server utilization, comparing to the baseline of
disallowing colocation shown in Figure 1.2.

are shared among threads. For example, some threads share data and may

benefit from cache sharing. Thus these threads should be mapped to cores

that share a cache. Others threads are contentious with each other and thus

should be mapped to cores that do not share a cache or even FSB to miti-

gate interference. An intelligent thread-to-core mapper can take advantage

of these application characteristics and the memory topologies to mitigate

contention and improve performance.

This research finds that the performance variability between the worst

and the optimal thread-to-core mappings can be significant for datacenter

workloads. More interestingly, the best thread-to-core mapping for a given

application does not only depend on the application’s sharing and mem-

ory characteristics; it is also impacted dynamically by the characteristics of

other applications that are co-running on the same machine simultaneously.

Based on this insight, we design two approaches for intelligent thread-to-core

Chapter 1. Introduction 10

(TTC) mapping.

The desired outcome of our strategy for mitigating contention to improve

performance is illustrated in Figure 1.4 (A).

• Heuristic-based approach

The application characteristics that impact performance in various

thread-to-core mapping scenarios are identified. These characteristics

include the amount of data sharing among threads, the amount of

memory bandwidth an application requires, and the cache footprint

of the application. We present an algorithm that takes advantage

of these applications characteristics to identify efficient thread-to-core

mappings.

• Dynamic approach

We also present an adaptive approach, AtoM, that uses a competition

heuristic to search for the best performing mapping online. The ap-

proach includes two phases: a learning phase, when AToM empirically

has various TTC mappings compete to learn which mapping performs

best, and an execution phase, when the winning TTC mapping is run

for a fixed or adaptive period of time.

1.4.2 Mitigating Contention to Improve Utilization

Strategy 2: Manipulate applications’ characteristics to improve server uti-

lization using Static/Dynamic Compilation for Niceness

The second strategy comprises novel compilation and runtime systems

to directly manipulate an application’s contentious nature and reduce the

interference it can cause to its corunning applications. By doing so, we facil-

itate more “safe” colocations where contention is mitigated so that latency-

sensitive applications can provide acceptable QoS. The desired outcome of

Chapter 1. Introduction 11

our strategy for mitigating contention to improve utilization is illustrated in

Figure 1.4 (B).

• Static Approach: Compiling for Niceness

Two key insights underlie this approach. Firstly, a compilation-based

approach is both well-suited and desirable for WSCs. Large-scale web-

service applications such as web-search, maps, email, video, etc, are

both developed and hosted by the companies that operate the WSCs

and their source code are available and recompiled regularly. Secondly,

in the era of multicore and the emerging computing domain of WSCs,

the objectives of compiler optimization ought to be multifaceted. In

addition to optimizing each application for its own individual per-

formance, we argue for the additional objective of optimizing for an

application’s “niceness”; to reduce its potential interference to its co-

running applications.

Our approach, QoS-Compile, uses novel compilation techniques to

directly manipulate the contentiousness of low priority applications to

ensure the QoS of a higher priority co-runner. With this, high ma-

chine utilization can be achieved through allowing colocation while

providing satisfactory QoS. QoS-Compile uses a prediction model to

pinpoint code regions that aggressively demand memory resources. It

then targets these regions, transforms their code layouts to reduce

their contentiousness by throttling down their memory request rate,

thus reducing its interference to the QoS of its co-runners. To the best

of our knowledge, QoS-Compile is the first compilation approach to ad-

dress the QoS challenges caused by contention for multi-programmed

workloads.

• Dynamic: Reactive Niceness

Chapter 1. Introduction 12

Enabled by the above static approach, we designed a light-weight dy-

namic approach, Reactive-Niceness, to further improve QoS and

utilization. Reactive-Niceness instruments the contentious regions to

enable the flexible manipulation of their contentiousness at runtime.

Dynamically, Reactive-Niceness detects contention-caused QoS degra-

dation and adaptively throttles down the memory request rate of those

contentious regions in the low-priority application. The degree of ex-

ecution rate reduction on low-priority applications is based on the

severity of observed QoS degradation of the high-priority application

and a feed-back control, enabling the flexibility needed to further im-

prove machine utilization and achieve more precise QoS management.

In summary, this dissertation advances the state-of-the-art for under-

standing and managing the impact of memory resource contention on large-

scale emerging WSC workloads, and provides effective software systems

to mitigate contention to significantly improve both application perfor-

mance and server utilization in WSCs.

1.5 Summary of Contributions

We first conduct a thorough investigation of the impact of sharing memory

resources (e.g., shared caches and memory bandwidth) on key commercial

datacenter applications including Google’s web-search engine and bigtable

(a peta-scale data storage software). This work is the first to characterize

the impact of memory resource sharing on real-world large-scale datacen-

ter applications, exposing new insights about these emerging workloads and

demonstrating the significant impact of memory contention. Chapter 3 ex-

amines

• Intra-application sharing: We investigate the impact of memory re-

Chapter 1. Introduction 13

source sharing on threads that belong to a single multithreaded appli-

cation [59] (Section 3.2). While prior work has found neither positive

nor negative effects from cache sharing across benchmark suites, we

find that across these datacenter applications, there is both a sizable

benefit and a potential degradation from improperly sharing resources.

• Inter-application sharing: We investigate the impact of memory re-

source sharing on threads that belong to multiple multithreaded appli-

cations [59] (Section 3.3). Our investigation demonstrates that mem-

ory resource contention among multiple applications often cause sig-

nificant performance degradation. Our investigation also shows that,

contrary to common intuition, the optimal thread-to-core mapping for

a given application changes depending on its execution environment,

including the underlying machine, whether it is running alone, and if

not, which application it is co-running with.

We then apply the discoveries and insights from the investigation and

design intelligent thread-to-core mappers to mitigate contention and improve

software performance in WSCs. Chapter 4 presents

• Heuristics based thread-to-core mapper: We identify the appli-

cation characteristics that impact performance in the various thread-

to-core mapping scenarios and provide a technique for deriving al-

gorithms from these characteristics for heuristics based thread-to-core

mapping to improve performance efficiency in WSCs [59] (Section 4.1).

• Automatic thread-to-core mapper (AToM): We also present the

design of an adaptive approach that uses a competition heuristic to

learn the best performing mapping online to improve performance that

is agnostic to the underlying microarchitecture [59] (Section 4.2).

Chapter 1. Introduction 14

To address the server utilization and QoS challenges, we design a static

compilation approach, QoS-Compile, for effective QoS management on

multicores to facilitate workload consolidation and improve server utiliza-

tion in WSCs. QoS-Compile is the first compilation approach to effectively

addressing the QoS challenges caused by contention for multiple co-running

applications. Chapter 5 presents

• Profiling techniques to identify contentious code regions: We

design a prediction model that is based on the performance counters

to pinpoint code regions that aggressively demand memory resources

[57, 56] (Section 5.2).

• Novel code transformations to dampen code regions’ con-

tentious nature: We design two compilation techniques that reduce

a code region’s contentiousness and the potential performance inter-

ference it can cause to co-runners [57] (Section 5.3).

In addition to static compilation techniques, we design a statically-

enabled runtime system, Reactive-Niceness, to further improve server

utilization and achieve more accurate QoS management of latency-sensitive

applications. Chapter 6 presents

• RN-Compiler: We present a profiling guided compilation approach

that enables the adaptive manipulation of contentiousness of the low-

priority application. The RN-Compiler identifies the contentious code

regions of an application and inserts hooks in these regions that are

used to invoke runtime manipulation [55] (Section 6.2).

• RN-Runtime: We present a runtime system that continuously mon-

itors the QoS of high-priority applications, detects when contention is

occuring dynamically, and directs the manipulation of the contentious-

ness of low-priority applications based on an adaptation policy. We

Chapter 1. Introduction 15

also present two adaptation policies for flexible adjustments of the

tradeoffs between QoS and utilization [55] (Section 6.3).

Collectively, this dissertation takes a major leap forward in understand-

ing and mitigating memory resource contention to improve efficiency in the

emerging domains of large scale web-services and modern warehouse scale

computers. We demonstrate the need for new types of software systems

in modern WSCs and design effective mechanisms to fundamentally address

the detrimental impact of memory resource contention on efficiency of WSCs

to greatly improve both performance and server utilization.

Chapter 2

Background and Related Work

Contents

2.1 Warehouse Scale Computers 16

2.1.1 Cost . 17

2.1.2 Application QoS 17

2.1.3 Job Scheduling, Application Colocation and Uti-

lization . 18

2.1.4 Machine Level . 21

2.2 Related Work . 22

2.2.1 Impact of Memory Resource Sharing 22

2.2.2 Novel Hardware Solutions to Mitigate Contention . 22

2.2.3 Software Runtime and OS Approaches to Mitigat-

ing Contention . 23

2.2.4 Cache Contention Aware Compilation 25

2.1 Warehouse Scale Computers

This chapter reviews the background and related work of this dissertation.

We first present the background of modern warehouse scale computers in-

cluding its cost breakdown (Section 2.1.1), the QoS metrics of applications

16

Chapter 2. Background and Related Work 17

that are running in these datacenters (Section 2.1.2), the job scheduling on a

cluster level (Section 2.1.3) and on a machine level (Section 2.1.4). We then

present related work, especially on the topic of memory resource contention

from both software and hardware communities (Section 2.2).

2.1.1 Cost

To better understand the importance of improving performance and server

utilization, let us first examine the cost of a modern warehouse computer.

Figure 2.1 is from “The Datacenter as a Computer: An Introduction to the

Design of Warehouse-Scale Machines” by Barroso et al. [5]. It presents a

3-year total cost of ownership (TCO) breakdown of a datacenter housing

commodity servers, including both capital cost and operational cost. As

shown in the figure, serve purchase, power and datacenter construction are

several major components of the TCO. Improving performance and utiliza-

tion can reduce the cost for all these components. Better performance and

higher server utilization indicate less servers needed for the given amount

of work, less power consumed by these servers and a smaller datacenter to

host these servers.

2.1.2 Application QoS

Applications that are running in a warehouse scale computer often have

various quality-of-service (QoS) priorities. User-facing applications such as

web-search, maps, email and other internet services are latency-sensitive,

and have high QoS priorities. Applications such as file backup, offline image

processing, and video compression are batch applications that often have no

QoS constraints. For these, latency is not as important.

In this dissertation, we define the QoS of a latency-sensitive application

in terms of the relevant performance metric specified in its internal service

Chapter 2. Background and Related Work 18

DC amortization

22%

DC interest

19%

DC opex

8%

server amortization

23%

server interest

5%

server opex

1%

server power

11%

PUE overhead

11%

Figure 2.1: TCO (Total Cost of Ownership) cost breakdown for a datacenter using
commodity servers

level requirements (SLAs). For example, the QoS of Google’s web-search is

measured using query latency and queries-per-second. This is in contrast

to Bing’s [22, 32], which uses the quality of search results provided. And a

job’s QoS level of 95% corresponds to the normalized 95% of its performance

when an entire machine is dedicated to that job. More details and exam-

ples of applications and their QoS or performance metrics are presented in

Section 3.1 Table 3.3.

2.1.3 Job Scheduling, Application Colocation and Utiliza-

tion

In this section, we examine the current job scheduling in a modern WSC, the

application colocation policy and the current server utilization. In the mod-

ern datacenter, job scheduling is done in a hierarchical fashion. A global job

scheduler manages a number of machines and selects a particular machine

for each job. Once a job is mapped to a machine, the machine-level sched-

uler then decides the mapping and scheduling of the job and its threads.

Chapter 2. Background and Related Work 19

cluster
manager

...

core3

server

core1 core4core2

latency-sensitive

core3

server

core1 core4core2

batch batch

core3

server

core1 core4core2

batch batch

core3

server

core1 core4core2

batch batch

core3

server

core1 core4core2

batch batch

tasks

...

latency-sensitive

...

Figure 2.2: Task placement in a cluster. The cluster manager does not co-locate latency-
sensitive applications with others to protect their QoS from performance interference,
causing low machine utilization.

In this section, we focus on the cluster level scheduler. We discussion the

machine level scheduler in the next section.

In modern warehouse scale computers, each web-service is composed of

one to hundreds of application tasks, and each task runs on a single machine.

An application task is composed of the application binary, associated data,

and a configuration file that specifies the machine level resources required.

These resources include the number of cores, amount of memory, and disk

space that are to be allocated to the task. The configuration file for a task

may also include special rules for the cluster manager such as whether to

disallow co-locations with other tasks. Application task is conducted by the

cluster-level manager that is responsible for a number of servers. Based on

the resource requirement, the cluster manager uses an algorithm similar to

bin-packing to place each task in a cluster of machines [43].

Application Colocation

As multicores become widely adopted in datacenters, the cluster manager

often consolidates multiple disparate tasks on a single server to improve

Chapter 2. Background and Related Work 20

10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

Utilization (%)

T
im

e
 (

%
)

IT

Web 2.0

Figure 2.3: Server Utilization Histogram from HP datacenters.

the machine utilization. However, to avoid the performance interference,

latency-sensitive applications that have strict QoS are not co-located with

any other applications. A simplified illustration of the application task place-

ment process is shown in Figure 2.2. Latency-sensitive tasks that disallow

co-location inadvertently occupy more resources on a server leading to un-

necessary server overprovisioning and low machine utilization.

Sever Utilization

The current server utilization in warehouse-scale computers is typically quite

low, often below 30%. Figure 2.3 presents a histogram of utilization for two

production workloads, “web 2.0” applications and enterprise IT applications,

from enterprise-scale commercial deployments [42]. The data presented is

from utilization traces collected over many days, aggregated over more than

120 severs (production utilization traces were provided courtesy of HP Labs).

As shown here, the servers spend the vast majority of time under 10% uti-

lization.

Figure 2.4 presents a histogram of average CPU utilization of more than

5,000 servers during a six-month period in Google production datacenters [5].

As shown in the figure, servers rarely operate near their maximum utiliza-

Chapter 2. Background and Related Work 21

Figure 2.4: Activity profile of a sample of 5,000 Google servers over a period of 6 months.

tion. The average utilization shown here is around 30%. The policy of

disallowing colocation of latency-sensitive applications is one of the main

reasons for the low utilization.

2.1.4 Machine Level

Once application tasks are mapped on a machine, on the individual machine

level, general purpose system software such as the Linux kernel is adapted

for, and used in the datacenter for finer grain scheduling. The state-of-the-

art kernel scheduler focuses on load balancing and prioritizes cache affinity to

reduce cache warm-up overhead. It does not take memory resource sharing

into account. The scheduler’s thread-to-core mapping is determined without

regard to, or knowledge of, the application characteristics or the underlying

resource sharing topology. Although developers can specify which cores to

use manually, this must be done on an application by application, architec-

ture by architecture basis. As a result, this option is seldom used as it places

a significant burden on the developer.

Chapter 2. Background and Related Work 22

2.2 Related Work

2.2.1 Impact of Memory Resource Sharing

Currently, little is known about the impact of memory resource sharing on

large-scale web-service datacenter applications. A great amount of prior

work has concluded that contention has a significant impact on the per-

formance of traditional workloads using common benchmark suites such as

SPEC [65, 15, 40]. However, recent work by Zhang et al. concludes that

contemporary multithreaded applications are not affected by cache shar-

ing using a multithreaded benchmark suite PARSEC [62]. To the best of

our knowledge, no prior work has investigated the impact of memory re-

source sharing for industry-strength emerging datacenter workloads. The

commonly-used benchmark suites (SPEC, PARSEC, etc) do not necessarily

represent these workloads, and thus may be misleading.

2.2.2 Novel Hardware Solutions to Mitigate Contention

Hardware techniques such as cache partitioning and bandwidth partition-

ing to reduce resource contention and improve performance and fairness on

multicores have received much research attention [29, 45, 10, 19, 44, 51, 52,

28, 34]. In addition, there also have been a number of works aimed at better

modeling cache contention [8] and monitoring cache contention [64].

Most of the above studies focus on either overall performance or perfor-

mance fairness. Recently, platform support that enforces different QoS pri-

orities has been proposed [16, 21, 12, 18]. Among these studies, a promising

direction for QoS management is hardware execution throttling. Herdirch

et al. [18] use what is likely to be future hardware capabilities, core spe-

cific dynamic voltage scaling and clock modulation to throttle down low

priority applications to reduce their performance interference on the high

Chapter 2. Background and Related Work 23

priority applications. Ebrahimi et al. [12] and Iyer et al. [21] propose hard-

ware changes to throttle memory requests to provide QoS management. The

study by Zhang et al. [63] combines clock modulation and prefetcher con-

trol to throttle the application execution. However most of the prior work

focuses on improving the system’s overall performance and does not ad-

dress the QoS challenges. Moreover, although these hardware solutions have

shown promising results using simulations, they require significant changes

to current commodity micro-architectures and cannot be applied to multi-

core platforms that are already in production or to be deployed in the near

future.

2.2.3 Software Runtime and OS Approaches to Mitigating

Contention

[Contention Aware Scheduling] A research direction that recently at-

tracts a wealth of attention is contention aware scheduling [15, 30, 24, 65,

23, 24, 7, 3, 61]. Contention aware scheduling techniques use predictors

or models to decide what applications should be co-running together to

minimize the performance degradation or to improve performance isolation.

Although contention-aware scheduling may improve the overall performance

or fairness of a workload composed of a mixture of highly contentious and

not contentious applications, its effectiveness is highly dependent on the

composition of the workload. In addition, the current work does not ad-

dress thread-to-core (TTC) mapping for multiple multi-threaded applica-

tions when the resource sharing can have either positive or negative impact.

Moreover, scheduling approaches do not provide direct manipulation of the

contentious nature of an application.

• [TTC Mapping] So far there is little work on software approaches

to intelligently mapping threads to cores to promote positive resource

Chapter 2. Background and Related Work 24

sharing, reduce contention and improve performance. Most of the

above work uses single threaded applications and focus on only on the

resource contention aspect between multiple applications, ignoring the

contention and potential benefit among threads that belong to a single

application. For example, Banikazemi et al. [3] present a scheduler to

adaptively schedule threads of single-threaded applications to cores to

take advantage of the cache topology to alleviate resource contention.

Tam et al. [54] present a technique to cluster communicating threads

onto the same chip to reduce the communicating latency. Their ap-

proach targets multithreaded-applications. However, their technique

only focuses on the constructive effect of sharing resource without con-

sidering the potential resource contention.

• [QoS management for improving utilization] In addition, there

are currently no general software solutions for achieving the QoS

management and enforcement of QoS priorities as described in Fig-

ure 1.4 (B). Our static/dynamic compilation approaches differ from

the above scheduling efforts in that, firstly, our approaches do not

decide which application should be running with which. Instead we

focus on the complimentary question: when multiple applications are

already scheduled to be running simultaneously on a multicore plat-

form, how to reduce the contention and guarantee their QoS. Secondly,

most of the above studies focus on improving overall performance or

performance fairness instead of guaranteeing different QoS priorities

for different applications.

• [Indicators for Application Contention Characteristics] One

important component for contention-aware scheduling and adaptive

runtimes is the indicators for application contention characteristics.

Chapter 2. Background and Related Work 25

This is related to the dissertation because our profiling technique re-

lies on indicators to identify contentious code regions. Knauerhase et

al. [30] use last level cache miss rate as an indicator of contentious-

ness of an application. Zhuravlev et al. [65] demonstrate that cache

contention is not the dominant cause for performance degradation of

co-running applications on CMPs; contentious behaviors that happen

in many components of the memory sub-system all contribute to the

performance degradation. They also conclude that last level cache

miss ratio is one of the best predictor for co-running applications’ per-

formance degradation. Mars et al. [40] use changes in LLC miss rate

as an indicator to detect contention. Approaches that use prediction

models are also proposed. Jiang et al. [24] estimate an application’s

contentiousness by estimating the extra cache misses caused by co-

location based on the application’s reuse distance profile. This disser-

tation presents a more accurate prediction than prior work.

In addition to contention-aware scheduling mentioned above, software so-

lutions to provide QoS guarantee using page coloring/remapping have been

proposed [33, 11, 49]. Most page coloring methods require significant mod-

ifications to the kernel and knowledge of details of cache designs. However,

cache designs on modern multicores are highly guarded industry secrets.

Mars et al. [40] designed CAER, an adaptive runtime that detects and re-

sponds to contention online. This is the first proposed software approach to

detect contention, which periodically pauses the execution of an application,

monitors the difference in last level cache miss rate to infer contention.

2.2.4 Cache Contention Aware Compilation

Researchers recently have started to explore using code transformations and

restructuring to improve cache sharing and reduce contention on multi-

Chapter 2. Background and Related Work 26

cores [27, 26, 62, 50]. Most such research focuses on compilation techniques

to improve data sharing for multi-threaded programs. Kandemir et al. [26]

propose a code restructuring scheme for improving cache locality by optimiz-

ing loop iterations distribution and scheduling on multicores. Our static/dy-

namic compilation approaches for niceness do not address the interaction of

cache sharing or contention within an application. Instead, our techniques

regulate the memory pressure an application puts on the shared resources,

changing how applications interact with each other in terms of contending

for the shared memory resources. Methods to reduce cache pollution by

using special instructions to manage cache are also proposed. Sandberg et

al. [48] use non-temporal prefetch instructions to improve performance of

cache sharing among a mix of workloads on commodity multicores.

Chapter 3

The Impact of Memory Resource Sharing

Contents

3.1 Memory Resource Sharing 28

3.2 Intra-Application Sharing 29

3.2.1 Experiment Methodology 30

3.2.2 Measurement and Findings 32

3.2.3 Investigating Performance Variability 36

3.2.4 Summary . 38

3.3 Inter-Application Sharing 38

3.3.1 Experiment Design 39

3.3.2 Measurement and Findings 39

3.3.3 Varying Thread Count and Architecture 44

3.3.4 Summary . 48

This chapter characterizes the performance impact of memory resource

sharing on key workloads in modern warehouse scale computers. As men-

tioned in Chapter 2, currently, little is known about the impact of memory

resource sharing on these large-scale industry-strength applications. In this

chapter, we first investigate intra-application sharing (Section 3.2), charac-

terizing the impact of resource sharing on threads that belong to a single

27

Chapter 3. The Impact of Memory Resource Sharing 28

multithreaded application. In this case, the threads may share data so it

may either benefit or degrade from the resource sharing. We then inves-

tigate inter-application sharing (Section 3.3), characterizing the impact on

threads that belong to multiple multithreaded applications.

As shown in this chapter, our investigations demonstrate that, contrary

to conclusions from recent work [62], across several key datacenter appli-

cations including websearch, there is both a sizable benefit and a potential

degradation from improperly sharing microarchitectural resources on a sin-

gle machine, such as on-chip caches and bandwidth to memory. More inter-

estingly, the best thread-to-core mapping for a given application does not

only depend on the application’s sharing and memory characteristics; it is

also impacted dynamically by the characteristics of other applications that

are co-running on the same machine simultaneously.

3.1 Memory Resource Sharing

On multi-socketed multicore platforms such as the dual socket Intel Clover-

town shown in Figure 1.1, processing cores may or may not share certain

memory resources including the last level cache (LLC) and memory band-

width as discussed in the previous section. Thus for a given subset of pro-

cessing cores, there is a particular sharing configuration among the cores

of that subset. For example, for two processing cores on the Clovertown

machine shown in Figure 1.1, there are three possible sharing configurations

among two cores, shown in Table 3.1. For a set of four processing cores on

the same Clovertown machine, there are three different sharing configura-

tions among the four cores. Each sharing configuration is also illustrated

in Figures 3.1, 3.2, and 3.3. The cache hierarchy and memory topology of

the specific machine determine the possible sharing configurations among

Chapter 3. The Impact of Memory Resource Sharing 29

multiple cores. For example, on a multi-socket Dunnington, the sharing

configurations span combinations of sharing and not sharing scenarios of

the three memory components: the L2 cache, L3 cache, and the front side

bus (FSB).

Whether an application’s performance is constructively or destructively

impacted by the sharing configuration of the cores on which it is running

depends on whether the application thread’s data sharing characteristics

mimic the sharing configuration of the cores. Figures 3.1, 3.2 and 3.3 show

three mappings corresponding to three sharing configurations on our exper-

imental platform, the Intel Clovertown. Here we introduce a notation for

the set of cores the threads are mapped to on this Clovertown topology.

We use X to highlight the cores the threads are mapped to. For example

{XXXX....} indicates four threads mapped to cores {0, 1, 2, 3} on the same

socket, as shown in Figure 3.2. To study the performance impact of resource

sharing in a controlled and isolated fashion, we compare the performance dif-

ferences of an application in different thread-to-core mappings. This sheds

light on how sharing of each type of resource impacts performance of various

applications with different data sharing patterns. For example, the perfor-

mance difference between mapping {XX..XX..} and {X.X.X.X.} reflects the

impact of sharing last level cache (LLC); and the performance difference be-

tween mapping {XX..XX..} and {XXXX....} reflects the impact of sharing

FSB. When there is a significant performance variability, a resource-aware

thread-to-core mapping is needed.

3.2 Intra-Application Sharing

We first investigate the performance impact of memory resource sharing for

several key datacenter applications. Experiments and measurement are con-

Chapter 3. The Impact of Memory Resource Sharing 30

0 1 2 3

4 MB L2 4 MB L2

4 5

4 MB L2

6 7

4 MB L2

MCH

2x333 MHZ FSB (Quad Pumped)

10.6 GB/s per FSB

FSB

Figure 3.1: Sharing Cache,
Separate FSBs (XX..XX..)

0 1 2 3

4 MB L2 4 MB L2

4 5

4 MB L2

6 7

4 MB L2

MCH

2x333 MHZ FSB (Quad Pumped)

10.6 GB/s per FSB

FSB

Figure 3.2: Sharing Cache,
Sharing FSB (XXXX....)

0 1 2 3

4 MB L2 4 MB L2

4 5

4 MB L2

6 7

4 MB L2

MCH

2x333 MHZ FSB (Quad Pumped)

10.6 GB/s per FSB

FSB

Figure 3.3: Separate
Caches, Separate FSBs
(X.X.X.X.)

Table 3.1: Sharing configurations for sets of 2 cores and sets of 4 cores

Cores LLC(L2) FSB set of cores

2 Cores
Share: 2 cores - 1 L2 Share: 2 cores - 1 FSB {0,1}, {2,3}, {4,5} {6,7}
Distribute: 2 x (1
core - 1 L2)

Share: 2 cores - 1 FSB {0,2}, {1,3}, {4,6}, {5,7}

Distribute: 2 x (1
core - 1 L2)

Distribute: 2 x (1
core - 1 FSB)

{0,4},{0,5},{0,6},{0,7},...

4 Cores
Share: 2 x (2 cores -
1 L2)

Share: 4 cores - 1 FSB {0,1,2,3}, {4,5,6,7}

Share: 2 x (2 cores -
1 L2)

Distribute: 2 x (2
cores - 1 FSB)

{0,1,4,5}, {2,3,6,7}

Distribute: 4 x (1
core - 1 L2)

Distribute: 2 x (2
cores - 1 FSB)

{0,2,4,6}, {1,3,5,7}

ducted using different thread-to-core (TTC) mappings to study the impact

of intra-application sharing, defined as resource sharing among the threads

of an individual multi-threaded application.

3.2.1 Experiment Methodology

We first describe our experiment setup including the platform, benchmark

applications, performance metrics and experiment design.

Table 3.2: Experiment Platform

CPU Xeon E5345

GHz 2.33ghz

Cores 2x4

L2 4x4MB 16 way

FSB 2 x 10.6GB/s

Memory Bus 4 x 4.3GB/s

Memory 32GB

Chapter 3. The Impact of Memory Resource Sharing 31

Table 3.3: Production Datacenter Applications

applications description metric type

content ana-
lyzer

content and semantic analysis,
used to take key words or text
documents and cluster them by
their semantic meanings [1]

throughput latency-
sensitive

bigtable storage software for massive
amount of data [9]

average la-
tency

latency-
sensitive

websearch industry-strength internet search
engine [4]

queries per
second

latency-
sensitive

stitcher image processing and stitch-
ing, used for generating street
views [53]

N/A batch

protobuf protocol buffer [2] N/A batch

The primary platform used for this investigation is a dual socket Intel

Clovertown (Xeon E5345), shown in Figure 1.1 and Table 3.2. Each socket

has 4 cores. Each 2 cores on the same socket are sharing a 4MB 16 way last

level cache (L2). The platform is running Linux kernel version 2.6.26 and a

customized GCC 4.4.3. This platform is commonly deployed in Google pro-

duction datacenters. We also conducted experiments on the Intel Westmere,

which is presented in Section 3.3.3.

Table 3.3 presents a detailed description of the five datacenter applica-

tions we used in this study. It also shows which of the datacenter appli-

cations used in this work are latency sensitive, and which are batch. This

work focuses on the performance of the key latency sensitive applications.

We use each application’s specified performance metric in this investigation.

The performance metrics are also shown in Table 3.3. The load for each

application is real world query traces in production datacenters. A load

generator is set up to test the peak capacity behavior of these applications.

The performance shown is applications’ stable behavior after the initializa-

tion phase. Because our measurements use a large amount of queries from

Chapter 3. The Impact of Memory Resource Sharing 32

production, these applications’ behaviors and characteristics are represen-

tative of real-world execution.

[Experiment Design] In this section we conduct experiments when

the application is running alone to study the interaction within a multi-

threaded application with the underlying resource sharing and the result-

ing performance variability. Three measurements are conducted with three

thread-to-core mappings: {XXXX....}, {XX..XX..}, and {X.X.X.X.}. The

performance difference between mapping configurations demonstrates how

sharing LLC, sharing FSB, or sharing both can constructively or destruc-

tively impact the performance of applications of interest. In each mapping,

we use taskset to map threads to cores. This allows us to study the resource

sharing outside of the default OS scheduler’s algorithm. This methodology

is shown to be valid for measuring the impact of cache sharing by prior

work [62]. Applications are parameterized to have a fixed load execute

across 4 cores. All experiments were run three times and the average mea-

surement is presented. The performance variability between runs for each

configuration is around 1%.

3.2.2 Measurement and Findings

Figure 3.4 demonstrates the performance variability due to different TTC

mappings for the latency sensitive applications presented in Table 3.3. For

each applicaton, the x axis shows the subset of cores to which the applica-

tion is mapped. The y axis shows each application’s performance in each

TTC mapping scenario, normalized by its performance using the mapping

{X.X.X.X.}.

The results show that the performance impact of memory resource shar-

ing for these applications is significant, up to 22% for contentAnalyzer, 18%

for bigtable and 8% for webSearch. Secondly, each application prefers differ-

Chapter 3. The Impact of Memory Resource Sharing 33

{XX..XX..}: S−LLC, D−FSB
{XXXX....}: S−LLC, S−FSB

 0.7x

 0.8x

 0.9x

 1x

 1.1x

 1.2x

 1.3x

con_Analyzer bigtable websearch

N
o
rm

al
iz

ed
 P

er
fo

rm
an

ce

{X.X.X.X.}: D−LLC, D−FSB

Figure 3.4: Performance of different thread-to-core mappings when each application is
running alone. The higher the bars, the better performance. The performance variability
is up to 20% for each application, indicating that the memory resource sharing has a
significant performance impact on these applications. Also, notice that bigtable is bene-
fiting from sharing last level cache; while contentAnalyzer and webSearch suffer from the
contention for memory resource among sibling threads.

ent sharing configurations. Both contentAnalyzer and webSearch prefer to

run on separate LLCs and separate FSBs. The mapping {X.X.X.X.} has

10% performance improvement for webSearch and 20% for contentAnalyzer

compared to mapping {XXXX....}, when all threads are on the same socket

sharing 2 LLCs and a single FSB. On the other hand, bigtable achieves the

best performance when running on the same socket sharing 2 LLCs and a

FSB, and the {X.X.X.X.} mapping has a 18% degradation. When taking a

deeper look, for contentAnalyzer and webSearch, the difference between the

1st bar and the 2nd bar indicates the impact of cache sharing when available

FSB bandwidth remains the same; the difference between the 2nd and the

3rd bar indicates the impact of sharing FSB versus having separate FSBs.

For bigtable, sharing LLC has a constructive impact on performance. The

3rd bar is slightly higher than the 2nd bar, indicating that FSB bandwidth

may not be a main bottleneck from bigtable. On the other hand, the reduced

coherence latency on the same socket may give mapping {XXXX....} a slight

advantage over {XX..XX..}.

Chapter 3. The Impact of Memory Resource Sharing 34

 3,000

 4,000

 5,000

 6,000

 7,000

 8,000

 9,000

co
n

_
A

n
al

y
ze

r

b
ig

ta
b

le

w
eb

se
ar

ch

L
L

C
 m

is
se

s
p

er
 m

il
li

o
n

 i
n

st
rs

{X.X.X.X.}: NS−LLC, 2 FSBs
{XX..XX..}: S−LLC, 2 FSBs
{XXXX....}: S−LLC, 1 FSB

 0

 1,000

 2,000

Figure 3.5: LLC misses per million instrs

b
ig

ta
b

le

w
eb

se
ar

ch

n
o

rm
al

iz
ed

 L
L

C
 m

is
se

s
p

er
 m

il
li

o
n

 i
n

st
rs

{X.X.X.X.}: NS−LLC, 2 FSBs
{XX..XX..}: S−LLC, 2 FSBs
{XXXX....}: S−LLC, 1 FSB

 0.6x

 0.7x

 0.8x

 0.9x

 1x

 1.1x

 1.2x

 1.3x

 1.4x

co
n

_
A

n
al

y
ze

r

Figure 3.6: Normalized average LLC misses per million instructions

Chapter 3. The Impact of Memory Resource Sharing 35

 6,000

 8,000

 10,000

 12,000

co
n

_
A

n
al

y
ze

r

b
ig

ta
b

le

w
eb

S
ea

rc
h

B
u

s
re

q
u

es
ts

 p
er

 m
il

li
o

n
 i

n
st

rs

{X.X.X.X.}: NS−LLC, 2 FSBs
{XX..XX..}: S−LLC, 2 FSBs
{XXXX....}: S−LLC, 1 FSB

 0

 2,000

 4,000

Figure 3.7: Bus ratio

b
ig

ta
b

le

w
eb

S
ea

rc
h

n
o

rm
al

iz
ed

 b
u

s
re

q
u

es
ts

 p
er

 m
il

li
o

n
 i

n
st

rs

{X.X.X.X.}: NS−LLC, 2 FSBs
{XX..XX..}: S−LLC, 2 FSBs
{XXXX....}: S−LLC, 1 FSB

 0.8x

 0.85x

 0.9x

 0.95x

 1x

 1.05x

 1.1x

 1.15x

 1.2x

co
n

_
A

n
al

y
ze

r

Figure 3.8: Normalized bus ratio

Chapter 3. The Impact of Memory Resource Sharing 36

 40,000

 50,000

 60,000

 70,000

 80,000

 90,000

{
X

.X
.X

.X
.}

{
X

X
..

X
X

..
}

{
X

X
X

X
..

..
}

{
X

.X
.X

.X
.}

{
X

X
..

X
X

..
}

{
X

X
X

X
..

..
}

{
X

.X
.X

.X
.}

{
X

X
..

X
X

..
}

{
X

X
X

X
..

..
}

L
2

 R
eq

u
es

ts
 p

er
 m

s
in

 d
if

fe
re

n
t

st
at

es

Cont_Analyzer Bigtable Websearch

Prefetch

Invalid

Shared

Exclusive

Modified

 0

 10,000

 20,000

 30,000

Figure 3.9: L2 Requests in MESI States and in Prefetch State

3.2.3 Investigating Performance Variability

To confirm that different memory sharing configurations provided by the

different thread-to-core mapping is the main cause of the performance vari-

ability, we also conducted experiments to collect performance counters infor-

mation. Performance counters including last level cache misses, bus trans-

actions, MESI states of LLC requests are collected using pfmon [14].

[Last Level Cache Misses] Figure 3.6 shows the average number of last

level cache misses per million instructions for each application’s execution in

each TTC mapping scenario normalized to the scenario {X.X.X.X.}. Misses

per million instructions is used because in this experiments we are comparing

the misses caused by a fixed section of code. Figure 3.6 shows that the LLC

misses trend is fairly consistent with the performance trend in the different

mapping scenarios. Content Analyzer and webSearch both have an increase

in last level cache misses when transitioning from not sharing LLC to sharing

LLC, indicating contention for LLC occurs among threads. This explains

the performance degradation from these two applications’ 1st bar to 2nd and

3rd bars in Figure 3.4. Bigtable on the other hand, has a decrease in LLC

Chapter 3. The Impact of Memory Resource Sharing 37

misses when transitioning from not sharing LLC to sharing LLC, indicating

the cache sharing is constructive and threads are sharing data that fits in

the LLC. This explains the performance improvement from Bigtable 1st bar

to 2nd and 3rd bar in Figure 3.4.

[FSB Bandwidth Consumption] Figure 3.8 shows the average num-

ber of bus transaction requests per million instructions in different mapping

scenarios, normalized by the rate in scenario {X.X.X.X.}. The number of

bus transactions is measured using the BUS TRANS BURST event, which counts

the number of full cache line requests (64 bytes). The bus bandwidth con-

sumption is consistent with the last level cache misses and performance

trends. The increase in last level cache misses causes the increase in bus

requests which degrades performance. For contentAnalyzer and webSearch,

bus requests per million instructions in mapping scenarios {XX..XX..} and

{XXXX....} are similar. However, their performance is worse in the map-

ping scenario {XXXX....}. This is due to the contention for the FSB. For

the same amount of bus requests, having 2 FSBs provides a performance

advantage. This is also supported by the observation that contentAnalyzer

has higher bus requests than webSearch, and contentAnalyzer suffers a big-

ger degradation transitioning from using 2 FSBs to sharing a single FSB on

one socket.

[Data Sharing] We further investigated the level of data sharing within

each application to explain why some applications are benefiting and others

are suffering from cache sharing. Figure 3.9 shows the number of L2 Re-

quests per millisecond in five states: Modified, Exclusive, Shared, Invalid

and Prefetch. This figures shows that bigtable has the most amount of shar-

ing between data in the LLC, which is also consistent with the observation

that bigtable benefits from cache sharing.

Chapter 3. The Impact of Memory Resource Sharing 38

3.2.4 Summary

In this section we show that the impact of sharing the last level cache can

either be positive or negative and can be significant (up to 10%). Bus con-

tention also has a fairly significant impact on performance and contributes

another 10% performance variability. For applications that have higher lev-

els of sharing, a positive side effect of placing all threads close to each other

and sharing a bus is observed. These results demonstrate the importance of

an effective thread-to-core mapping that mimics the application’s inherent

data sharing pattern.

3.3 Inter-Application Sharing

In this section, we present the performance impact of memory resource shar-

ing when co-locating multiple applications on a machine. We define inter-

application resource sharing as resource sharing between applications. As

we discussed in Chapter 1, co-location is important for improving machine

utilization, especially for a multi-socketed multicore machine. However, co-

location may introduce detrimental performance degradation due to con-

tention for shared resources. For some platforms, certain memory compo-

nents may be always shared among all threads from all applications. For

example, for the dual-socket Clovertown used in our experiments, the mem-

ory controller hub and memory bus are always shared among all execution

threads. However, for resources such as the LLC and FSB, an application

can, share only LLC(s) or only FSB(s) or both, among its own threads,

or with another application. As we show in the previous section, resource

sharing within an application may have either constructive or destructive

impact. However, when there is no explicit inter-process communication be-

tween applications, resource sharing between applications are either neutral

Chapter 3. The Impact of Memory Resource Sharing 39

or destructive. Depending on the application and its co-runners, the amount

of impact from sharing different resources between applications may vary. In

this section, we study the impact of LLC and FSB sharing and how the im-

pact affects thread-to-core mapping decisions in the presence of co-location.

3.3.1 Experiment Design

Similar to Section 3.2, we study the impact of resource sharing by compar-

ing the performance variability for key applications in three TTC mappings

scenarios. The three TTC mappings are: {XXXX****}, {XX**XX**}, and

{X*X*X*X*}. For this study, we use * to denote a thread of the co-running

application. We use the batch applications stitcher and protobuf (described

in Table 3.3) as co-running applications. Since batch applications are of-

ten co-located with key latency sensitive applications in production, and we

are focusing on the three important latency sensitive applications, we mea-

sure the performance for each of the three latency sensitive applications,

contentAnalyzer, bigtable and webSearch, when sharing resources with each

co-runner in each of the three sharing configurations.

3.3.2 Measurement and Findings

Figure 3.10 shows contentAnalyzer ’s performance when it is co-running with

other applications. The first cluster of bars show contentAnalyzer ’s perfor-

mance when it is co-located with stitcher, and the second cluster, when it is

co-located with protobuf. In this figure, the contentAnalyzer ’s performance

is normalized by three different baselines. Specifically, its performance when

co-located in each thread-to-core mapping scenario is normalized by its per-

formance when running alone in the corresponding mapping scenario. For

example, the first bar in the first cluster shows contentAnalyzer ’s perfor-

mance when it is running with stitcher. The thread-to-core mapping is de-

Chapter 3. The Impact of Memory Resource Sharing 40

+stitcher +protobuf

P
er

fo
rm

an
ce

{X*X*X*X*}: D−LLC, D−FSB
{XX**XX**}: S−LLC, D−FSB
{XXXX****}: S−LLC, S−FSB

 0.5x

 0.6x

 0.7x

 0.8x

 0.9x

 1x

 1.1x

 1.2x

Figure 3.10: ContentAnalyzer. Normalized to solo performance

+stitcher +protobuf

P
er

fo
rm

an
ce

{X*X*X*X*}: D−LLC, D−FSB
{XX**XX**}: S−LLC, D−FSB
{XXXX****}: S−LLC, S−FSB

 0.5x

 0.6x

 0.7x

 0.8x

 0.9x

 1x

 1.1x

 1.2x

Figure 3.11: Websearch. Normalized to solo performance

+stitcher +protobuf

P
er

fo
rm

an
ce

{X*X*X*X*}: D−LLC, D−FSB
{XX**XX**}: S−LLC, D−FSB
{XXXX****}: S−LLC, S−FSB

 0.5x

 0.6x

 0.7x

 0.8x

 0.9x

 1x

 1.1x

 1.2x

Figure 3.12: Bigtable. Normalized to solo performance

Chapter 3. The Impact of Memory Resource Sharing 41

P
er

fo
rm

an
ce

{X*X*X*X*}: D−LLC, D−FSB
{XX**XX**}: S−LLC, D−FSB
{XXXX****}: S−LLC, S−FSB

 0.5x

 0.6x

 0.7x

 0.8x

 0.9x

 1x

 1.1x

 1.2x

solo +stitcher +protobuf

Figure 3.13: ContentAnalyzer. Normalized to solo performance
with {X.X.X.X.}

P
er

fo
rm

an
ce

{X*X*X*X*}: D−LLC, D−FSB
{XX**XX**}: S−LLC, D−FSB
{XXXX****}: S−LLC, S−FSB

 0.5x

 0.6x

 0.7x

 0.8x

 0.9x

 1x

 1.1x

 1.2x

solo +stitcher +protobuf

Figure 3.14: Websearch. Normalized to solo performance with
{X.X.X.X.}

P
er

fo
rm

an
ce

{X*X*X*X*}: D−LLC, D−FSB
{XX**XX**}: S−LLC, D−FSB
{XXXX****}: S−LLC, S−FSB

 0.5x

 0.6x

 0.7x

 0.8x

 0.9x

 1x

 1.1x

 1.2x

solo +stitcher +protobuf

Figure 3.15: Bigtable. Normalized to solo performance with
{X.X.X.X.}

Chapter 3. The Impact of Memory Resource Sharing 42

noted as {X*X*X*X*}, X denoting contentAnalyzer ’s threads and * denotes

stitcher ’s threads. This performance is normalized by contentAnalyzer ’s

performance when it is running alone using mapping {X.X.X.X.}. This

figure demonstrates the performance interference caused by adding stitcher

and by adding protobuf when contentAnalyzer is bound to a certain subset

of cores. Interestingly, in different TTC mapping scenarios, the same co-

runner causes different amounts of degradation to contentAnalyzer. This is

because in different mapping scenarios, co-locating a co-runner to the avail-

able idle cores leads to sharing of different resources between co-running

applications. The first bar in the first cluster shows a degradation of 35%

caused by sharing both LLC and FSB between contentAnalyzer and stitcher.

The second bar shows a degradation of 22% caused by only sharing the FSB

bandwidth between the two applications. Note that the performance degra-

dation shown by the third bar is due to interference caused by stitcher for

sharing the memory controller hub and the rest of the memory system with

contentAnalyzer, which is unavoidable in the topology of the platform in our

experiment.

Figure 3.13 shows contentAnalyzer ’s performance when it is running

alone and it is co-running, normalized by a single baseline: its performance

when running alone in the mapping {X.X.X.X.}. Our key observation here

is that the best thread-to-core mapping for contentAnalyzer changes. When

it is running alone its best mapping is {X.X.X.X.}. When running with

protobuf, it is still {X*X*X*X*}. When running with stitcher the best map-

ping changes to {XXXX****}. With the same co-runner, the performance

variability of contentAnalyzer between the worst and the best mapping can

be fairly significant. When running with protobuf, the performance swing

between different mappings is around 11%.

Figures 3.11 and 3.14 show webSearch’s performance when it is co-

Chapter 3. The Impact of Memory Resource Sharing 43

running with stitcher and protobuf. Similar to Figure 3.10, in Figure 3.11,

each bar represents the performance of webSearch when co-located in a cer-

tain mapping scenario, normalized by its performance when running alone

in the same mapping scenario. Figure 3.14 shows its performance when co-

located, normalized by a single baseline, namely, when it is running alone

and mapped to {X.X.X.X.}. Figures 3.11 and 3.14 show that WebSearch’s

performance variability has a similar trend as contentAnalyzer ’s. Also sim-

ilarly, the optimal mapping for webSearch changes depending on if it is

running alone or which application it is running with. One difference worth

noticing between contentAnalyzer and webSearch is that when webSearch is

co-located with protobuf, its best mapping is {XX**XX**}.

In contrast to both contentAnalyzer and webSearch, bigtable prefers to

share the LLC and FSB among its own threads both when it is running alone

and when running with other applications as shown in Figure 3.12 and 3.15.

However, there is a significant performance swing between thread-to-core

mappings. When it is running with stitcher, there is a 40% performance

difference between the three mappings.

Based on these experiment results, we can categorize these applications

based on the underlying sharing configurations they prefer when running

alone and running with other applications. The categorization is shown in

Table 3.4. This table presents the optimal mapping for each application and

highlights the changes in mapping preferences in different situations. In the

table, S stands for ”shared” and D stands for ”distributed”. In contrast to the

conclusions about PARSEC suite in prior work [62] (presented in Table 3.4’s

last row), our experiments demonstrate that industry-strength datacenter

applications have diverse preferences in resource sharing and TTCmappings.

Chapter 3. The Impact of Memory Resource Sharing 44

Table 3.4: Optimal Thread-To-Core Mapping in Solo and Co-location Situations

Benchmark Solo w/ Stitcher w/ Protobuf

bigtable {XXXX....}: S-LLC, S-
FSB

{XXXX****}: S-LLC, S-
FSB

{XXXX****}: S-LLC, S-
FSB

contentAnalyzer {X.X.X.X.}: D-LLC,
D-FSB

{XXXX****}: S-LLC, S-
FSB

{X*X*X*X*}: D-LLC,
D-FSB

webSearch {X.X.X.X.}: D-LLC,
D-FSB

{XXXX****}: S-LLC, S-
FSB

{XX**XX**}: S-LLC,
D-FSB

PARSEC does not matter N/A N/A

12 MB L3

2 3 4 50 1

12 MB L3

8 9 10 116 7 DIMM

MEM MEM

Figure 3.16: Topology of Dual Socket Intel Westmere

3.3.3 Varying Thread Count and Architecture

In this section, we describe experiments to evaluate whether the above ob-

servations are also applicable when the number of threads, the architecture

or the memory topology changes.

Varying Number of Threads

We studied the impact of memory resource sharing when the latency sensi-

tive applications have 2 and 6 threads. All experiments are conducted on

Clovertown described in Section 3.2.1. Figure 3.17 presents the scenario

when each latency sensitive application is configured to have 2 threads.

This figure presents the latency sensitive application’s performance when it

is running alone, co-located with 6 threads of stitcher, and co-located with

6 threads of protobuf. In the figure, we use C for contentAnalyzer, W for

webSearch, B for bigtable, S for stitcher and P for protobuf. The y axis

shows each of the three latency sensitive applications’ performances normal-

ized by the performance when running alone in the {X...X...} mapping.

Figure 3.18 presents the scenario when each latency sensitive application is

configured to have 6 threads. In this figure, the performance of each latency

Chapter 3. The Impact of Memory Resource Sharing 45

sensitive application is measured when it is running alone, co-located with

2 threads of stitcher, and co-located with 2 threads of protobuf.

 1.1x

 1.2x

C_solo C+S C+P W_solo W+S W+P B_solo B+S B+P

P
e
rf

o
rm

a
n
c
e

{X***X***}
{X*X*****}
{XX******}

 0.5x

 0.6x

 0.7x

 0.8x

 0.9x

 1x

Figure 3.17: 2 threads of a latency sensitive application colocated with 6 threads of a
batch application, normalized to the latency sensitive application’s solo performance in
{X...X...} mapping

 1.1x

 1.2x

C_solo C+S C+P W_solo W+S W+P B_solo B+S B+P

P
e
rf

o
rm

a
n
c
e

{XXX*XXX*}
{XXXXX*X*}
{XXXXXX**}

 0.5x

 0.6x

 0.7x

 0.8x

 0.9x

 1x

Figure 3.18: 6 threads of a latency sensitive application colocated with 2 threads of a
batch application, normalized to the latency sensitive application’s solo performance in
{XXX.,XXX.} mapping

In general, our results show that in both 2-thread and 6-thread cases,

each application’s sharing preferences are similar to its preferences in the 4-

thread case. For example, bigtable prefers sharing cache among its threads

when it has 2 threads, 4 threads and 6 threads. ContentAnalyzer prefers

sharing cache and FSB with its own thread when running with stitcher

and prefers distributing its threads when running alone or with protobuf.

For webSearch, when running with stitcher, the optimal mapping is always

sharing with its own threads. Moreover, similar to the 4-thread case, for each

application, its optimal thread-to-core mapping changes when its co-runners

change.

Chapter 3. The Impact of Memory Resource Sharing 46

Varying Architecture

We also conducted experiments on a Intel’s Westmere platform, shown in

Figure 3.16. Our experiment platform is a dual-socket Intel Xeon X5660.

Each socket has 6 cores. The memory topology of this architecture is quite

different from Clovertown used in previous sections. All six cores on the

same socket share a 12 MB last level cache. Each chip has its own integrated

memory controller, and has 3 channels of 8.5GB/s/channel bus connecting

to DIMM. Processors are connected through QuickPath interconnect (QPI).

We conduct experiments to evaluate the performance impact of sharing the

LLC and memory bandwidth on the same socket versus distributing threads

to two sockets for our three key latency sensitive datacenter applications.

Figures 3.19 and 3.20 present the results when each application is run-

ning alone with 2 threads and 6 threads. We use a similar notation to

present the thread-to-core mapping. For example, {X.....X.....} indi-

cates two threads are mapped to two different sockets on this architecture.

In both figures, each application’s performance is normalized to its perfor-

mance when its threads are evenly distributed across 2 sockets. These results

show that, due to the different memory resource sharing patterns, different

thread-to-core mappings can cause significant performance variability. This

is similar to results on Clovertown. On Westmere, the performance swing

is as high as 10%. Bigtable behaves similarly on both architectures as it

always benefits from cache sharing. However, interestingly, while content-

Analyzer on Westmere benefits from cache sharing in the 2-thread case, in

the 6-thread case, it suffers from cache sharing. In the 8-thread case, which

we do not show here, its performance degradation due to cache sharing is

over 20%. On the other hand, on Clovertown, it always suffers from cache

sharing. This discrepancy between its sharing preference on two architec-

tures may be due to the fact that Westmere has a 12MB LLC instead of

Chapter 3. The Impact of Memory Resource Sharing 47

 0.85x

 0.95x

 1x

 1.05x

 1.1x

 1.15x

con_Analyzer bigtable webSearchN
o
rm

al
iz

ed
 P

er
fo

rm
an

ce

{X.....,X.....}
{XX....,.......}

 0.9x

Figure 3.19: 2 threads of latency sensitive applications running
alone on Westmere

 0.85x

 0.95x

 1x

 1.05x

 1.1x

 1.15x

con_Analyzer bigtable webSearchN
o
rm

al
iz

ed
 P

er
fo

rm
an

ce

{XXX...,XXX...}
{XXXXXX,......}

 0.9x

Figure 3.20: 6 threads of latency sensitive applications running
alone on Westmere

 0.85x

 0.95x

 1x

 1.05x

 1.1x

 1.15x

C+S C+P B+S B+P W+S W+PN
o

rm
a
li

z
e
d

 P
e
rf

o
rm

a
n

c
e

{XXX***,XXX***}
{XXXXXX,******}

 0.9x

Figure 3.21: 6 threads of latency sensitive applications co-running with
6 threads of batch applications on Westmere;

Chapter 3. The Impact of Memory Resource Sharing 48

4MB LLCs on Clovertown. Whether an application can benefit from last

level cache sharing also depends on the size of the cache and the number of

threads that are executing.

For the co-location study, we present the results when 6 threads of

latency sensitive application co-running with 6 threads of corunner (Fig-

ure 3.21). The y axis shows each latency sensitive application’s perfor-

mance, normalized to its performance when running alone in mapping sce-

nario {XXX...XXX...}. This result shows that on Westmere, depending on

the co-runner, the optimal thread-to-core mapping may also change. This

is also consistent with the observation on Clovertown.

3.3.4 Summary

In this section, our investigations show that, depending on the co-runner,

sharing LLC and FSB with the corunner can have a significant impact. An

application’s performance swing between its best and worst thread-to-core

mapping can be significant. Also, the optimal thread-to-core mapping is dif-

ferent for each application and may change when the application’s corunner

changes. This result indicates the importance of an intelligent system for

thread-to-core mapping that is aware of the underlying resource topology

and possible sharing configurations.

Chapter 4

Thread-to-core Mapping

Contents

4.1 A Heuristic Approach to TTC Mapping 50

4.1.1 Evaluating the Heuristics 55

4.2 An Adaptive Approach to TTC Mapping 56

4.2.1 Evaluating AToM 57

At the datacenter scale, a performance improvement of 1% for key ap-

plications, such as websearch, can result in millions of dollars saved. In

Chapter 3, we demonstrate a performance swing of up to 25% for web-

search, and 40% for other key applications, simply from remapping applica-

tion threads to cores. The optimal thread-to-core mapping decision is also

dynamic. It changes when the application changes, when the number of

threads changes, when the architecture changes and when co-located appli-

cation changes. These observations necessitate an intelligent thread-to-core

mapping system to provide the performance that is currently left on the

table.

In this chapter, we present two approaches to mitigating resource con-

tention, exploiting positive resource sharing and ultimately improving per-

formance using intelligent thread-to-core mapping:

49

Chapter 4. Thread-to-core Mapping 50

• Heuristics approach: by leveraging knowledge of an application’s shar-

ing characteristics, we can predict both how an application’s threads

should be mapped when running alone as well as with another appli-

cation (Section 4.1).

• Adaptive approach: an online system for arriving at the intelligent

thread-to-core mapping (Section 4.2).

Finally, we conclude that our adaptive learning approach is a preferable

approach for identifying good thread to core mappings in the datacenter.

It arrives at near optimal decisions and is agnostic to applications’ sharing

characteristics. When using the adaptive approach, we observe a perfor-

mance improvement of up to 22% over status quo thread-to-core mapping

and performance within 3% of optimal mapping on average

4.1 A Heuristic Approach to TTC Mapping

To achieve a good thread-to-core mapping to best utilize shared resources,

it is important to characterize applications’ interaction with these shared re-

sources, and pinpoint the potential bottlenecks among the shared resources.

This dissertation has identified three important memory characteristics of an

application that can be exploited to understand the preferences in memory

resource sharing configurations, including: its memory bandwidth consump-

tion, the amount of data sharing within the application, and its footprint in

the shared cache.

[Memory Bandwidth Usage] We first investigate our applications’

memory bandwidth usage. On Clovertown, we focus on the FSB bandwidth

because FSB is a main sharing point for memory bandwidth on this archi-

tecture. Our previous experiments in Chapter 3 show that when threads

are sharing the FSB, their performance may degrade. The amount of degra-

Chapter 4. Thread-to-core Mapping 51

dation may differ for each application, depending on which application is

co-located with it. We hypothesize that the amount of bus bandwidth us-

age for each application is a good indicator for determining its proper FSB

sharing configuration.

Figure 4.1 presents the bus bandwidth consumption per thread pinned

to one core for all five applications. The bus request rate is measured us-

ing the BUS TRANS BURST event. 15,000 bus transactions/ms for a thread

of contentAnalyzer translates to 15, 000× 64Byte = 0.96GB/s. The total

bus transactions/ms for all fours threads running on four cores can be as

high as 0.96GB/s× 4 = 3.8GB/s. The theoretical FSB peak bandwidth on

this platform is 10.6 GB/s. When using a micro-benchmark that measures

peak bandwidth, STREAM [41], the observed maximum sustained bandwdith

is 5.6GB/s. When four threads of contentAnalyzer are sharing a single FSB,

the bus utilization is close to 70%. Using a similar calculation, stitcher ’s

bandwidth demand is 1.6GB/s per core. This figure shows that stitcher has

the highest bus bandwidth usage. WebSearch and bigtable have medium bus

demands and protobuf has the lowest bus bandwidth demand. This is con-

sistent with the mapping preferences shown in Table 3.4. When webSearch

and contentAnalyzer are running alone, because of the medium-high bus

demand, it is preferable to spread threads on two sockets and use 2 FSBs.

However, when they run with stitcher, both prefer not to share a FSB with

stitcher because stitcher has a much higher bus demand and can cause more

performance degradation. On the other hand, when running with protobuf,

both webSearch and contentAnalyzer both benefit from sharing FSB with

protobuf instead of their own threads. Bigtable benefits from sharing last

level cache and FSB when it is running alone, thus it is preferable for bigtable

to share these two resources with its own threads when running with other

applications. This experiment demonstrates that bus bandwidth consump-

Chapter 4. Thread-to-core Mapping 52

E
v
en

ts
 p

er
 m

il
li

−
se

co
n
d

 0

 5,000

 10,000

 15,000

 20,000

 25,000

con_Analyzer bigtable webSearch stitcher protobuf

Figure 4.1: Bus Burst Transactions (full cache line) per millisecond per one thread

 10,000

 20,000

 30,000

 40,000

 50,000

 60,000

 70,000

contentAnalyzerbigtable webSearch stitcher protobuf

E
v

en
ts

 p
er

 m
il

li
se

co
n

d others
shared
misses

 0

Figure 4.2: LLC misses/ms, LLC requests Share/ms and LLC reference/ms

tion is an important characteristic when determining good thread-to-core

mappings.

Our experiments in Sections 3 and 4 also demonstrate that sharing a

cache can cause significant performance impact. There are two key charac-

teristics to consider when studying the interaction between an application

and a shared cache: the amount of data sharing among an application’s

threads and the application’s footprint in the shared cache.

[Data sharing] In Section 3 we show that the percentage of cache lines

that are in the ”share” states can indicate an application’s level of data

sharing. Figure 4.2 presents the average LLC reference rate for a thread of

each application. In this figure, we bin LLC references into three categories:

Chapter 4. Thread-to-core Mapping 53

LLC misses, LLC references that are in ”share” state, and others (including

prefetch state and cache hit that are not in ”share” state). Bigtable has

the highest percentage of cache requests that are in the share state and

contentAnalyzer has the lowest. This is consistent with our findings that

bigtable prefers to share LLC when it is running alone as well as when it

is running with other applications while contentAnalyzer does not. On the

other hand,webSearch has a relatively high level of data sharing. However,

sharing the last level cache among its threads would cause a performance

degradation. This is because when deciding if sharing a cache would improve

or degrade an application’s performance and which thread the application

should share the cache with, we need to consider not only data sharing but

also the potential of cache contention.

[Cache Footprint] When the total size of two or more threads’

footprints is larger than the shared cache, contention occurs. Previous

work [65, 30, 40] show that last level cache miss rate can be used as an

indicator to estimate the footprint size of an application and to predict

the potential performance degradation an application may cause to its co-

runners. Figure 4.2 presents the LLC miss rate for all five applications.

This figure shows that contentAnalyzer has a higher LLC miss rate than

webSearch and less percentage of share state cache lines. This is consistent

with the fact that contentAnalyzer suffers more from cache contention than

webSearch, shown in Figure 3.4. An application’s cache characteristics are

important when deciding a good TTC mapping. And both data sharing and

cache footprint need to be considered.

Based on an application’s characteristics in terms of their resource usage

when running alone, we can predict a good thread-to-core mapping that

takes advantage of the memory sharing topology when applications are co-

located. Algorithm 1 shows a heuristic algorithm to make such a decision.

Chapter 4. Thread-to-core Mapping 54

Algorithm 1: Resource-Characteristics-Based Mapping Heuristics
Input: P: Latency-sensitive app; C: Corunning app
Output: a thread-to-core mapping

1 if P.DataSharing = high then
2 map(P, share LLC);
3 if P.Bus Usage < C.Bus Usage then
4 map(P, [share LLC, sharing FSB]) ;
5 else
6 map(P, [share LLC, distributed FSB]) ;
7 end

8 else
9 if P.Bus Usage < C.Bus Usage then

10 map(P, sharing FSB) ;
11 if P.LLC Footprint = high then
12 map(P, [distributed LLC, sharing FSB]);
13 else
14 map(P, [share LLC, sharing FSB]);
15 end

16 else
17 if P.LLC Footprint < C. LLC Footprint then
18 map(P, [share LLC, distributed FSB]);
19 else
20 map(P, [distributed LLC, distributed FSB]);
21 end

22 end

23 end

The decision tree this algorithm is based on is shown in Figure 4.3.

The basic idea behind the heuristic is that since we can characterize

applications based on their potential bottlenecks (bus usage, shared cache

usage and the level of data sharing), when co-locating, we should maximize

the potential benefit from sharing and avoid mapping threads that have the

same resource bottleneck. For example, if the application has a high level of

data sharing, the mapping should allow its threads to share resources such

as LLC. We also prioritize the latency-sensitive application’s performance

(denoted as P in the algorithm) over its corunner (C) ’s. For example, the

heuristic algorithm compares the resource usage of P’s threads with that of

the co-running applications’ threads and select the thread(s) that have the

least usage of the same resource to co-locate.

Chapter 4. Thread-to-core Mapping 55

Yes
No

P: Data Sharing is high?

Yes

No

P: Share Cache, Share bus

P: Share Cache, Distributed Bus

Yes No

P: Share Cache, Share Bus

P.Bus < C.Bus ?

P.Bus < C.Bus ?

Yes No

P: Share Cache, Share Bus?

P: Share Cache

P. CacheFootprint < C. CacheFootprint

P: Distributed Cache, Distributed Bus

Figure 4.3: Decision Tree

4.1.1 Evaluating the Heuristics

To evaluate the heuristic algorithm, we apply it to six co-running application

pairs and compare the predicted best mapping with the ground-truth best

mapping. We use FSB bandwidth consumption to compare the Bus Usage

in the algorithm; and use LLC miss rate as an approximate proxy to com-

pare applications’ LLC Footprint. To take data sharing into account when

comparing cache footprints for an multithreaded application, we use

LLC MissRate× (1−
LLC shared state requests

LLC all requests
) (4.1)

The prediction result using heuristic algorithm is presented in Table 4.1.

Our heuristic approach correctly predicts the best mapping in 4 out of

6 co-running pairs. In two cases, the heuristic algorithm also makes fairly

good decisions: the performance difference between the predicted mapping

and the optimal mapping is less than 2% for both (Figures 3.14 and 3.15).

The advantages of our heuristic approach is that it is effective and requires

only simple runtime support. However, there are two main limitations of

this approach. First, these characteristics must be collected for each ap-

Chapter 4. Thread-to-core Mapping 56

Table 4.1: Predicted Thread-To-Core Mapping Using the Heuristic Approach

Benchmark w/ Stitcher w/ Protobuf

bigtable Optimal:
{XXXX****};

Optimal:
{XXXX****};

Predicted:
{XXXX****}

Predicted:
{XX**XX**} (sub-
optimal: 1% worse)

contentAnalyzer Optimal:
{XXXX****};

Optimal:
{X*X*X*X*};

Predicted:
{XXXX****}

Predicted:
{X*X*X*X*}

webSearch Optimal:
{XXXX****};

Optimal:
{XX**XX**};

Predicted:
{XXXX****}

Predicted:
{X*X*X*X*} (sub-
optimal: 1% worse)

plication. Second, because each architecture has different topologies and

sharing points, a new algorithm needs to be generated on an architecture

by architecture basis. Also, an application characteristics may not be per-

fectly captured. For example, using LLC miss rate to approximate the cache

footprint is not perfect [39], especially when there is data sharing between

threads. These limitations motivate an adaptive approach that is more flex-

ible and portable.

4.2 An Adaptive Approach to TTC Mapping

In this section we present AToM, an Adaptive Thread-to-core Mapper. Our

experiments in the previous sections show that the optimal thread-to-core

mapping may change when the number of threads, co-running application,

or architecture changes. These variations indicate that an adaptive learning

approach is promising for the intelligent thread-to-core mapping. AToM uses

a competition heuristic to adaptively search for the optimal thread-to-core

assignment for a given set of threads. This approach includes two phases: a

learning phase and an execution phase.

[Learning Phase] During the learning phase, AToM empirically puts

Chapter 4. Thread-to-core Mapping 57

various thread-to-core mappings against each other to learn which mapping

performs best. Each thread-to-core mapping is given an equal amount of

time, and the best performing mapping is selected as the winner of the

competition. Although randomly mapping threads to cores may generate a

large amount of varying mappings, because most of memory topologies are

symmetric, the search space for equivalent mappings is greatly reduced. For

example, for 2 core mapping cases, there are only three classes of mappings

(Table 3.1) that represent three different sharing configurations.

[Execution Phase] During this phase the winning thread-to-core map-

ping is run for a fixed or adaptive period of time before another competition

is held. In this work, we allow our execution phase to run indefinitely. The

datacenter applications presented in this work have steady phases, and each

competition produces the same winner. Therefore, reentering the learning

phase only produces an unnecessary overhead.

4.2.1 Evaluating AToM

In this work, we have constructed a prototype of AToM tuned for the dat-

acenter. During the learning phase, AToM cycles through three taskset

configurations for a period of 10 minutes each. For an application in the

datacenter we use a long period to minimize noise in our competition. The

datacenter applications presented in this work are long running programs,

running for days and weeks at a time; however for our experimental runs

we allow only 2 hours of execution. Figures 4.4 and 4.5 present the results

of our experimentation on both Clovertown and Westmere. In the figures,

we use C for contentAnalyzer, W for webSearch, B for bigtable, S for stitcher

and P for protobuf. The y axis shows each of the three latency sensitive ap-

plications’ performance, normalized by its performance when running alone

in the {X...X...} mapping. In both figures, the x axis shows 9 machine

Chapter 4. Thread-to-core Mapping 58

loads, including each of our latency sensitive applications running alone and

co-located with our batch applications. Each application is configured to

run on 4 cores. The y axis shows the performance of our latency sensitive

application normalized to the worst assignment. As this figure shows, AToM

is quite effective, achieving near optimal performance. In each case, AToM

outperforms the average case (average random assignment) by up to 22%,

and is significantly better performing than the worse case assignments.

C

C
+

S

C
+

P B

B
+

S

B
+

P W

W
+

S

W
+

P

m
ea

n

P
er

fo
rm

an
ce

average
adaptive
optimal

 1x

 1.1x

 1.2x

 1.3x

 1.4x

 1.5x

 1.6x

Figure 4.4: Adaptive Thread-To-Core Mapping on Clovertown

 1.14x
 1.16x
 1.18x
 1.2x

C

C
+

S

C
+

P B

B
+

S

B
+

P W

W
+

S

W
+

P

m
ea

n

P
er

fo
rm

an
ce

average
adaptive
optimal

 1x
 1.02x
 1.04x
 1.06x
 1.08x
 1.1x

 1.12x

Figure 4.5: Adaptive Thread-To-Core Mapping on Westmere

Chapter 5

Compiling for Niceness

Contents

5.1 QoS-Compile Overview 61

5.2 Identify Contentious Code Regions 63

5.2.1 Contentiousness and Sensitivity 64

5.2.2 Identify Contentious Regions 70

5.3 Compiler Transformations for Rate Reduction 74

5.3.1 Padding . 74

5.3.2 Nap Insertion . 76

5.3.3 Understanding Cooldown and Warmup 78

5.4 Evaluation . 79

5.4.1 Setup and Methodology 79

5.4.2 Model for Code Region Identification 80

5.4.3 Compiler Transformations 84

5.4.4 QoS-Compile: Put it All Together 88

5.4.5 Google Applications 94

5.5 Summary . 95

Chapter 4 presents intelligent thread-to-core mapping for mitigating

memory resource contention and improving application performance. In

59

Chapter 5. Compiling for Niceness 60

this chapter, we present a novel approach to mitigating contention and im-

proving server utilization in modern warehouse scale computers.

As modern warehouse scale computers continue to leverage commodity

multicore processors with increasing core counts, there is a growing need to

consolidate various workloads on these machines to fully utilize their compu-

tation power. However, in Chapter 3, we demonstrate that when multiple

applications are co-located on a multicore machine, contention for shared

memory resources can cause severe cross-core performance interference. To

ensure that the quality of service (QoS) of user-facing applications does not

suffer from performance interference, WSC operators resort to disallowing

co-location of latency-sensitive applications with other applications. This

policy translates to low machine utilization and millions of dollars wasted

in WSCs.

In this chapter, we present QoS-Compile, the first compilation ap-

proach that statically manipulates application contentiousness to enable the

co-location of applications with varying QoS requirements, and as a result,

can greatly improve machine utilization. In essence, to co-locate applica-

tions of different QoS priorities, our compilation technique uses pessimizing

transformations to throttle down the memory access rate of the contentious

regions in low priority applications to reduce their interference to high

priority applications. Our evaluation using synthetic benchmarks, SPEC

benchmarks and large-scale Google applications show that QoS-Compile

can greatly reduce contention, improve QoS of applications, and improve

machine utilization. Our experiments show that our technique improves

applications’ QoS performance by 21% and machine utilization by 36% on

average.

Chapter 5. Compiling for Niceness 61

profiler

 L1: ld
ld

 mov
 jmp L1

contention
score

time

model: contention score = f(PMUs)

miss rate and ratio do not accurately indicate

 L1: ld
nop
ld

nop
mov

 jmp L1

compiler

 L1: ld
ld

 mov
 nap ()
 jmp L1

low priority
application

Figure 5.1: QoS-Compile Overview

5.1 QoS-Compile Overview

There are two key insights of QoS-Compile. Firstly, WSCs typically house

a known set of long running applications, such as web search and maps,

running for weeks and months at a time. A cluster-level scheduler maps

multiple applications to each individual machine, and thus the co-location

persists for this period until a job finishes running. The various QoS priori-

ties of these applications are known throughout the lifetime of the WSC. In

addition, binaries of these applications are available and the profiling can be

performed continuously both in production and in test settings. Within this

environment, a compilation approach is particularly useful for tailoring the

binaries of these applications to “play nice” together. Secondly, in the era

of multicores and the emerging computing domain of WSCs, the objectives

of compiler optimization ought to be multifaceted. Simply optimizing each

application for its own individual performance irrespective of the surround-

ing execution environment may not be ideal. In this work, we argue for the

additional objective of optimizing for an application’s “niceness,” to reduce

its potential interference to its co-running applications.

QoS-Compile consists of two steps. First, the application is profiled to

identify its contentious code regions. Second, transformations are applied

to these regions to reduce their contentiousness.

Chapter 5. Compiling for Niceness 62

[Identifying Contentious Regions] Resource contention is only man-

ifested during runtime, and as a result, a static code analysis to identify such

code regions may not be feasible. Our technique uses a profiling analysis to

characterize the memory resources usage of an application when it is running

alone. The intuition is that if a code region aggressively uses shared memory

resources (shared caches and memory bandwidth, etc) when executing, this

region may interfere with a co-runner that is sensitive to contention. To

predict a code region’s contentiousness, we established a performance mon-

itoring unit (PMU) based prediction model via regression. As Figure 5.1

shows, our profiler dynamically samples PMUs when an application is ex-

ecuting, estimates the contentiousness of code regions using the prediction

model, and selects code regions that are above a certain contention thresh-

old. Being able to pinpoint just the regions responsible for contention is a

key benefit of QoS-Compile as we only throttle down the memory access

rate of these regions. Applications may have short bursts of contentiousness

or be contentious only during certain phases. Our compiler transformations

are applied only to the code that is responsible for these bursts or phases.

The details of the profiling technique are presented in Section 5.2.2.

[Compiling for “Niceness”] After identifying the contentious code

regions, QoS-Compile then specializes the code layout of these regions to

reduce their contentious nature, as shown in Figure 5.1. QoS-Compile is

essentially a software rate-based technique as it throttles down the memory

request rate of a low priority application, reducing the resulting pressure

on the memory subsystem and allowing the neighboring high priority ap-

plications to consume more of these resources. In this work, we develop

two transformations for memory request rate reduction: padding and nap

insertion. Using these two transformations, QoS-Compile provides a wide

range of throttling granularities. These granularities range from intermit-

Chapter 5. Compiling for Niceness 63

tent bursts of just a few instructions before a brief pause, to thousands of

instructions before each longer nap. Our padding transformation provides

fine granularity throttling while nap insertion provides coarser granularities.

Both of these transformations include parameters for adjusting the amount

of rate reduction, which in turn controls the amount of interference and QoS

degradation suffered by co-runners. This tunability is important for achiev-

ing the desirable balance between QoS and machine utilization. The details

of the compilation transformations are presented in Section 5.3.

[Using QoS-Compile in a Modern WSC] In modern WSCs, high

priority latency-sensitive jobs, such as web-search and maps, are run on ma-

chines for weeks and months at a time. These jobs often use a fraction of the

cores on a single machine. However, to protect their QoS, the co-location of

other jobs on these machines is often disallowed. QoS-Compile can be used,

on demand, to compile low priority batch jobs, such as video encoding/de-

coding and compression, to enable their co-location on these underutilized

machine resources. QoS-Compile can also be composed with a number of

multi-versioning schemes [36] to enable its rate reduction transformations

only when co-running with a high priority application.

5.2 Identify Contentious Code Regions

In this section we present our novel profiling technique and its core compo-

nent, a performance counter based prediction model, to identify contentious

code regions. Section 5.2.1 investigates and answers two key questions about

a code regions’ contentious nature that prior work has no answer or con-

flicting answers for. Section 5.2.2 then presents our technique to identify

contentious code regions based on the insights gained from our investiga-

tion.

Chapter 5. Compiling for Niceness 64

5.2.1 Contentiousness and Sensitivity

To identify contentious code regions, it is important to first have an in-depth

understanding of application contention characteristics, including an appli-

cation’s contentiousness, which is the potential performance degradation it

can cause to its co-runners, and an application’s sensitivity to contention,

which is the potential degradation it can suffer from its co-runners. In this

section we present formal definitions of both contentiousness and contention

sensitivity, and investigate key questions about the nature of each and how

they relate.

We first investigated whether contention characteristics (both con-

tentiousness and sensitivity to contention) are consistent characteristics of

an application. One hypothesis for identifying contentious code regions is

that contentiousness is a consistent characteristic of a code region. We define

consistent as, for a given machine, the relative ordering between all appli-

cations’ contentiousness and sensitivity in general does not change across

different co-runners.

Secondly, we investigated the correlation between an application’s con-

tentiousness and its sensitivity to contention. An important observation is

that both an application’s contentiousness, and its sensitivity to contention,

involve the usage of shared resources. One intuition is that contentious ap-

plications may also be sensitive to contention and vice versa. Prior work has

had conflicting conclusions about the relations between an application’s con-

tentiousness and contention sensitivity. There are four possible outcomes.

An application can be 1) contentious and sensitive; 2) not contentious and

insensitive; 3) contentious but not sensitive; and 4) not contentious but sen-

sitive. Among these four outcomes, Jiang et al. [25, 37] conclude that typi-

cal applications’ contentiousness and sensitivity are strongly correlated and

should be classified as either contentious and sensitive, or not contentious

Chapter 5. Compiling for Niceness 65

and insensitive. Xie et al. [60] on the other hand, argue the existence of

applications that are not contentious but sensitive. Meanwhile, other re-

cent works [66, 31] argue that a contentious application that has high cache

misses is likely to be very sensitive as well.

[Definition] Before answering these questions, we first present formal

definitions of both contentiousness and contention sensitivity. On multicore

processors, an application’s contentiousness is defined as the potential per-

formance degradation it can cause to co-running application(s) due to its

heavy demand on shared resources. On the other hand, an application’s

sensitivity to contention is defined by its potential to suffer performance

degradation from the interference caused by its contentious co-runners.

As demonstrated in previous work [25], an application A’s sensitivity is

formally defined using the following formula,

SensitivityA =
IPCA(solo) − IPCA(co−run)

IPCA(solo)
(5.1)

where IPCA(solo) is A’s IPC when it is running alone and IPCA(co−run)

is the statistical expectation of the A’s IPC when it co-runs with random

co-runners. We extend this definition to include A’s contentiousness as,

ContentiousnessA =
IPCBi(solo) − IPCBi(co−runA)

IPCBi(solo)

(5.2)

where A’s contentiousness is quantified as the statistical expectation of

the IPC degradation A causes to its random co-runner.

We can estimate SensitivityA and ContentiousnessA by co-locating A

with various co-runners Bi, and take the average of A’s measured con-

tentiousness and contention sensitivity. A’s sensitivity to corunner Bi can

Chapter 5. Compiling for Niceness 66

0%

5%

10%

15%

20%

25%

30%

35%

40%

lb
m

lib
qu
an
tu

m

m
ilc

so
pl
ex

m
cf

sp
hi
nx

om
ne
tp
p

xa
la
nc
bm
k

gc
c

as
ta
r

bz
ip

hm
m
er

de
al
II

h2
64

pe
rlb
en
ch

sje
ng

po
vr
ay

na
m
d

co
n
te
n
?
o
u
sn
e
ss

 LBM

LIBQUANTUM

MILC

MCF

SOPLEX

SPHINX

OMNETPP

XALAN

avg. contenCousness

Figure 5.2: Contentiousness. Each bar shows the performance degradation of a corunner
caused by the application across x-axis.

0%

5%

10%

15%

20%

25%

30%

35%

40%

m
cf

om
ne
tp
p

sp
hi
nx

so
pl
ex

xa
la
nc
bm
k

lib
qu
an
tu
m

m
ilc

lb
m

bz
ip

gc
c

pe
rlb
en
ch

as
ta
r

sj
en
g

h2
64

na
m
d

po
vr
ay

hm
m
er

de
al
II

S
e
n
si
@
v
it
y

LBM

LIBQUANTUM

MILC

MCF

SOPLEX

SPHINX

OMNETPP

XALAN

avg. sensiBvity

Figure 5.3: Sensitivity. Each bar shows the performance degradation of the application
across x-axis caused by each of the 8 different corunners.

be defined as,

SensitivityA(co−runBi
) =

IPCA(solo) − IPCA(co−runBi
)

IPCA(solo)
(5.3)

and the A’s average measured sensitivity is,

SensitivityA(avg) =

∑n
i SensitivityA(co−runBi

)

n
(5.4)

Similarly, we can define A’s contentiousness when it is co-running with

Bi and its average contentiousness as,

ContentiousnessA(co−runBi
) =

IPCBi(solo) − IPCi(co−runA)

IPCBi(solo)
(5.5)

ContentiousnessA(avg) =

∑n
i ContentiousnessA(co−runBi

)

n
(5.6)

In this work we use Equation 5.4 to estimate sensitivityA, and Equation 5.6

to estimate contentiousnessA.

[Experiment Design] To evaluate these key questions as regards to the

Chapter 5. Compiling for Niceness 67

nature of contention characteristics of an application, we have performed a

series of experiments using 18 benchmarks of SPEC CPU2006 benchmarks

suite. These benchmarks represent a diverse range of application workloads

and memory behaviors, including different working set sizes, cache misses,

and offcore traffic. All experiments were conducted on Intel Core i7 920 (Ne-

halem) Quad Core with 2.67GHZ processors, 8MB last level cache shared by

four cores and 4GB memory. For each experiment, we selected two of the

18 benchmarks, co-located them on neighboring two cores, and measured

each benchmark’s contentiousness and sensitivity in each experiment using

Equation 5.3 and Equation 5.5. We then calculated each benchmark’s av-

erage contentiousness and sensitivity using Equation 5.4 and Equation 5.6.

We conducted exhaustive co-running of all possible co-running pairs, which

is a total of 162 (18×182) co-running experiments executed to completion on

ref inputs. Each experiment was conducted three times to calculate the

average. Note that SPEC runs are fairly stable and there is little variance

between runs.

[Is contentiousness a consistent characteristics of an applica-

tion?] Figure 5.2 presents our benchmarks’ contentiousness. This con-

tentiousness is calculated using Equation 5.5, which indicates the perfor-

mance degradation each of the 18 benchmarks causes to its co-runner. The

18 benchmarks are shown on the x-axis. For each of the 18 benchmarks,

we show its measured contentiousness when it is co-running with each of

the eight most contentious co-runners respectively. Each bar represents a

co-runner. Only 8 corunners are shown in the figure because of the space

limit. The dotted line shows the average contentiousness of each benchmark,

computed by averaging each benchmark’s 18 contentiousness values across

18 co-runners using Equation 5.6. The 18 benchmarks on the x-axis are

then sorted by their average contentiousness. The line graph for average

Chapter 5. Compiling for Niceness 68

0%

5%

10%

15%

20%

25%

30%

35%

as
ta
r

bz
ip

de
al
II

gc
c

h2
64

hm
m
er

lb
m

lib
qu
an
tu
m

m
cf

m
ilc

na
m
d

om
ne
tp
p

pe
rlb
en
ch

po
vr
ay

sj
en
g

so
pl
ex

sp
hi
nx

xa
la
nc
bm
k C

o
n
te
n
@
o
u
sn
e
ss
 a
n
d
 S
e
n
si
@
v
it
y

avg. conten1ousness

avg. sensi1vity

Figure 5.4: Average Contentiousness vs. Sensitivity

contentiousness shows a general descending trend.

Figure 5.2 demonstrates that contentiousness is a consistent character-

istic of an application. The relative order of benchmarks’ contentiousness

stays fairly consistent regardless of which co-runner is present. For exam-

ple, when comparing each benchmark’s contentiousness when it is co-running

with lbm, shown by the first bar for each 18 benchmark, we notice that the

contentiousness of 18 benchmarks are almost all in descending order along

the y-axis mirroring the dotted line. This also applies to all other co-runners

as well. The graph also shows that lbm is the most contentious benchmark

among the 18 benchmarks.

[Is sensitivity a consistent characteristics of an application?]

Similar to Figure 5.2, Figure 5.3 shows the sensitivity to contention of each

of the 18 benchmarks when co-located with the most contentious applica-

tions. This sensitivity is calculated using Equation 5.3, indicating how much

degradation the eight co-runners cause to each of the 18 benchmarks. These

18 benchmarks are sorted according to their average sensitivity, calculated

using Equation 5.4. Similar to Figure 5.2, this figure shows that sensitivity

is also consistent for each application. Although the descending trend is not

as consistent as Figure 5.2, the general trend is strong.

[Contentiousness vs. Sensitivity: are they strongly correlated?]

Chapter 5. Compiling for Niceness 69

In Figure 5.4, we juxtapose contentiousness and sensitivity. In this graph,

for each application across the x-axis, the first bar shows the average con-

tentiousness of this application with the eighteen co-runners presented in

Figures 5.2 and 5.3. The second bar shows each benchmark’s average sensi-

tivity to the same set of co-runners. Figure 5.4 clearly demonstrates a large

disparity between application contentiousness and sensitivity. As shown in

the figure, applications such as lbm and libquantum are highly contentious

and only mildly sensitive, while other applications such as omnetpp and

xalan are highly sensitive, and slightly contentious. Also notice that, in

Figures 5.2 and 5.3, the sorted ordering of the 18 benchmarks (x-axis) are

almost completely different. In fact, the correlation coefficient between con-

tentiousness and sensitivity using linear regression is 0.48, which further

shows they are not strongly correlated.

Summary To summarize, through our experimentation we find,

1. Contentiousness and sensitivity are an application’s consistent charac-

teristics. Figure 5.2 shows that applications with higher contentious-

ness tend to be consistently more contentious regardless of co-runners.

This general trend also applies to sensitivity, as shown in Figure 5.3.

2. Contentiousness and sensitivity of general purpose applications are not

strongly correlated as shown in Figure 5.4. While we do not observe

applications that are only sensitive or only contentious, four outcomes

occur in practice; applications can be 1) contentious and sensitive; 2)

not contentious and insensitive; 3) contentious but not highly sensitive;

4) not highly contentious but sensitive.

Chapter 5. Compiling for Niceness 70

5.2.2 Identify Contentious Regions

In the previous section, we show that contentiousness is an inherent con-

sistent characteristic of an application or a code region. In this section, we

present the profiling analysis used to identify contentious code regions of an

application. The core component of our analysis is a model based on hard-

ware performance counters for the dynamic scoring of sequences of executed

code. The intuition behind using the information provided by hardware

performance counters is that if a code region aggressively consumes certain

memory resources, it is likely to be contentious for the resource when it is

co-running with other applications. In this section, we first discuss how we

constructed the model. We then describe how this model is used during a

profiling run to identify the static code regions that are most contentious.

[General Model for Contentiousness] We use a linear model to com-

bine the impact of contention in multiple shared resources, including last

level cache (LLC), memory bandwidth and prefetchers. The contentious-

ness of a dynamically executed code region is determined by the amount

of pressure the region puts on the shared memory subsystem. Thus, it can

be predicted based on usage of shared resources, shown as the following

equation,

C = a1 × LLC usage+ b1 ×BW usage+ c1 × Pref usage, (5.7)

where C is contention score, BW is bandwidth and Pref is prefetchers.

Each code region may have a different combination of cache, bandwidth

and prefetch usage. How contentious each code region is relative to other

regions depends on the relative importance between cache, bandwidth and

prefetcher contention. The relative importance is reflected as coefficients a1,

b1 and c1.

[Leveraging PMUs] Modern architectures provide numerous perfor-

Chapter 5. Compiling for Niceness 71

mance counters for various aspects of the microarchitecture. Our second

step is to identify the appropriate performance monitoring units (PMUs) to

estimate the terms in Equation 5.7.

BW usage: It is fairly easy to quantify and measure bandwidth usage

using PMUs. For example, we can use the number of cache lines the last

level cache brings in from memory per second.

LLC usage: It is challenging to measure cache usage using PMUs.

PMUs can provide information on the cache access frequency and the cache

miss rate, but currently they do not provide information on the cache foot-

print or occupancy. To approximate LLC usage, we measure how much data

is fetched from the shared cache and not the memory for a given interval.

Prefetcher usage: Not all architectures provide performance counters

for all prefetchers. However, the main impact of prefetchers is reflected

as increased bandwidth and cache usage. Thus, prefetcher usage can be

estimated using cache and memory bandwidth usage.

Guided by the above insights, we identify the appropriate PMUs on

the Intel Core i7 (Nehalem). On this platform, we identify the number of

cache lines the last level cache brings in per millisecond (LLCLinesIn/ms),

as shown in Figure 5.5, to capture the aggregate pressure an application puts

on the bandwidth. We identify (L2LinesIn - L3LinesIn)/ms to estimate the

shared L3 cache usage. It reports the rate of data being fetched into private

caches from the shared cache. Because both L3LinesIn and L2LinesIn in-

clude the prefetchers’ traffic, we do not need an extra PMU to measure the

prefetcher usage. Using the above PMUs, Equation 5.7 becomes:

C = a1 × (L2LinesIn rate− L3LinesIn rate) + b1 × L3LinesIn rate (5.8)

where C is contention score.

[Regression to Establish the Prediction Model] After identifying

Chapter 5. Compiling for Niceness 72

Shared Cache

L2 L2 L2 L2

Core Core Core Core

Remaining Memory Subsystem

Application

LLC Lines In

(contentiousness)

L2 Lines In

(sensitivity)

Figure 5.5: PMUs used for predicting contentiousness

the appropriate PMUs, we use multiple regression to determine the coeffi-

cients in Equation 5.8. We use the SmashBench suite (Table 5.1), devel-

oped in Google, to train our model. SmashBench is composed of contentious

kernels that span a spectrum of contentious memory access patterns and

working set sizes. We measure each kernel’s contentiousness using the aver-

age performance degradation it causes to other kernels within the suite when

co-running. Using the measured contentiousness and the measured PMUs

profile, including the average L2LinesIn/ms and L3LinesIn/ms, we then con-

duct regression analysis to determine the model coefficients (Equation 5.7).

The regression result is:

C = 1.663× (L2LinesIn/ns− L3LinesIn/ns)

+ 8.890× L3LinesIn/ns+ 0.044 (5.9)

The p value for (L2LinesIn/ns - L3LinesIn/ns) is 0.018, 5.11e-07 for

L3LinesIn/ns, and 2.015e-06 for the entire regression. All are smaller than

0.5, indicating statistically significant effects. The R-squared is 0.8876,

indicating a strong fit. The coefficients show the relative importance between

the bandwidth usage and the LLC usage, indicating that memory bandwidth

Chapter 5. Compiling for Niceness 73

Benchmark Footprint Description

bst 4mb, 8mb,
50mb

random accessing a binary
search tree

naive 4mb, 8mb,
50mb

random accessing an array

er-naive 4mb, 8mb,
50mb

fast random accessing an array

blockie small,
medium,
large

a number of large 3D arrays. A
portion of one array is contin-
uously copied to another.

sledge small,
medium,
large

two large arrays, copies data
back and forth between arrays
with this sledgehammer pat-
tern.

Table 5.1: Contention Benchmarks Suite: SmashBench

contention has a more dominating effect.

The regression results show that our model combines the contention of

multiple resources and is highly indicative of the performance interference a

code region may cause. The prediction accuracy of the model is evaluated

in Section 5.4.

[Identifying Code Regions] Identifying code regions based on the

PMU model is fairly straightforward, and involves correlating PMU informa-

tion with its corresponding source code. There are a number of approaches

for conducting the correlation. In this work, we use a simple approach. We

first record the application’s PMU statistics (L2 and L3 lines in rate) every

1ms. Meanwhile, we record the number of instructions executed in every

sample interval. These serve as markers in the dynamic instruction trace for

the sequence of instructions that are responsible for the PMU data. We use

the collected PMU profile and Equation 5.9 to calculate a contention score

for every 1ms instruction interval. We then use a PIN [35] tool to replay the

execution. Using the recorded interval markers we analyze the set of source

level basic blocks that comprise the 1ms interval. We select the hottest set

of basic blocks of that region, typically comprising more than 90% coverage

of the interval, and assign these blocks the corresponding contentiousness

Chapter 5. Compiling for Niceness 74

score that was produced by our model.

5.3 Compiler Transformations for Rate Reduction

QoS-Compile provides two compilation techniques, padding and nap inser-

tion, for both fine-grain and coarse-grain memory request rate reduction. In

this section, we describe both of these techniques and discuss the tradeoffs

between them.

5.3.1 Padding

Our padding transformation inserts non-memory instructions between mem-

ory instructions in a contentious code region. These instructions consume

CPU cycles but do not issue memory requests. Therefore, in essence, they

limit the amount of memory requests issued in a given time interval. When

the amount of padding increases, the code region’s pressure on the mem-

ory subsystem decreases. We implement padding by inserting no operation

instructions (nop) in contentious code regions at the basic block level us-

ing MAO [20]. Padding provides a fine grain mechanism for reducing a

code region’s execution rate, memory request rate, and its interference to

co-runners. Inserting these nops artificially inflicts a slowdown that can be

as small as the number of cycles consumed by a single nop.

Application specific and microarchitecture specific factors need to be

considered when deciding a sensible padding policy for a given interference

reduction goal. The application specific factors include:

1. The code region’s memory characteristics. The contentious level of

a code region affects the amount of padding needed. The more con-

tentious, the more padding needed. In addition, many memory charac-

teristics such as the footprint affect the latency of memory instructions,

Chapter 5. Compiling for Niceness 75

which in turn affects the amount of padding needed. We discuss more

about this effect shortly.

2. Binary instruction characteristics. The instruction mix, for example,

the ratio of memory instructions (loads, etc) versus other instructions

(CPU instructions) also needs to be considered. For a given amount

of instructions, the more dense memory instructions are, the more

padding may be required to reduce the pressure they cause to the

memory system.

In addition, microarchitecture specific factors include:

1. How nops are executed on the architecture;

2. The memory hierarchy design and the access latencies for different

levels in the memory hierarchy.

Many of the above factors essentially affect the memory latency of in-

structions, which is important when deciding a padding policy for a given in-

terference reduction goal. This is mostly because that an application can be

stalled on the memory instructions when the data is being fetched. During

this period, nops may not have an effect on slowing down the application ex-

ecution rate or memory request rate because the program is already stalled.

For example, a load may take hundreds of cycles to complete. When stalled

on a use, a large amount of nops after this load may be useless for rate

reduction. Therefore, each nop, depending on where it is inserted and the

latency of memory instructions before it, may have a different impact on the

memory request rate. This makes it difficult to accurately predict the rate

reduction effect for a padding policy.

There are two main parameters for padding: granularity and thickness.

Padding granularity is how often to pad (for example, every 3 instructions)

Chapter 5. Compiling for Niceness 76

and the thickness is how much nops to insert at every insertion point. In

this paper, given a list of contentious basic blocks identified by the QoS-

Compile’s profiler, we instrument padding at the beginning of each basic

block. If a basic block contains more instructions than the specified padding

granularity, we instrument within the basic block as well. The amount of

padding inserted is determined by the thickness parameter. Generally, as

discussed, the more dense memory instructions are, the longer latency they

incur, the thicker padding is needed.

5.3.2 Nap Insertion

Our nap insertion technique inserts intermittent sleep to contentious code

regions. Putting a contentious code region to epochal short “nap” mode

reduces the pressure it puts on the memory subsystem and the interference

it can cause to its co-runners. Similar to padding, two important parameters

for nap insertions are granularity (how often the contentious code should

nap) and nap duration (how long a nap interval should be, which is similar

to padding thickness). However, comparing to padding, nap insertion is a

much coarser-grain rate control as naps can occur for milliseconds at a time.

Another difference between nap insertion and padding is that, while

padding indirectly controls the execution rate by inserting instructions to

prolong the execution time, nap insertion on the other hand, directly controls

the time allotted between naps and the duration of the nap, thus having a

more accurate and predictable rate reduction control than padding. To

estimate the effect of nap insertion on memory request or execution rate

reduction, we use the following equation:

Rexecution =
nap granularity

nap granularity + nap duration
(5.10)

where nap granularity is the duration of the execution interval between

Chapter 5. Compiling for Niceness 77

inserted naps and nap duration is the length of a nap. Given the execution

rate Rexecution of a low priority application, L, we can estimate the improved

QoS of its high priority co-runner, H. We denote H’s improved QoS using

QoSimprd co−run:

QoSimprd co−run = 1− (1−QoSorig co−run)×Rexecution (5.11)

where QoSimprd co−run and QoSorig co−run are both normalized by H’s QoS

when running alone, and QoSorig co−run is H’s QoS when co-running with

the original L; QoSimprd co−run is H’s QoS when co-running with the nap-

ping L. Padding can also use Equation 5.11 to predict the improved QoS

when padded code region is reducing to a certain execution rate Rexecution.

However, as we discuss later, because of the coarse grain control, nap inser-

tion is less skewed by the cooldown/ warmup effect.

Algorithm 2: NapInsertion
Input : Binary, nap granularity, nap duration

Output: Binary with inserted nap

1 instrument a global variable counter;
2 foreach BasicBlock in Binary do
3 if (BasicBlock.contention score > contention threshold) and (BasicBlock.coverage

> coverage threshold) then
4 InstrumentNap(BasicBlock, nap granularity, nap duration);
5 end

6 end

Algorithm 3: InstrumentNap
Input : BasicBlock, nap granularity, nap duration

Output: BasicBlock with inserted nap

1 At the beginning of the BasicBlock, instrument the following code: counter ++;
2 if (counter > counter threshold) then
3 cur time← read time stamp register ;
4 if (cur time− pre time >= nap granularity) then
5 sleep(nap duration);
6 prev time← read time stamp register ;
7 counter ← 0;

8 end

9 end

The main algorithm to conduct nap insertion is presented in Algorithm 2

Chapter 5. Compiling for Niceness 78

and the instrumentation function is presented in Algorithm 3. The nap is

only inserted to top basic blocks which are above a contention score threshold

and are above a certain execution time coverage. The contention score of

each basic block is generated by our profiling approach in Section 5.2.2.

To reduce the overhead of checking the time stamp, we also use a counter

to keep track of how many times the selected contentious basic blocks are

executed and only to check the elapsed execution time when the counter is

above a threshold.

5.3.3 Understanding Cooldown and Warmup

When applying a given amount of rate reduction to a code region, it may

seem intuitive that it should provide the same amount of the interference

reduction to a given co-runner. However, the granularity at which the in-

termittent rate reduction is conducted indeed matters. This is because of

the memory pressure cooldown and cache warmup effect. Again, we use L

to denote a low priority application to which we conduct padding or nap

insertion, and H to denote a high QoS priority application whose QoS we

are aiming to improve. When padding or a nap just starts to throttle down

memory requests, it would take a while for L’s pressure on the memory sub-

system to cool down, especially if the data are residing below the cache. The

memory system will still be serving L’s requests issued before the padding

or nap for a short period of time. Meanwhile, it takes a while for H to warm

up the cache to achieve its optimal performance when it is running alone.

We call this period the cooldown/warmup window. During this window,

the yielding of shared resources is not instant and may negatively impact

the effectiveness of the rate reduction mechanism. This effect may not be

negligible, especially for padding, because padding happens at a fine gran-

ularity (a number of cycles or ns). However, the severity of this window

Chapter 5. Compiling for Niceness 79

may be greatly reduced for nap insertion because nap insertion can be at a

coarser granularity. In Evaluation (Section 5.4), we will further investigate

the interaction of nap granularity and this cooldown/warmup effect.

5.4 Evaluation

In this section, we first evaluate the effectiveness of our prediction model and

profiling technique in identifying contentious code regions. We then evaluate

the application of our padding and nap insertion compiler transformations

to reduce the contentiousness of an application and improve its co-runner’s

QoS. We then investigate the impact of leveraging QoS-Compile to improve

utilization using both SPEC benchmarks and Google applications.

5.4.1 Setup and Methodology

Our evaluation is conducted on two platforms:

• Intel Nehalem. Intel Core i7 920 Quad Core with 2.67GHZ processors,

8MB last level cache shared by four cores and 4GB memory. This

platform runs Linux 2.6.29.6 and GCC 4.4.6.

• Intel Clovertown. A dual socket Intel Clovertown (Xeon E5345). Each

socket has 4 cores. Each 2 cores on the same socket are sharing a 4MB

16 way last level cache (L2). This platform runs Linux kernel version

2.6.26 and a customized GCC 4.4.3.

The workloads used in our evaluation include the SmashBench con-

tentious kernel suite (summarized in Table 5.1), SPEC CPU2006, and large-

scale Google applications such as websearch. SmashBench and SPEC ex-

periments are conducted on the Intel Nehalem configuration and the Google

experiments are conducted on production servers hosting the Intel Clover-

town configuration. Each benchmark is compiled using GCC at the O2

Chapter 5. Compiling for Niceness 80

R² = 0.2238

0

5000

10000

15000

20000

25000

30000

35000

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

L3
_
M
is
s
R
a
te

Measured Avg. Conten6ousness

Figure 5.6: L3 Miss Rate is not strongly correlated with the real measured contentious-
ness

R² = 0.07632

0

10000

20000

30000

40000

50000

60000

70000

80000

0 0.1 0.2 0.3 0.4

L3
_
R
e
fe
re
n
ce
 R
a
te

Measured Avg. Conten7ousness

Figure 5.7: L3 Reference rate is not strongly correlated with the real measured con-
tentiousness

level. All SPEC applications are run using ref inputs. Each experiment

was conducted three times to calculate the average performance. Smash-

Bench, SPEC and Google benchmark runs are fairly stable with a variance

of 1% or less between runs.

5.4.2 Model for Code Region Identification

The key component of the profiling system is the PMU model used to cor-

relate the memory subsystem activity of a code region to its contentious

nature and potential for causing interference.

[Model Accuracy] To evaluate the accuracy of our PMU model (Equa-

Chapter 5. Compiling for Niceness 81

R² = 0.83427

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.1 0.2 0.3 0.4
P
re
d
ic
te
d
 C
 u
si
n
g
 L
IN
E
S
IN

Measured Avg. Conten9ousness

Figure 5.8: Predicted contention score using our model is highly correlated with the real
measured contentiousness for SPEC benchmarks

Predictor R2

LLC Miss Rate 0.2238
LLC Reference Rate 0.07632
Our Prediction Model 0.83427

Table 5.2: Comparing our contentiousness predictor to predictors used in prior works.
Our predictor was trained with the SmashBench suite of contentious kernels and tested
against all SPEC 2006 benchmarks.

tion 5.9), we compare our PMU model’s predicted contentiousness of SPEC

benchmarks with their real measured contentiousness. We profile each

benchmark’s PMUs (L2LinesIn rate and L3LinesIn rate), and calculate the

predicted contentiousness using Equation 5.9 with the acquired PMU pro-

files. The prediction is then compared against each benchmark’s observed

contentiousness, measured as the average performance degradation it causes

to a set of co-runners.

As a baseline, we compare our predictive model to state of the art es-

timators proposed by prior work [65]. Figure 5.6 and 5.7 show the results

when using LLC miss rate and LLC reference rate to predict applications’

contentiousness. The correlation coefficients (R) are 0.47 and 0.28, respec-

tively, showing that neither LLC miss rate nor LLC reference rate alone

can accurately indicate application contentiousness. Figure 5.8 presents our

prediction results compared to the real measured contentiousness for SPEC

CPU2006 benchmarks. Recall that our model is trained using a different

Chapter 5. Compiling for Niceness 82

set of benchmarks (e.g., SmashBench) and here we evaluate it on SPEC.

For SPEC, the prediction’s linear correlation coefficient R is 0.91, indicating

that our prediction model can accurately score contentiousness. Table 5.2

summarizes the correlation results and the correlation coefficient R of each

model. Table 5.2 shows that our model is significantly better than predic-

tion using LLC miss rate or LLC reference rate, as proposed in prior work.

Keep in mind that our prediction model is trained with a separate set of

applications, the SmashBench suite, and evaluated here on SPEC2006.

[Pinpointing Code Regions] To evaluate the effectiveness of pin-

pointing the contentious code regions using our PMU model, we compare

benchmarks’ PMU model results with the degradation they cause to their

co-runners. Figure 5.9 presents sphinx’s contention score calculated using

its performance counter profile when it is running alone, based on Equa-

tion 5.9. The x-axis is time. Here sphinx is using ref input. The y-axis is

the contention score using PMU model of sphinx’s execution phases. Fig-

ure 5.9 shows that sphinx is not evenly contentious through the entire exe-

cution, but, instead, there are several phases (humps in the figure) that are

more contentious than the rest. Figure 5.10 presents bst8mb’s degradation

when running with sphinx. This figure also presents the entire execution

of sphinx using ref input. Comparison between Figure 5.9 and 5.10 shows

that PMU contention score correctly identifies execution phases that are con-

tentious (e.g cause more degradation to a co-runner). The execution phases

with higher PMU contention score (humps in Figure 5.9 are consistent with

the higher degradation (humps in Figure 5.10).

Similarly, Figure 5.11 presents the results for benchmark milc. The y-

axis shows the actual measured slow down of sledge caused by milc through

the entire execution of milc using ref input. Sledge is selected because its

performance is stable, which facilitates clear demonstration of the contention

Chapter 5. Compiling for Niceness 83

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 100 200 300 400 500 600 700 800 900 1000

P
M

U
 c

o
n

te
n

ti
o

n
 s

c
o

re

time

sphinx

contention score

Figure 5.9: Sphinx’s PMU contention score calculated using our prediction model

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 0 100 200 300 400 500 600 700 800 900 1000

d
e
g
ra

d
a
ti
o
n

time

bst8mb’s degradation w/ sphinx

degradation

Figure 5.10: Bst8mb’s degradation when running with sphinx. The higher, the more
degradation. Figure 7 trends similarly with this figure, indicating the profiler is identifying
the correct contentious code regions.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 100 200 300 400 500 600 700 800 900 1000

S
lo

w
d
o
w

n
 /
 C

o
n
te

n
ti
o
n
 S

c
o
re

time

Actual Slowdown of sledge
Contention Score of milc

Figure 5.11: This graph shows the accuracy of the contention score given by our predic-
tion model in predicting the contentiousness of milc.

Chapter 5. Compiling for Niceness 84

phases of milc. The y-axis also presents the phase-level contention score of

milc. We overlay these two lines in the figure for better comparison. Note

that contention score does not aim to predict the real degradation. Instead,

it is designed to indicate the level of contentiousness of various code regions.

Figure 5.11 shows that the shape of two lines match consistently, indicat-

ing that the predicted contention score accurately captures the contentious

phases of milc.

5.4.3 Compiler Transformations

In this section, we evaluate the two transformations used in QoS-Compile,

padding and nap insertion, using the SmashBench suite. This evaluation fo-

cuses on the effectiveness of our transformations for improving a co-running

application’s QoS. We applied our transformations to the whole program of

the contentious kernels without the use of the model to identify specific re-

gions. All experiments in this section were conducted on the Intel Nehalem

described in Section 5.4.1.

In Figures 5.12, 5.13, and 5.14 we show the QoS (in terms of execution

rate) impact of allowing pairwise co-location of sledge l (sledge large)

with 6 co-runners when leveraging QoS compile. The dashed line shows the

QoS of sledge l and the solid lines shows the QoS of each of the 6 corunners

when colocated with sledge l. In these experiments, sledge l is assumed

to be our low priority applications while each of its 6 co-runners are assumed

to be high priority. The x-axis shows various settings for padding and nap

insertion. Figure 5.12 presents the results of applying padding to sledge l,

and Figures 5.13 and 5.14 show the results when applying nap insertion to

sledge l.

Figure 5.12 shows that, as the padding thickness increases, sledge’s

execution rate decreases, and the QoS of blockie and bst improves. For

Chapter 5. Compiling for Niceness 85

.2x

.3x

.4x

.5x

.6x

.7x

.8x

.9x

1.x

1.1x

0 20 40 60 80

Q
o
S
/E
x
e
cu
*
o
n
 R
a
te

padding thickness (instr)

blockie_s

blockie_m

blockie_l

bst4mb

bst8mb

bst50mb

sledge_l_padd

ed

Figure 5.12: Padding sledge l’s effect on its co-
runner blockie and bst. As padding thickness increases,
sledge l’s execution rate deceases, blockie and bst’s QoS
improves. The padding granularity is every 5 instructions

.2x

.3x

.4x

.5x

.6x

.7x

.8x

.9x

1.x

1.1x

0 1 2

Q
o
S
/E
xe
cu
*
o
n
 R
a
te

Nap Dura*on (ms)

blockie_s

blockie_m

blockie_l

bst4mb

bst8mb

bst50mb

sledge_l_n

ap

Figure 5.13: Napping sledge l’s effect on co-runners,
blockie and bst. Nap granularity is 1ms. As nap duration
increases, sledge l’s execution rate deceases, blockie and
bst’s QoS improves.

.2x

.3x

.4x

.5x

.6x

.7x

.8x

.9x

1.x

1.1x

0 10 20

Q
o
S
/E
xe
cu
*
o
n
 R
a
te

Nap Dura*on (ms)

blockie_s

blockie_m

blockie_l

bst4mb

bst8mb

bst50mb

sledge_l_na

p

Figure 5.14: Napping sledge l’s effect on co-runners.
Nap granularity is 10ms.

Chapter 5. Compiling for Niceness 86

.2x

.3x

.4x

.5x

.6x

.7x

.8x

.2x .4x .6x .8x 1.x 1.2x

b
st
4
m
b
 Q
o
S

sledge_l execu2on rate

Nap: 1ms

Nap: 10ms

Padding: 5 instr

Figure 5.15: sledge l padding vs. nap for bst4mb

.2x

.3x

.4x

.5x

.6x

.7x

.8x

.2x .4x .6x .8x 1.x 1.2x

b
st
8
m
b
 Q
o
S

sledge_l execu2on rate

Nap: 1ms

Nap: 10ms

Padding: 5 instr

Figure 5.16: sledge l padding vs. nap for bst8mb

.2x

.3x

.4x

.5x

.6x

.7x

.8x

.9x

1.x

.2x .4x .6x .8x 1.x 1.2x

b
st
5
0
m
b
 Q
o
S

sledge_l execu3on rate

Nap: 1ms

Nap: 10ms

Padding: 5 instr

Figure 5.17: sledge l padding vs. nap for bst50mb.

Chapter 5. Compiling for Niceness 87

example, when running with the original sledge l, blockie l’s normalized

QoS is 0.6x of its solo optimal QoS. After we apply padding to sledge l,

blockie l’s QoS is improved to almost 0.9x , which is a 50% improvement.

An interesting observation is that the amount of improvement is not the

same for various co-runners. For example, bst8mb’s normalized QoS when

running with the original sledge l is 0.35x, almost 3 times slower than when

it is running alone. However after applying padding, its QoS is only improved

to 0.5x. Another interesting observation is that the amount of interference

reduction and QoS improvement slows down as padding thickness increases.

The improvement is more significant around padding thickness 30 to 50,

but for some benchmarks the improvement plateaus after 50. This indicates

a potentially diminishing return of increasing padding thickness beyond a

certain point.

Figures 5.13 and 5.14 show the results when applying nap insertion to

sledge l. The difference between these two figures is the napping granular-

ity. Figure 5.13’s granularity is 1ms, meaning that nap is inserted every 1ms

of the execution. The x-axis shows the nap duration, ranging from no nap at

all to 2 ms nap every 1ms of execution. Figure 5.14 shows the results when

the nap granularity is 10ms. These figures demonstrate the effectiveness of

nap insertion: as nap duration increases, co-runner’s QoS improves. Com-

paring Figure 5.13 and Figure 5.14 also demonstrates the impact of the nap

granularity. Interestingly, napping every 10ms performs significantly better

than napping every 1ms for several co-runners. For example, for bst8mb,

when running with sledge l nap 10ms 20ms (nap 10 ms every 20ms), its

normalized QoS is above 0.7x of its solo optimal QoS, compared to only

0.5x when it is running with sledge l nap 1ms 2ms. This improvement is

consistent with the cooldown and warmup effect.

Figures 5.15, 5.16 and 5.17 further illustrate the different impact of

Chapter 5. Compiling for Niceness 88

padding and nap with various configurations. In each figure, the x-axis

shows the sledge l’s normalized execution rate. The y-axis shows its co-

runners’ normalized QoS. In each figure, we plot three lines showing the

effect of three compilation techniques, padding, nap 1ms and nap 10ms.

From these figures we can compare, with the same reduced execution rate

for sledge l, which technique achieves the best QoS improvement. Fig-

ures 5.15 and 5.17 show that nap and padding perform similarly for bst4mb

and bst50mb as the three lines are very close to each other. However, Fig-

ure 5.16 shows that nap 10ms performs significantly better than the other

two. For example, when sledge l is running at 0.4x (40% of its original

execution speed), nap 10ms improves bst8mb’s QoS to 0.65x compared to

only 0.4x for both padding and nap 1ms. This result is consistent with the

cooldown and warmup discussion in Section 5.3.2. Longer padding or nap-

ping granularity allows co-runners to warm up the cache and achieve better

QoS performance. Since the experimental platform has a 8MB last level

cache, among bst4mb, bst8mb and bst50mb, bst8mb is the most cache con-

tentious benchmark, and therefore benefit the most from longer nap gran-

ularity. We also observe similar results when applying padding and nap

insertion to other synthetic benchmarks, which are not shown here.

5.4.4 QoS-Compile: Put it All Together

In this section, we evaluate QoS-Compile, the combination of profiling to

identify contentious code regions and compilation techniques to dampen

contentiousness and improve the QoS of co-runners. The goal of this evalu-

ation is to study the effectiveness of QoS-Compile in 1) improving the QoS of

high priority applications when running with low priority applications; and

2) improving machine utilization, meaning that the low priority applications

can still reasonably utilize the machine under the constraints of maintaining

Chapter 5. Compiling for Niceness 89

 0.85x

 0.9x

 0.95x

 1x

mcf omnet libquantum xalan soplex sphinx milc

Q
o

S
/P

er
fo

rm
an

ce

w/ lbm original
w/ lbm_nap_10_10
w/ lbm_nap_10_20

 0.65x

 0.7x

 0.75x

 0.8x

Figure 5.18: SPEC benchmark’s performance when it is co-located with the original
lbm, lbm with nap insertion (10ms, 10ms) and nap insertion (10ms, 20ms), normalized by
each benchmark’s performance when it is running alone

 0.85x

 0.9x

 0.95x

 1x

mcf omnetpp libquantum xalanc soplex sphinx lbm

Q
o

S
/P

er
fo

rm
an

ce

w/ milc original
w/ milc_nap_10_10
w/ milc_nap_10_20

 0.65x

 0.7x

 0.75x

 0.8x

Figure 5.19: SPEC benchmark’s performance when it is co-located with the original
milc, milc with nap insertion (10ms, 10ms) and nap insertion (10ms, 20ms), normalized
by each benchmark’s performance when it is running alone

the QoS of high priority applications at a satisfactory level. We conduct

this series of experiments using 8 memory-intensive benchmarks from SPEC

CPU 2006 on the Intel Nehalem described in Section 5.4.1. Our evaluation

in Section 5.4.3 shows that nap insertion performs better than padding. As

such, we focus on nap insertion in this section.

[Application level] For each benchmark, we first profiled to sample

its PMUs and calculated its contention score using our PMU model (Equa-

tion 5.9). We then identified its code regions (basic blocks) with contention

scores that are above a specified threshold. In our experimentation, we used

0.3 as the threshold. We conducted nap insertion to those basic blocks using

the algorithm presented in Section 5.3.2. To evaluate QoS-Compile’s effec-

Chapter 5. Compiling for Niceness 90

tiveness, we conducted pair-wise co-run experiments to co-locate a bench-

mark, presumed to be our low priority application, with 7 other benchmarks,

presumed to be the high priority application, and measured the QoS degra-

dation due to its interference.

Figures 5.18 and 5.19 present results for lbm and milc. Figure 5.18 shows

the normalized performance of each SPEC benchmark when it is running

with lbm. The x-axis shows each benchmark presumed to be the high priority

co-runner. The y-axis shows its normalized performance. The higher the

bars, the better. For each co-runner benchmark, a cluster of three bars show

its performance when it is running with lbm, with lbm 10 10 (lbm is napping

10ms every 10 ms) and with lbm 10 20, normalized by its performance when

it is running alone. These 7 co-runner benchmarks are the memory-intensive

SPEC benchmarks. We did not present results for other CPU bound SPEC

benchmarks because in general they do not suffer degradation from memory

resource contention. These figures demonstrate the effectiveness of QoS-

Compile. QoS-Compile greatly improves lbm’s “niceness”: reducing lbm’s

interference to its co-runner and improving co-runner’s QoS performance.

For example, mcf’s QoS is improved 22%, from only 0.74x of its solo optimal

QoS when it is running with the original lbm to above 0.9x of the optimal

when it is running with the napping lbm. In general, every benchmark’s

QoS when running with lbm 10 20 is above 90% of the solo optimal QoS.

Figure 5.19 presents similar results for milc.

Because QoS-Compile can greatly improve QoS, it provides opportunities

for warehouse scale computers to allow co-location knowing that using QoS-

Compile, the QoS degradation of the co-located high priority application

would be within an acceptable threshold (10%, for example). Figure 5.20

shows the gained machine utilization when allowing co-location facilitated

by QoS-Compile. Utilization is measured using lbm nap’s normalized perfor-

Chapter 5. Compiling for Niceness 91

 0.8x

 1x

lbm milc

 0.2x

G
ai

n
ed

 U
ti

li
za

ti
o
n

nap_10ms_10ms
nap_10ms_20ms

 0x

 0.6x

 0.4x

Figure 5.20: Gained Utilization when allow co-location.

mance (execution rate normalized by the original lbm performance when it is

running alone). For example, 48% gained utilization for napping lbm 10 10

indicates that lbm is running at 48% of its original execution rate. That is,

as opposed to disallowing co-location to ensure the QoS of the high priority

application, using QoS-Compile, we allow 48% additional computation while

protecting the QoS of its co-runner.

As we mentioned previously in Chapter 1, without QoS-Compile, WSC

operators currently have only two options, either allow co-location and suffer

a significant QoS penalty or disallow co-location and suffer a utilization

penalty. As these figures together demonstrate, QoS-Compile allows users

to trade a small amount of QoS to improve machine utilization. In this

experiment, we allow 10% QoS degradation, and in return, gain 40% of

utilization of the extra otherwise idle core. Changing the nap granularity

and nap interval provides a knob that can be used to tune the tradeoff

between QoS degradation and the amount of utilization gained. The more

QoS degradation headroom, the more utilization.

[Phase level] QoS-Compile not only reduces the overall average QoS

degradation, it also pinpoints the contentious regions and mitigates the

QoS degradation those regions can cause when executing. This makes

QoS-Compile also suitable for applications that only have phases of con-

Chapter 5. Compiling for Niceness 92

 550000

 600000

 650000

 700000

 750000

 800000

 850000

 900000

 950000

 0 100 200 300 400 500 600 700 800 900 1000

In
s
tr

u
c
ti
o

n
s
/m

s

time

bst8mb’s instructions/ms with sphinx

w/ original sphinx
w/ sphinx_10_10

Figure 5.21: bst8mb running with sphinx

workload description metric

websearch Websearch scoring and retrieval (QPS) queries
per sec

cluster-docs Unsupervised Bayesian clustering tool to take
keywords or text documents and ”explain”
them with meaningful clusters.

throughput

cluster-
keywords

Unsupervised Bayesian clustering tool to take
keywords or text documents and ”explain”
them with meaningful clusters.

throughput

goog-retrieval Web indexing query latency
(ms)

maps-detect-
face

Face detection for streetview automatic face
blurring

user time
(secs)

maps-detect-lp OCR and text extraction from streetview user time
(secs)

maps-stitch Image stitching for streetview user time
(secs)

Table 5.3: Production Warehouse Scale Computer Applications

Chapter 5. Compiling for Niceness 93

keywords retrieval face lp stitcher

Q
o

S

w/ sledge3 original
w/ sledge3_nap_10_10
w/ sledge3_nap_10_20

 0.6x

 0.65x

 0.7x

 0.75x

 0.8x

 0.85x

 0.9x

 0.95x

 1x

websearch docs

Figure 5.22: Google benchmark’s performance when it is co-located with the original
sledge3, sledge3 with nap insertion (10ms, 10ms) and nap insertion (10ms, 20ms), nor-
malized by each benchmark’s performance when it is running alone

tention. To further evaluate QoS-Compile’s effectiveness in pinpointing and

managing the contentious phases, we sample the performance of co-runners

throughout the entire execution to observe their performance variability

due to interference. Figure 5.21 presents bst8mb’s performance (instruc-

tions/ms) when it is running with the original sphinx, compared to its

performance when running with napping sphinx (sphinx 10 10, napping

10ms every 10ms). The x-axis shows time. We sample the entire execution

of sphinx with ref input. The y-axis is bst8mb’s performance. Bst8mb is

a contentious kernel and when it is running alone it has quite stable perfor-

mance. Therefore the performance variability shown in the figure is purely

due to interference from sphinx. As the figure shows, during the early half

of the execution, original sphinx causes significant performance degrada-

tion to bst8mb, demonstrated by the low IPS during the first 400 samples.

QoS-Compile correctly identifies the contentious phase and improves the

bst8mb’s IPS greatly. For the later half of the execution, the QoS-Compile

also identifies bst8mb’s performance valleys and improves it greatly.

Chapter 5. Compiling for Niceness 94

keywords retrieval face lp stitcher

Q
o

S

w/ er−naive 4mb original
w/ er−naive4mb_nap_10_10
w/ er−naive4mb_nap_10_20

 0.6x

 0.65x

 0.7x

 0.75x

 0.8x

 0.85x

 0.9x

 0.95x

 1x

websearch docs

Figure 5.23: Google benchmark’s performance when it is co-located with the original er-
naive4mb, er-naive4mb with nap insertion (10ms, 10ms) and nap insertion (10ms, 20ms),
normalized by each benchmark’s performance when it is running alone

5.4.5 Google Applications

To evaluate our compilation technique’s effectiveness in improving co-

runner’s QoS, we also conducted experiments using several large-scale ware-

house scale computer applications. The experimental platform is an Intel

Clovertown machine used in production (as described in Section 5.4.1). The

production applications are presented in Table 5.3. The QoS metric for

each application is the application-specific performance metric in its inter-

nal SLA, also presented in Table 5.3. The load for each application is a trace

of large amount of real world queries in production WSCs. A load generator

was set up to feed the queries to these applications. The performance shown

is applications’ stable behavior after the initialization phase, and the perfor-

mance is stable between runs. Figure 5.22 and Figure 5.23 present results.

In these experiments, each Google application is co-located with 2 threads

of SmashBench benchmarks. Figure 5.22 presents Google applications’ QoS

when co-located with sledge l. The x-axis shows each Google application.

And the y-axis is each application’s normalized performance. Each appli-

cation’s QoS are measured in 3 running scenarios presented as a cluster of

three bars: when it is co-located with 2 threads of original sledge l, with 2

threads of napping sledge that naps 10ms every 10ms, and with sledge that

Chapter 5. Compiling for Niceness 95

naps 20ms every 10ms. Each application’s QoS performance is normalized

to its performance when it is running alone. Figure 5.23 presents Google

application’s QoS performance when co-located with a cache contentious

benchmark, er-naive4mb. Figure 5.22 and Figure 5.23 demonstrate that

nap insertion is effective in improving an application’s “niceness” and im-

proving its co-running Google applications’ QoS. For example, nap insertion

improves websearch’s QoS from 0.77x to 0.9x when running with sledge l,

and from 0.68x to 0.87x when running with er-naive4mb. QoS-Compile can

improve QoS significantly and provides warehouse scale computer operators

with flexibility of allowing co-location with a slight hit on QoS. For exam-

ple, if warehouse scale computer scheduler specifies that 0.9x of the optimal

peak QoS is an acceptable threshold for websearch, with QoS-Compile, we

can allow co-location of websearch with other co-runner such as sledge l

to improve the machine utilization. Without QoS-Compile, 0.65x of its solo

QoS when running with the original sledge l may be too significant to

allow co-location, and thus leaving the machine under-utilized.

5.5 Summary

In this chapter, we have presented QoS-Compile, the first compilation ap-

proach that statically manipulates application contentiousness to enable the

co-location of applications with varying QoS requirements, and as a result,

can greatly improve machine utilization. Using a novel prediction model,

QoS-Compile first pinpoints an application’s contentious code regions that

tend to cause performance interference. QoS-Compile then transforms those

regions to reduce their contentious level. In this work we have shown that

binary code transformations to throttle down the execution rate and the

memory access rate of the contentious regions in low priority applications

Chapter 5. Compiling for Niceness 96

is an effective approach to reduce their interference to high priority appli-

cations. Through our experimentation, we find that QoS-Compile improves

applications’ QoS performance by 21% and machine utilization 36% on av-

erage. In the era of multicores and the emerging computing domain of

WSCs, the objectives of compiler optimization ought to be multifaceted. In

this work, we argue for the additional objective of optimizing for an ap-

plication’s “niceness”, to reduce its potential interference to its co-running

applications.

Chapter 6

Reactive Niceness

Contents

6.1 Reactive-Niceness Overview 98

6.2 RN-Compile: Compiling for Reactive Niceness . . . 102

6.3 RN-Runtime: Dynamic Detection and Reaction to

QoS Degradation . 104

6.3.1 Runtime . 104

6.3.2 Detection and Reaction 106

6.4 Evaluation . 110

6.4.1 Setup and Methodology 111

6.4.2 Effectiveness of Reactive-Niceness: Simple Heuristic112

6.4.3 Effectiveness of Reactive-Niceness: Targeted

Heuristic . 115

6.4.4 Effectiveness of Reactive-Niceness: Phase Level

Behavior . 117

6.4.5 Overhead . 121

6.4.6 Energy Efficiency of using Reactive-Niceness . . . 122

6.4.7 Varying Architecture 123

6.5 Summary . 125

97

Chapter 6. Reactive Niceness 98

Chapter 5 presents a novel compilation approach, QoS-Compile, for stat-

ically manipulating an application’s contention characteristics to reduce the

performance interference it may cause to corunning applications and ul-

timately facilitate workload consolidation and improve server utilization.

Essentially, QoS-Compile is a conservative approach. It throttles down the

execution of an application’s contentious regions, regardless of whether the

QoS of the corunning high priority applications actually suffers from perfor-

mance interference or not. In this chapter we present a statically enabled

dynamic approach, Reactive-Niceness, to enable the adaptive manipula-

tion of the contentiousness of low-priority applications to ensure the QoS

of high-priority co-runners. Reactive-Niceness monitors the QoS degrada-

tion of the high-priority applications online and diagnoses whether resource

contention among applications is the root cause of the degradation. If so,

it prescribes the necessary amount of throttling down dynamically and by

doing so, reducing the QoS degradation of high-priority application. The

biggest advantage of this online approach is its dynamic detection and re-

action, which helps achieve better server utilization and more accurate QoS

control than the static approach. Using Reactive-Niceness on SPEC2006

and SmashBench workloads, we are able to improve utilization by more

than 70% in many cases, and more than 50% on average, while enforcing

a 90% QoS threshold. We are also able to improve the energy efficiency of

modern multicore machines by 47% on average over a policy of disallowing

co-locations.

6.1 Reactive-Niceness Overview

Reactive-Niceness provides a software mechanism that automatically and

adaptively regulates the pressure that a low-priority batch application ap-

Chapter 6. Reactive Niceness 99

plies to shared memory subsystem resources to ensure the QoS of high-

priority latency-sensitive application. One key insight of Reactive-Niceness

is that a dynamic approach is needed to effectively detect contention at

runtime and reactively adjust the “niceness” of a low priority application

only when contention with high-priority co-runners is occuring. This re-

active “niceness” enables the flexibility needed to further improve machine

utilization and more accurately manage QoS.

Reactive-Niceness combines both static compilation and dynamic adap-

tation. Reactive-Niceness first uses a profile guided compilation approach

to identify the code regions in low-priority applications that aggressively

demand memory resources and may cause resource contention, and instru-

ments those regions to enable the flexible manipulation of their contentious-

ness. The profiling and static compilation enable the dynamic engine to

manipulate the execution of the low-priority application. They also assist

the diagnosis of contention and trigger the runtime only during phases when

problematic code regions are executing.

At runtime, Reactive-Niceness dynamically detects contention-caused

QoS degradation and adaptively throttles down the execution rate and mem-

ory request rate of those contentious regions in the low-priority application.

As neither the particular co-locations of high- and low-priority applications

or how sensitive the high-priority application may be to contention, are

known statically, a runtime approach that can dynamically adjust the exe-

cution rate is especially desirable. The degree of execution rate reduction on

low-priority applications is based on the severity of observed QoS degrada-

tion of the high-priority application, allowing for more drastic responses to

higher levels of contention. As contention lessens dynamically, the execution

rate of the low-priority application is then increased to maximize machine

utilization. The dynamic execution rate manipulation facilitates “safe” colo-

Chapter 6. Reactive Niceness 100

Contentious
Region

Monitor
Nap

Engine

Monitored
QOS

High Priority
Application

Low Priority
Application

RN-Runtime

Low Priority
Application

Compiler

RN-Compiler

Figure 6.1: Reactive-Niceness Overview

cation; cores that would otherwise be idle to avoid the unpredictable and

potentially significant QoS degradation are now utilized.

Reactive-Niceness consists of two components, RN-Compiler and RN-

Runtime, as shown in Figure 6.1.

[RN-Compiler] The RN-Compiler is a static profile-driven compiler

approach that uses a performance counter based profiling analysis to iden-

tify contentious code regions and insert markers on those regions to steer the

runtime adaptation. The profiling analysis used to identify contentious code

regions is similar to the analysis in QoS-Compile, presented in Section 5.2.2.

As shown in Figure 6.1, these inserted markers trigger the RN-Runtime, via

the Nap Engine, when contentious code regions are executed. These triggers

call upon the runtime to directly manipulate the rate of memory accesses

generated by the low-priority application through the Nap Engine interface.

The binaries produced by the RN-Compiler can also be run without the

Chapter 6. Reactive Niceness 101

RN-Runtime. In this case, the inserted markers are benign, and the appli-

cation runs as normal. The overhead of having these markers present in the

binary are minimal, and a full evaluation of these overheads is presented in

Section 6.4.

The advantage of a profiling guided approach is to pinpoint the po-

tentially problematic code regions for better dynamic contention detection.

Dynamically detecting resource contention is quite challenging for system

software. Purely relying on the dynamic observation of the QoS degradation

may lead to false positives for contention detection as contention may not be

the only reason for QoS degradation. Profiling guided approach facilitates

an more effective and low-overhead contention detection. The RN-Compiler

is described in more detail in Section 6.2.

[RN-Runtime] The RN-Runtime is responsible for monitoring the QoS

of high-priority applications, detecting when a low-priority application is

interfering with the performance of the high-priority application, and dy-

namically deciding the degree of memory access rate reduction to apply to

alleviate the performance interference. As shown in Figure 6.1, a lightweight

dynamic runtime that monitors application QoS is attached to the high pri-

ority application. This runtime periodically reports the application QoS

through a shared memory buffer. The Nap Engine that is attached to the

application binary of the low-priority application reads the most recent QoS

reports from this buffer to steer the online contention response. The RN-

Runtime and the adaptive policies are described in detail in Section 6.3.

[Using Reactive-Niceness in a Modern WSC] Figure 6.1 also il-

lustrates how Reactive-Niceness is used in the context of a WSC. All low-

priority applications in the WSC are compiled with a flag denoting it is a

low-priority application. The applications are then compatible for execution

with Reactive-Niceness enabled. When these applications are scheduled to

Chapter 6. Reactive Niceness 102

 L1: ld
ld

 mov
 jmp L1

contention
score

time

model: contention score = f(PMUs)

miss rate and ratio do not accurately indicate

 L1: ld
ld

 mov
 invoke_rt()

 jmp L1

Low Priority
Application

Profiler

Compiler

Figure 6.2: Reactive-Niceness Compilation

be co-run with a high-priority application, QoS monitoring is turned on, and

the Nap Engine enacts the adaptation policy.

6.2 RN-Compile: Compiling for Reactive Nice-

ness

In this section we present RN-Compile, our static compilation to enable

dynamic contention mitigation and QoS improvement at runtime. The RN-

Compile process is illustrated in Figure 6.2. To compile a low-priority ap-

plication, we first identify its contentious code regions using a profiler that

scores code regions as they execute. We then insert markers in those regions

that periodically invokes the RN-Runtime. Because markers target the prob-

lematic regions, the runtime engine is only triggered when the contentious

regions are executing.

Our approach to identifying the contentious code regions based on the

Chapter 6. Reactive Niceness 103

PMU model is fairly straightforward and is similar to the analysis presented

in Section 5.2.2. During profiling, performance counters (L2 and L3 lines

in rate) are sampled every 1 ms and the contention score is calculated using

Equation 5.9. To correlate the contention score to the corresponding static

code regions, the number of instructions retired in each 1 ms execution in-

terval is also sampled and recorded. After the profiling run, a PIN [35] tool

is used to replay the execution. Based on the recorded instruction profile,

our PIN tool identifies the hottest basic blocks that are executed during

each 1 ms execution interval and assigns the corresponding contention score

to these basic blocks. The PIN tool then selects the basic blocks with high

contention score.

After the contentious basic blocks are identified, instead of applying com-

pilation transformations to these regions as in QoS-Compile (Section 5.3),

we instrument markers, invoke rt(), to the contentious code, shown in Fig-

ure 6.2. These markers will invoke the RN-Runtime to dynamically decide

the throttling policy at runtime. To minimize the potential overhead of fre-

quent calls to the runtime, we have implemented a number of optimizations.

Most notably we use a self-tuning global checker that allows the call to the

runtime to be executed only after a sufficient execution iterations of the same

basic block to avoid too frequent checking, especially when a large number

of markers are inserted in the critical path of execution. Instead of executing

the function call every time, an increment and compare is executed in the

average case.

Chapter 6. Reactive Niceness 104

PMU

Monitor

detect
contention

AnalyzerNap()

yes

no

Nap Engine

High Priority
Application

Low Priority
Application

Runtime Engine

IPC

Figure 6.3: Reactive-Niceness Runtime Architecture

6.3 RN-Runtime: Dynamic Detection and Reac-

tion to QoS Degradation

In this section, we present RN-Runtime, our runtime engine that dynam-

ically detects the QoS degradation of high priority applications due to re-

source contention, and adaptively manipulates the contentiousness of low-

priority applications to mitigate QoS degradation.

6.3.1 Runtime

Figure 6.3 illustrates the design for RN-Runtime. The runtime engine is

composed of two main components: Monitor and Nap Engine. In our imple-

mentation, the Nap Engine is linked into the low-priority application and the

Monitor is either linked into, or attached to the PID of, the high-priority ap-

plication. The Nap Engine and the Monitor communicate through a shared

memory buffer.

[Monitor] The Monitor is responsible for monitoring the QoS of high

priority applications. In this design we use instruction-per-cycle (IPC) as a

Chapter 6. Reactive Niceness 105

proxy for QoS. The IPC is often used in production datacenters as a QoS

proxy because it is readily available using hardware performance counters

and can be sampled with little overhead [47]. The Monitor uses periodic

probing technique, leveraging a timer interrupt to sample the hardware per-

formance counters every 1 ms, and storing the recent sequence of IPC sam-

ples in a circular buffer in the shared memory. As we show in Section 6.4

this period probing technique incurs a minimal overhead (often less than

1%).

[Nap engine] Based on the monitored QoS, the Nap Engine detects re-

source contention and QoS degradation, and accordingly reacts by deciding

the appropriate execution rate reduction for the low-priority application.

The Nap Engine is only invoked by the instrumented markers when the

low-priority application is executing the contentious regions. Instead of in-

voking the Nap Engine every time an instrumented contentious basic block

is executing, a timer based on the time stamp register, read using RDTSC

instruction, is used in the instrumentation to only yield control from the

low-priority application to the Nap Engine periodically (2 ms in our experi-

ments). To further reduce the overhead of timer checking, we also use this

timer to adapt the global checker mentioned in Section 6.2 by approximat-

ing the amount of runtime invocations to skip before reading the timestamp

counter again. This approximation requires a simple calculation based on

the time past since the prior invocations and is adaptively adjusted upon

every timestamp read. Due in part to these optimizations, the overhead of

invoking the Nap Engine is low, never exceeding 5%, and is evaluated in

Section 6.4.

When invoked, the Nap Engine’s main tasks are to firstly detect con-

tention and QoS degradation based on the information provided by the

Monitor, and secondly if contention is detected, analyzes and decides how

Chapter 6. Reactive Niceness 106

to appropriately throttle down the low-priority application to mitigate the

degradation. The Nap Engine controls the execution rate of a low-priority

application by putting the execution of a contentious code region to epochal

intermittent short “nap” mode. Naps reduce the memory request rate and

execution rate of the low-priority application and the pressure it puts on the

shared memory subsystem. This in turn prioritizes the memory requests of

the co-running high-priority applications, and the QoS degradation it suffers

due to the resource contention with the low-priority application is greatly re-

duced or eliminated for the duration of the nap. Two main parameters that

affect the behavior and the effectiveness of napping include the frequency

and the duration of naps. The Nap Engine controls these parameters and

decide whether and when a nap should occur (essentially how long the low-

priority application should execute at a normal rate) and how long of a nap

it should take to effectively improve the QoS of the corunning high-priority

application. Flexible policies and heuristics for contention detection and re-

action can be implemented in RN-Runtime, which are further discussed in

the next section.

6.3.2 Detection and Reaction

In this section, we present two adaptation policies used in RN-Runtime to

detect resource contention and QoS degradation, and to reactively control

the execution rate of the low-priority application to mitigate contention

if necessary. It is challenging to design a software approach to detecting

contention as it occurs. This is mostly due to the fact that contention in

various hardware components such as shared caches and memory controllers

is not exposed to the software. For example, during runtime, information

such as the amount of data belonging to the high-priority application that

is evicted by a corunning low-priority application from the shared cache is

Chapter 6. Reactive Niceness 107

not visible to the software. We design probabilistic empirical approaches to

tackling the challenge of dynamic contention detection based on the online

monitoring. Once contention and QoS degradation are detected, the Nap

Engine is also tasked to decide the appropriate rate reduction to apply to

the low-priority application to reduce the QoS degradation.

In this work, we design two heuristics for the Nap Engine: simple and

targeted. The simple heuristic directly relies on QoS monitoring informa-

tion of the high-priority application and is designed to provide users with

a flexible, tunable “knob” to manage the tradeoffs between QoS and uti-

lization. For example, the heuristic can be configured to bias towards QoS

and conservatively reduce utilization or configured to bias towards utiliza-

tion and risk the QoS. However, the simple heuristic does not strive for a

strict QoS goal, such as improving the QoS of high priority application to

above 90% of its normal QoS when running alone. The targeted heuristic

on the other hand, is designed to accommodate a pre-specified QoS target.

Targeted makes the detection based on closely monitoring the impact of

throttling of the low-priority application on the QoS and uses an analytical

model to adjust the appropriate nap duration adaptively.

Algorithm 4: Nap Engine (Heuristic 1: Simple)

Input : threshold low, threshold high, nap ratio low, nap ratio mid,
nap ratio high

1 ipc = latest IPC sample from the shared IPC buffer;
2 if (ipc < threshold low) then

3 nap duration← nap ratio low × exec duration ;
4 else if (ipc < threshold high) then

5 nap duration← nap ratio mid× exec duration ;
6 else

7 nap duration← nap ratio high× exec duration ;
8 end

9 nap(nap duration);

[Heuristic 1: Simple] The basic idea of simple is to detect and react

purely based on the monitored QoS of the high priority application. In

Chapter 6. Reactive Niceness 108

Check

Execute

Intermittent
Nap

∆IPC is small
vo

lun
tar

y c
he

ck

∆
IPC

 is
 sm

all

∆IPC is significant
∆IPC is significant

Figure 6.4: DFA for targeted Heuristic

our runtime implementation, we use instruction-per-cycle (IPC) as a proxy

for QoS and simple adjusts the nap duration based on the dynamically

monitored IPC. The detail of our algorithm is described in Algorithm 4.

When the contentious code region is executing, the Nap Engine is invoked

periodically (each execution duration). The Nap Engine then reads the

latest IPC sample of the high-priority application (HP). Two thresholds

(threshold low, threshold high) are used to bucket the monitored IPC into

low, medium and high. The nap duration is decided based on which bucket

the IPC is in. The lower the IPC the longer the nap duration. In addition

to IPC, application specific performance metrics such as query latency can

also be monitored and bucketed. The rationale of this heuristic is that

although many factors other than contention may cause QoS degradation

(such as load temporal changes), we will conservatively throttle down the

low priority application (LP) once the QoS degradation is observed. The

parameter configurations (IPC thresholds and nap ratio) decide how QoS-

biased (conservative) or utilization-biased (optimistic) the Simple heuristic

is. The sensitivity of those parameters are discussed in Section 6.4.

[Heuristic 2: Targeted] The primary design goal of targeted is to

Chapter 6. Reactive Niceness 109

adaptively adjust the nap to improve the QoS to a user-specified goal (such

as a minimum QoS of normalized 90% of a specific QoS target). The basic

idea of targeted is to detect and react based on measuring how the QoS

of high-priority application is affected by naps of low-priority applications.

Figure 6.4 illustrates the logic of targeted. There are three basic states for

LP, which the Nap Engine keeps track of. Periodically, the nap engine is

invoked to analyze the QoS samples of HP and the analysis result triggers

potential state transitions.

• Intermittent nap state. The intermittent nap state indicates

that naps are inserted to throttle LP’s execution rate. The QoS of the

HP is sampled both when the LP is napping and when the LP later

wakes up from the nap and is executing. The difference between the

two samples, delta IPC is used to adjust the next nap duration. The

bigger the difference is, the more significant the impact of contention

is, the longer the nap duration should be. The detailed model of

adapting the nap duration is shown later. When the IPC delta is

smaller than the pre-specified QoS degradation threshold, it indicates

that napping does not have a significant impact. And LP transition

to the execution state.

• Execution state. In execution state LP executes at the full rate

with no naps inserted. However, LP does not stay in execution state

indefinitely, a countdown is set to trigger the transition to voluntary

check state after a pre-specified execution period.

• Check state. The purpose of the check state is to periodically de-

tect if contention occurs after a period of execution. The detection

is similar to intermittent nap state. LP is put to nap for a short

interval and then is run for a short interval. The difference of the IPC

Chapter 6. Reactive Niceness 110

samples of HP during these two intervals is used to decide if contention

is occurring. If so, LP transitions to the intermittent nap state; if

not, the execution state.

The algorithm for targeted heuristics is described in Algorithm 5. A

parameter conservative factor is used to guard how close the monitored

QoS degradation is to the pre-specified threshold (delta IPC, for example)

before the napping is used to throttle down the LP.

In Algorithm 5, we estimate the appropriate nap duration based on the

QoS goal (the degradation threshold QoSthresh, such as 90% of optimal

QoS) and the observed difference between IPC of HP when LP is napping

(IPCnap) and when LP is executing (IPCexec). To estimate the appropriate

nap duration we solve the following equation:

QoSthresh

1−QoSthresh

=
IPCnap − IPCexec

IPCexec
×

exec duration

exec duration+ nap duration

(6.1)

where exec duration is the duration of the execution interval between in-

serted naps.

6.4 Evaluation

We use the same prediction model as in QoS-Compile, which is already

evaluated in Section 5.4. So in this section, we focus on evaluating the effec-

tiveness of both heuristics in controlling the QoS degradation that results

from resource contention and in improving server utilization. We also take a

deeper look into the dynamic behavior of Reactive-Niceness and its reaction

to contentious phases throughout the execution. Lastly, we evaluate the

overhead and power efficiency of Reactive-Niceness.

Chapter 6. Reactive Niceness 111

Algorithm 5: Nap Engine (Heuristic 2: Targeted)

Input : QoS goal, conservative factor, execute period

1 if (LP state == execution state && execute countdown > 0) then

2 execute countdown−− ;
3 return; /* no napping, running ahead */ ;

4 else if (LP state == execution state && execute countdown = 0) then

5 nap(check interval) ;
6 ipc nap← read the average IPC of HP when LP is the last napping duration

from the shared IPC buffer ;
7 LP state← check state; /* voluntarily nap for a short period to test

if contention is back by checking delta IPC */ ;

8 else if (LP state == nap state || LP state == check state) then

9 ipc exec← read the average IPC of HP when LP is the execution interval
from the shared IPC buffer ;

10 delta ipc← (ipc nap− ipc exec)/ipc nap ;
11 if (delta ipc < conservative factor ∗ QoS goal) then

12 execute countdown← execute period ;
13 LP state← execution state ;
14 return; /* significant contention is not detected nap does not

seem to have a big enough effect on IPC */ ;

15 else

16 nap duration← calculate duration(delta ipc,QoS goal) ;
17 nap(nap duration) ;
18 ipc nap← read the average IPC of HP when LP is the last napping

duration from the shared IPC buffer ;
19 LP state← nap state ;

20 end

21 end

6.4.1 Setup and Methodology

Our evaluation is conducted on a 2.67 GHZ Quad Core Intel Nehalem pro-

cessor, described in Section 5.4.1 with an 8MB last level cache (L3) shared

by four cores with 4GBs of main memory. This platform runs Linux 2.6.29.6

and a customized GCC 4.4.6. The workloads used in our evaluation include

the sledge application from the SmashBench contentious kernel suite (de-

veloped at Google, summarized in Table 5.1), and applications from SPEC

CPU2006. All benchmarks are compiled using GCC at the O2 level. All

SPEC applications are run using ref inputs. In our evaluations in Sec-

tion 5.4, we have shown that SPEC 2006 and Google applications have

similar amount of performance degradation due to contention. In addition,

throttling down low-priority applications at millisecond granularity has sim-

Chapter 6. Reactive Niceness 112

 1x

lbm sphinx bzip milc namd

N
o

rm
al

iz
ed

 Q
o

S

base
util_bias
balanced
QoS_bias

 0.4x

 0.5x

 0.6x

 0.7x

 0.8x

 0.9x

Figure 6.5: QoS of each benchmark co-
running with sledge, normalized to solo
QoS. (simple)

+namd

U
ti

li
za

ti
o

n

util_bias
balanced
QoS_bias

 0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

 80%

 90%

 100%

+lbm +sphinx +bzip +milc

Figure 6.6: Utilization of sledge with
each configuration. (simple)

 0.8x

 0.9x

 1x

sphinx bzip milc namd

N
o

rm
al

iz
ed

 Q
o

S

base
util_bias
balanced
QoS_bias

 0.4x

 0.5x

 0.6x

 0.7x

Figure 6.7: QoS of each benchmark co-
running with lbm. (simple)

+bzip +milc +namd

U
ti

li
za

ti
o

n

util_bias
balanced
QoS_bias

 0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

 80%

 90%

 100%

+sphinx

Figure 6.8: Utilization of lbm with each
configuration. (simple)

ilar effect on improving the QoS of a high-priority SPEC or Google appli-

cation. Due to the lack of workload access during our experimentation, in

this section we use SPEC as our main experimental benchmark suite. Each

experiment are conducted three times to calculate the average performance.

Benchmarks runs are fairly stable with a variance of 1% or less between

runs.

6.4.2 Effectiveness of Reactive-Niceness: Simple Heuristic

As mentioned in Section 6.3.2, our simple heuristic provides “knobs” that

control whether the emphasis of Reactive-Niceness is biased towards QoS

or machine utilization. Table 6.1 presents the three configurations we use

Chapter 6. Reactive Niceness 113

 0.8x

 0.9x

 1x

lbm sphinx bzip namd

N
o

rm
al

iz
ed

 Q
o

S

base
util_bias
balanced
QoS_bias

 0.4x

 0.5x

 0.6x

 0.7x

Figure 6.9: QoS of each benchmark co-
running with milc. (simple)

+sphinx +bzip +namd

U
ti

li
za

ti
o

n

util_bias
balanced
QoS_bias

 0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

 80%

 90%

 100%

+lbm

Figure 6.10: Utilization of milc with each
configuration. (simple)

Configurations thresh low thresh high nap ratio
util biased 0.5 1.0 {0, 1, 2}
balanced 0.8 1.5 {0, 1, 2}
QoS biased 0.5 1.0 {1, 2, 3}

Table 6.1: Three configurations for simple heuristic

in our evaluation. These include util bias, balanced, and QoS bias, rep-

resenting an emphasis on higher utilization, a balance between utilization

and QoS, and higher QoS respectively. Threshold low, threshold high

and nap ration are parameters for Algorithm 4 to control, respectively, the

binning of monitored instructions-per-cycle (IPC) of the high-priority appli-

cation and the nap duration of the low-priority application. In general the

longer the nap ratio, the more throttling down the heuristic applies to the

low priority applications, and the more biased the heuristic is towards the

QoS of high priority applications.

Figures 6.5, 6.7 and 6.9 present the QoS of the high-priority applica-

tion when we apply Reactive-Niceness to a low priority application with

three configurations of simple heuristic. In each of these figures, the x-axis

shows the high-priority applications and the y-axis shows their QoS when

each of them is co-running with a low-priority application, normalized to

its QoS performance when running alone on the machine. For each high-

priority application, a cluster of four bars demonstrates four settings for the

Chapter 6. Reactive Niceness 114

corunning low priority application. The first bar shows the QoS of the high

priority application when it is corrunning with the original low-priority ap-

plication without the Reactive-Niceness. The rest three bars show its QoS

when we apply RN with three configurations of the simple heuristic to the

low-priority application. Each of three low-priority applications, sledge,

lbm, and milc is used in Figures 6.5, 6.7, 6.9 respectively.

Figures 6.6, 6.8 and 6.10 show the corresponding utilization gained for

each of the low-priority applications. Note that we are measuring the uti-

lization of the computing resources used by the low-priority application.

From the figures, we observe that when applying Reactive-Niceness with

our simple heuristic, the QoS of each high-priority application is signifi-

cantly improved (by up to 26%) relative to the configuration of allowing

the co-location of both applications without Reactive-Niceness (first bar in

Figures 6.5, 6.7 and 6.9). Recall that without Reactive-Niceness, such colo-

cation of low- and high-priority applications would be disallowed due to

the possible QoS degradation. Compared to such baseline of disallowing

co-location, we gain a significant amount of utilization when allowing co-

location with Reactive-Niceness, often more than 50%. Various configura-

tions in simple heuristic also provide a wide range of options for balancing

QoS and utilization. In this experiment, the utilization-biased configura-

tion achieves significantly higher utilization than other two configurations,

and the QoS of each high-priority application only slightly degrades. This

demonstrates that with parameter tuning, the simple heuristic can be ef-

fective in improving QoS while gaining a significantly amount of processor

utilization.

Chapter 6. Reactive Niceness 115

 1x

lbm sphinx bzip milc namd

N
o

rm
al

iz
ed

 Q
o

S

base
conserv_90
relaxed_90
conserv_80

 0.4x

 0.5x

 0.6x

 0.7x

 0.8x

 0.9x

Figure 6.11: QoS of each benchmark co-
running with sledge, normalized to solo
QoS. (targeted)

nmd

U
ti

li
za

ti
o

n

conserv_90
relaxed_90
conserv_80

 0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

 80%

 90%

 100%

lbm sphinx bzip milc

Figure 6.12: Utilization of sledge with
each configuration. (targeted)

 0.8x

 0.9x

 1x

sphinx bzip milc namd

N
o

rm
al

iz
ed

 Q
o

S

base
conserv_90
relaxed_90
conserv_80

 0.4x

 0.5x

 0.6x

 0.7x

Figure 6.13: QoS of each benchmark co-
running with lbm. (targeted)

bzip milc nmd

U
ti

li
za

ti
o

n

conserv_90
relaxed_90
conserv_80

 0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

 80%

 90%

 100%

sphinx

Figure 6.14: Utilization of lbm with each
configuration. (targeted)

6.4.3 Effectiveness of Reactive-Niceness: Targeted Heuristic

Our more sophisticated targeted heuristic enables a more precise enforce-

ment to achieve the desired QoS requirements. This heuristic has effectively

three “knobs,” one for the specific QoS threshold to enforce, and the other

two for how conservatively (strictly) this QoS threshold must be enforced

(parameters QoS goal, conservative factor and execution period in Al-

gorithm 5). With more conservative parameters, the application QoS is less

likely to drop below the specified threshold; however, a larger amount uti-

lization may be sacrificed. We explore this tradeoff in our evaluation.

Figures 6.11 – 6.16 are similar to those presented above. For this set of

graphs we use our targeted heuristic with the three configurations presented

Chapter 6. Reactive Niceness 116

 0.8x

 0.9x

 1x

lbm sphinx bzip namd

N
o

rm
al

iz
ed

 Q
o

S

base
conserv_90
relaxed_90
conserv_80

 0.4x

 0.5x

 0.6x

 0.7x

Figure 6.15: QoS of each benchmark co-
running with milc. (targeted)

sphinx bzip nmd

U
ti

li
za

ti
o

n

conserv_90
relaxed_90
conserv_80

 0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

 80%

 90%

 100%

lbm

Figure 6.16: Utilization of milc with each
configuration. (targeted)

Configurations ex period(ms) conserv factor QoS goal
conservative 90 6 0.4 90%
relaxed 90 12 1.0 90%
conservative 80 9 0.4 80%

Table 6.2: Three configurations of targeted heuristic

in Table 6.2. The configurations conserv 90, relaxed 90, and conserv 80

represent a conservative setting at a 90% QoS threshold, a relaxed setting

at 90%, and a conservate setting at an 80% QoS threshold, respectively.

Figures 6.11, 6.13 and 6.15 show the effect of using our targeted heuristic

on the QoS of the high-priority applications. Note that two horizontal lines

are drawn in each graph denoting the 90% and 80% QoS thresholds. Fig-

ures 6.12, 6.14 and 6.16 show the corresponding processor utilization gained

for each configuration.

As shown in these figures, the targeted heuristic is quite effective in

bringing the QoS of the high priority applications to the desired QoS thresh-

old, beating it in many cases, and coming very close in the worst cases with

our conservative settings. When using a relaxed setting, we gain a noticable

bump in the utilization while often meeting our QoS target. The decision

as to how conservative or relaxed the QoS target is depends on the objec-

tives and discretion of the application service provider and whether higher

utilization is desired or stricter QoS polices are specified.

Chapter 6. Reactive Niceness 117

[Simple vs. Targeted] Our simple and targeted heuristics offer two

options to application service providers: one allowing the tuning of the trade-

off between utilization and QoS when a specific QoS target is not specified,

the other when the specific QoS degradation threshold is known. When con-

figured appropriately, the simple heuristic can perform quite well. However,

it may require a significant amount of parameter tuning to search for the

appropriate configuration. The appropriate configuration may also change

when the co-running applications change. While the targeted does not

require such parameter tweaking because it is self tuning and feedback di-

rected. More comparison between simple and targeted is presented in the

following section.

6.4.4 Effectiveness of Reactive-Niceness: Phase Level Be-

havior

We further evaluate the phase-level effectiveness of RN-Runtime in improv-

ing the QoS of high-priority applications.

Figure 6.17 presents the IPC of sphinx when it is running with the

original sledge, comparing to its IPC when running with sledge on RN-

Runtime using the simple heuristic. The IPC samples are normalized to

sphinx’s IPC profile when running alone to demonstrate the IPC degrada-

tion due to contention. In this experiment, simple heuristic is using balance

configuration and sphinx is using ref input. To calculate the normalized

IPC, we collect the IPC profiles of sphinx when it is running alone (solo)

and running with sledge. IPC is sampled every 1ms and all profiles of

the entire execution of sphinx are down sampled to 1000 data points. The

normalized IPC at point i is calculated as IPCcorun i

IPCsolo i
. Therefore, the closer

the normalized IPC to 1, the less the degradation. In Figure 6.17, the line

denoting the original sledge shows phase-level changes of the IPC degra-

Chapter 6. Reactive Niceness 118

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 100 200 300 400 500 600 700 800 900 1000

N
o

rm
a

liz
e

d
 I

P
C

time

w/ original sledge
w/ sledge on RN-Runtime, simple heuristic

Figure 6.17: Sphinx normalized IPC with original sledge and with sledge with RN H1

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 100 200 300 400 500 600 700 800 900 1000

N
o

rm
a

liz
e

d
 I

P
C

time

w/ original sledge
w/ w/ sledge on RN-Runtime, targeted heuristic

Figure 6.18: Sphinx normalized IPC with original sledge and with sledge with RN H2

dation due to contention. For example, around samples 100 to 200, and 300

to 400, there are noticeable phases of degradation increase. Also the degra-

dation is less significant during the later half of the execution. Figure 6.17

also clearly demonstrates the IPC improvement achieved by RN-Runtime

along the entire execution of sphinx. Instead of around 60%-70% of the

normalized IPC when running with the original sledge , Reactive-Niceness

improves the normalized IPC to above 80% through most of the execution.

Similar to Figure 6.17, Figure 6.18 presents sphinx’s normalized IPC

when it is running with sledge using targeted heuristics (conservative 90

Chapter 6. Reactive Niceness 119

configuration), also comparing to its normalized IPC when running with

the original sledge. Despite of the distinctive phases of varying levels of

degradation when running with the original sledge as discussed previously

(for example, samples 100-200 and 300-400), targeted heuristic consistently

guarantees around 90% IPC for sphinx through the entire execution. This

is different from the simple heuristic shown Figure 6.17 where the improved

normalized IPC fluctuates between 70% to 90%. This comparison highlights

the difference between the simple and targeted heuristics. While simple

is effective in improving the QoS, targeted heuristic is effective in adapting,

achieving and maintaining a stable QoS level as specified.

Similar to Figures 6.17 and 6.18, Figures 6.19 and 6.20 present the nor-

malized IPC of sphinx when it is running with the original milc, as well

as milc with Reactive-Niceness. In Figures 6.19 and 6.20, the RN-Runtime

for milc uses the simple heuristic and targeted heuristic respectively. The

IPC of sphinx when running with the original milc demonstrates the vary-

ing levels of contention and degradation. For example, during samples 600 to

800, the degradation is significantly smaller (normalized IPC close to 1) than

the rest of the execution. A few samples with normalized IPC higher than

1 are due to aliasing of downsampling. In this set of experiments, targeted

heuristic is configured as conservative 90, meaning RN-Runtime aims at

less than 10% of the QoS degradation for sphinx. Simple heuristic is con-

figured with QoS biased configuration to achieve the similar QoS goal as

targeted. Figures 6.17 and 6.18 demonstrate the effectiveness of Reactive-

Niceness. The QoS of sphinx is significantly improved after applying RN

to corunning milc; the normalized IPC of sphinx is stable and between 0.9

and 1.

Figure 6.21 presents the corresponding average nap duration of milc for

every 2ms’ execution, decided dynamically by RN-Runtime based on dy-

Chapter 6. Reactive Niceness 120

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 0 100 200 300 400 500 600 700 800 900 1000

N
o
rm

a
liz

e
d
 I
P

C

time

w/ original milc
w/ RN-milc-simple

Figure 6.19: Sphinx normalized IPC with original milc and with
simple milc

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 0 100 200 300 400 500 600 700 800 900 1000

N
o
rm

a
liz

e
d
 I
P

C

time

w/ original milc
w/ RN-milc-simple

Figure 6.20: Sphinx normalized IPC with original milc and with
targeted milc

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 100 200 300 400 500 600 700 800 900 1000

a
v
e

ra
g

e
 n

a
p

 d
u

ra
ti
o

n

time

simple
targeted

Figure 6.21: Average nap duration for milc with simple vs. milc

with targeted

Chapter 6. Reactive Niceness 121

 0.5x

 0.7x

 0.8x

 0.9x

 1x

 1.1x

lbm milc namd bzip2 sphinx mean

E
x

ec
.

T
im

e
(n

o
rm

.)

base native
with monitor

 0.6x

Figure 6.22: Overhead of monitoring for high-priority application.

 0.5x

 0.7x

 0.8x

 0.9x

 1x

 1.1x

lbm milc sledge mean

E
x

ec
.

T
im

e
(n

o
rm

.)

base
with nap engine

 0.6x

Figure 6.23: Overhead of nap engine for low-priority application.

namic contention detection. The longer the nap duration, the lower utiliza-

tion. Figure 6.21 shows that simple heuristic demonstrates certain adapt-

ability. After sample 600 when the contention is not as significant, naps be-

come shorter. However, in general, the nap duration is significantly shorter

using the targeted heuristic, while achieving similar QoS improvement as

the simple heuristic. This is because targeted heuristic can estimate the

amount of QoS degradation and the necessary amount of nap/throttling

for achieving the QoS goal, and adaptively adjust the nap based on the

estimation; while simple heuristic may over-conservatively throttle down

the low-priority application, especially when it is configured to be biased

towards QoS.

6.4.5 Overhead

Figures 6.22 presents the performance costs of the monitoring the QoS of the

high-priority application. The overhead is minimal. The overhead suffered

Chapter 6. Reactive Niceness 122

by high-priority applications is less than 1% on average with a max of 2%

in the case of milc.

Figure 6.23 shows the performance overhead of invoking the Nap Engine

to throttle down low-priority applications. The overhead of probing the

Nap Engine is slightly more costly, approaching 5% for milc. However, the

Nap Engine is only causing overhead to the low-priority application, and

the performance cost is not as important.

The low cost of our runtime approach is due to the fact that we only

invoke the runtime system at the 1 ms granularity for both low and high-

priority applications. The overhead of reading and recording performance

counters is also minimal. The cost is slightly higher for the low-priority ap-

plication because we add a lightweight check at the point of every compiler-

inserted marker. These overheads can be further reduced by coarsening the

granularity; however the tradeoff must be made between a lower overhead

and a higher penalty for potential delays in detecting contention as it occurs.

6.4.6 Energy Efficiency of using Reactive-Niceness

Figure 6.24 presents the improved energy efficiency when allowing co-

location with Reactive-Niceness. These experiments were performed using

a P3 International Kill A WattR© power meter connected to our Quad Core

Intel Nehalem machine to measure whole system watt consumption during

execution. For each cluster of bars in the figure, the energy efficiency is

calculated by the instructions processed per watt for a three minute time

period after the machine wattage stabilizes during each run. The higher

the bar, the more energy efficient. The x-axis shows the workloads, the

high priority and low priority application pairs. The first bar for each work-

load shows the energy efficiency when using separate machines for low and

high priority applications; and the second bar shows the energy efficiency of

Chapter 6. Reactive Niceness 123

m
il

c−
lb

m

b
zi

p
2
−

lb
m

sp
h
in

x
−

lb
m

n
am

d
−

lb
m

lb
m

−
m

il
c

b
zi

p
2
−

m
il

c

sp
h
in

x
−

m
il

c

n
am

d
−

m
il

c

m
ea

n

K
il

o
 I

n
st

s
p
er

 w
at

t

separate machines
RN (targeted conserv_90)

 0

 5,000

 10,000

 15,000

 20,000

 25,000

 30,000

lb
m

−
sl

ed
g
e

m
il

c−
sl

ed
g
e

b
zi

p
2
−

sl
ed

g
e

sp
h
in

x
−

sl
ed

g
e

n
am

d
−

sl
ed

g
e

Figure 6.24: Efficiency of allowing co-location with Reactive-Niceness vs over-
provisioning. (targeted)

co-locating both high and low priority applications using Reactive-Niceness

with the targeted policy and the conserv 90 configuration shown in Ta-

ble 6.2. We observe a significant energy efficiency improvement for many

workloads. Application pairs that include less contentious applications, such

as namd, produce a greater benefit as there is less napping occuring. Mean-

while, highly contentious pairs, such as sphinx-lbm, show a more modest

benefit. On average there is a 42% improvement of using Reactive-Niceness

to allow co-location over using two separate machines for low and high pri-

ority applications.

6.4.7 Varying Architecture

To investigate the effectiveness of Reactive-Niceness across architectures, we

have performed experiments on a 2.6GHZs Quad Core AMD Phenom X4

system with 6MB last level cache and 3GB of main memory. This machine

is also running Linux 2.6.29.6 and our customized GCC 4.4.6.

Figures 6.25 and 6.26 show the results for our targeted heuristic us-

Chapter 6. Reactive Niceness 124

conserv_90
relaxed_90
conserv_80

 0.4x

 0.5x

 0.6x

 0.7x

 0.8x

 0.9x

 1x
lb

m
−

sl
ed

g
e

sp
h
in

x
−

sl
ed

g
e

b
zi

p
−

sl
ed

g
e

m
lc

−
sl

ed
g
e

n
m

d
−

sl
ed

g
e

sp
h
in

x
−

lb
m

b
zi

p
−

lb
m

m
lc

−
lb

m

n
m

d
−

lb
m

lb
m

−
m

il
c

sp
h
in

x
−

m
il

c

b
zi

p
−

m
il

c

n
m

d
−

m
il

c

N
o
rm

al
iz

ed
 Q

o
S

base

Figure 6.25: QoS of each benchmark co-running with sledge, lbm, and milc. (targeted)

 100%

lb
m

−
sl

ed
g
e

sp
h
in

x
−

sl
ed

g
e

b
zi

p
−

sl
ed

g
e

m
lc

−
sl

ed
g
e

n
m

d
−

sl
ed

g
e

sp
h
in

x
−

lb
m

b
zi

p
−

lb
m

m
lc

−
lb

m

n
m

d
−

lb
m

lb
m

−
m

il
c

sp
h
in

x
−

m
il

c

b
zi

p
−

m
il

c

n
m

d
−

m
il

c

U
ti

li
za

ti
o
n

conserv_90
relaxed_90
conserv_80

 0%
 10%
 20%
 30%
 40%
 50%
 60%
 70%
 80%
 90%

Figure 6.26: Utilization of sledge, lbm and milc with each configuration. (targeted)

Chapter 6. Reactive Niceness 125

ing the same configurations shown in Table 6.2. As shown in these figures,

Reactive-Niceness is also quite effective on this platform. For both lbm and

milc we achieve 80% to 90% utilization while significantly reducing the per-

formance interference on our high-priority applications. The contentiousness

of sledge is severe on this processor. For the lbm-sledge pair, we observe

that when lowering the QoS threshold to 80% from 90% we more than dou-

ble the utilization. Overall, our conservative settings meet and exceed our

QoS requirements for each of the experiments shown in Figure 6.25, and

our relaxed configuration satisfies the QoS constraint in for majority of the

applications.

6.5 Summary

In this chapter, we combine static compilation and dynamic adaptation to

address the challenge of cross-core interference on the QoS of high priority

applications. We have presented Reactive-Niceness, a static/dynamic com-

pilation approach to improving machine utilization in WSCs by enabling the

adaptive manipulation of the contentiousness of low-priority applications to

ensure the QoS of high-priority co-runners. Reactive-Niceness consists of a

profile guided compilation technique that identifies and inserts markers in

contentious code regions, and a lightweight runtime that monitors the QoS of

high-priority applications and reactively triggers short naps of low-priority

applications when cross-core interference is detected. Our evaluation shows

that Reactive-Niceness is able to improve utilization by more than 70% in

many cases, and more than 50% on average, while enforcing a 90% QoS

threshold.

Finally let us compare the static approach, QoS-Compile, presented in

Chapter 5, with the hybrid approach Reactive-Niceness presented in this

Chapter 6. Reactive Niceness 126

chapter.

• QoS-Compile, as a static compilation solution, is more simplistic,

lightweight and does not require deploying a runtime system. Since

QoS-Compile only throttles down the contentious code region, it avoids

unnecessary throttling down and utilization loss when contentious code

regions are not executing.

• Reactive-Niceness, taking advantage of the QoS-Compile’s prediction

model, dynamically throttles down low-priority applications based on

the amount of contention and QoS degradation detected. Because of

the flexibility, it achieves better server utilization, especially when the

co-running high priority application is not sensitive and not affected by

the low-priority applications. Another advantage of Reactive-Niceness

is more accurate QoS management, especially when using targeted

heuristic.

Chapter 7

Conclusions and Future Directions

Contents

7.1 Summary of Themes and Results 128

7.2 Future Direction . 130

7.2.1 Managed Runtime for QoS and utilization in WSCs131

7.2.2 Runtime systems and research infrastructure for

WSCs . 131

This dissertation first comprehensively investigates the impact of mem-

ory resource sharing on industry-strength large-scale datacenter workloads

and show that, contrary to conclusions from recent work [62], memory re-

source sharing has a significant performance impact on emerging large-scale

webservice applications in modern warehouse scale computers. This dis-

sertation then presents two complementary software strategies to mitigate

memory resource contention for improving performance and server utiliza-

tion of WSCs. Firstly, we design a heuristic based system and a runtime

system to intelligently map application threads to cores to promote positive

resource sharing and mitigate resource contention to improve application

performance. Secondly, we design novel compilation techniques and run-

time systems that statically and dynamically manipulate applications’ con-

127

Chapter 7. Conclusions and Future Directions 128

tentious nature to enable the co-location of applications with varying QoS

requirements, and as a result, greatly improve server utilization in WSCs.

7.1 Summary of Themes and Results

[The impact of memory resource contention for WSC workloads]

Our investigation studies both the impact of memory resource sharing among

threads from a single application and among threads from different co-

running applications.

• Intra-application Sharing Our investigations demonstrate that,

across several key datacenter applications including websearch, the

impact of sharing the last level cache among threads can either be pos-

itive or negative and can be significant (up to 10%). Bus contention

also has a fairly significant impact on performance and contributes an-

other 10% performance variability. For applications that have higher

levels of sharing, a positive side effect of placing all threads close to

each other and sharing a bus is observed.

• Inter-application Sharing Contention between multiple applica-

tions for the shared caches and memory bandwith can often cause

a significant performance degradation for emerging WSC workloads.

As a result, an application’s performance swing between its best and

worst thread-to-core mapping can be significant (up to 40%).

• Optimal Thread-to-Core Mapping The best thread-to-core map-

ping for a given application does not only depend on the application’s

sharing and memory characteristics; it is also impacted dynamically

by the characteristics of other applications that are co-running on the

same machine simultaneously.

Chapter 7. Conclusions and Future Directions 129

[Intelligent thread-to-core mapping] We design intelligent TTC

mapping approaches to mitigating memory resource contention to improve

performance, including a heuristic-based approach and an adaptive ap-

proach.

• Heuristic-based TTC Mapping We show that by leveraging knowl-

edge of an application’s sharing characteristics, we can predict both

how an application’s threads should be mapped when running alone as

well as with another application. We identify the application charac-

teristics that impact performance in the various thread-to-core map-

ping scenarios and our algorithm can accurately predict the optimal

TTC mapping in most cases. In other cases, its prediction generate

no more than 2% worse than the optimal.

• Adaptive TTC Mapping We conclude that our online adaptive

learning approach is a preferable approach for arriving at good thread

to core mappings in the datacenter as it is more flexible and portable.

It arrives at near optimal decisions and is agnostic to applications’

sharing characteristics. By employing the adaptive thread-to-core

mapper, AtoM, the performance of the datacenter applications is im-

proved by up to 22% over status quo thread-to-core mapping and

performs within 3% of optimal.

[Static/Dynamic Compilation for QoS and Utilization] We de-

sign both static and dynamic approaches to mitigating memory resource

contention to improve server utilization. Our approaches manipulate low-

priority applications’ contentious nature to improve the corunning latency-

sensitive applications’ QoS. By providing such QoS management on mul-

ticores, our approaches enable the co-location of applications with varying

QoS requirements and thus greatly improve server utilization in WSCs.

Chapter 7. Conclusions and Future Directions 130

• Identify Code Regions We demonstrate that contentiousness is a

consistent characteristic of an application and a code region. We then

design a performance counters based prediction model that can accu-

rately identify code regions that are contentious in nature. The linear

correlation efficient of our model is 0.91, showing high prediction ac-

curacy.

• QoS-Compile We design two novel compilation transformations

padding and nap insertion and demonstrate their effectiveness in re-

ducing the memory request rate of a code region and the interference

the code region can cause to co-running applications. Finally, our

experiments show that by combining our code region identification

and compilation transformations, QoS-Compile improves applications’

QoS performance by 21% and machine utilization 36% on average for

both SPEC benchmarks and key Google applications on state-of-the-

art server machines.

• Reactive-Niceness Our experiments demonstrate that Reactive-

Niceness is able to improve server utilization by more than 70% in

many cases, and more than 50% on average, while enforcing a 90%

QoS threshold. We are also able to improve the energy efficiency of

modern multicore machines by 47% on average over the policy of dis-

allowing co-locations that is commonly used.

7.2 Future Direction

There are a number of other important and promising research directions for

improving the efficiency of WSCs. In this section, we discuss managed run-

times for QoS and utilization, and other runtime systems and infrastructure

that is critical for researching WSCs.

Chapter 7. Conclusions and Future Directions 131

7.2.1 Managed Runtime for QoS and utilization in WSCs

Managed runtimes, such as the Java VM, are commonly used in WSCs. For

example, Gmail arguably constitutes one of the largest java codebases in

the world. However, it is unclear how to mitigate the negative impact of

memory resource contention for VM workloads. I plan to extend my re-

search in static/dynamic compilation to design a QoS-Aware VM. The VM

provides a potentially broader design space than native runtimes and thus

more opportunities to address the challenges of memory resource contention

and QoS in a datacenter. In addition to restructuring code layouts to reduce

contention, novel language constructs can be designed to annotate informa-

tion of a code region such as its QoS target, priorities and its sensitivity to

performance interference. Based on this information, dynamic runtime can

accordingly decide if necessary QoS management such as throttling down

other applications is needed. I also plan to investigate how to use the vir-

tual execution and garbage collection capabilities of managed runtimes to

provide a harness for novel dynamic memory re-layout techniques to reduce

memory resource contention.

7.2.2 Runtime systems and research infrastructure for

WSCs

Research on architecting large-scale datacenters is still in its relative infancy.

There are still numerous questions and opportunities as how to design an ef-

fective software stack especially for WSCs. I plan to conduct further research

on designing large-scale cross-layer runtime systems that intelligently orches-

trate and manage resources at on-chip level, machine-level and cluster-level,

for improving performance, QoS and reducing cost in WSCs. The runtime

system will integrate the performance and information of applications as

well as the underlying hardware resource monitoring. It also needs to break

Chapter 7. Conclusions and Future Directions 132

the communication boundaries between various management levels existent

in current systems. During the process of this research, I will also design

methodologies, simulations, benchmarks and mini-cloud environment that

can facilitate the community to conduct datacenter research without access-

ing the production workloads and datacenters. The lack of access has always

been an obstacle for the community. I believe that my experience of close

collaboration with the industry will help me provide such validated research

environment.

Bibliography

[1] Latent semantic analysis. http://en.wikipedia.org/wiki/Latent semantic analysis.

[2] Protocol buffer. http://code.google.com/p/protobuf/.

[3] M. Banikazemi, D. Poff, and B. Abali. Pam: a novel performance/power

aware meta-scheduler for multi-core systems. SC ’08: Proceedings of

the 2008 ACM/IEEE conference on Supercomputing, Nov 2008.

[4] L. Barroso, J. Dean, and U. Holzle. Web search for a planet: The google

cluster architecture. IEEE Micro, 23(2), 2003.

[5] L. Barroso and U. Hölzle. The datacenter as a computer: An introduc-

tion to the design of warehouse-scale machines. Synthesis Lectures on

Computer, Jan 2009.

[6] L. Barroso and U. Hölzle. The datacenter as a computer: An introduc-

tion to the design of warehouse-scale machines. Synthesis Lectures on

Computer Architecture, 4(1):1–108, 2009.

[7] M. Bhadauria and S. McKee. An approach to resource-aware co-

scheduling for cmps. ICS ’10: Proceedings of the 24th ACM Inter-

national Conference on Supercomputing, Jun 2010.

[8] D. Chandra, F. Guo, S. Kim, and Y. Solihin. Predicting inter-

thread cache contention on a chip multi-processor architecture. High-

Performance Computer Architecture, 2005. HPCA-11. 11th Interna-

133

Bibliography 134

tional Symposium on DOI - 10.1109/HPCA.2005.27, pages 340– 351,

2005.

[9] F. Chang, J. Dean, S. Ghemawat, W. Hsieh, D. Wallach, M. Burrows,

T. Chandra, A. Fikes, and R. Gruber. Bigtable: A distributed storage

system for structured data. ACM Transactions on Computer Systems

(TOCS), 26(2):4, 2008.

[10] J. Chang and G. Sohi. Cooperative cache partitioning for chip multi-

processors. Proceedings of the 21st annual international conference on

Supercomputing, page 252, 2007.

[11] S. Cho and L. Jin. Managing distributed, shared l2 caches through

os-level page allocation. MICRO 39: Proceedings of the 39th Annual

IEEE/ACM International Symposium on Microarchitecture, Dec 2006.

[12] E. Ebrahimi, C. Lee, O. Mutlu, and Y. Patt. Fairness via source throt-

tling: a configurable and high-performance fairness substrate for multi-

core memory systems. ASPLOS ’10: Proceedings of the fifteenth edition

of ASPLOS on Architectural support for programming languages and

operating systems, Mar 2010.

[13] EPA. Epa report to congress on server and data center energy efficiency.

Technical report, U.S. Environmental Protection Agency, 2007.

[14] S. Eranian. What can performance counters do for memory subsys-

tem analysis? Proceedings of the 2008 ACM SIGPLAN workshop on

Memory systems performance and correctness: held in conjunction with

the Thirteenth International Conference on Architectural Support for

Programming Languages and Operating Systems (ASPLOS’08), pages

26–30, 2008.

Bibliography 135

[15] A. Fedorova, M. Seltzer, and M. Smith. Improving performance isola-

tion on chip multiprocessors via an operating system scheduler. PACT

’07: Proceedings of the 16th International Conference on Parallel Ar-

chitecture and Compilation Techniques (PACT 2007, Sep 2007.

[16] F. Guo, Y. Solihin, L. Zhao, and R. Iyer. A framework for providing

quality of service in chip multi-processors. Proceedings of the 40th An-

nual IEEE/ACM International Symposium on Microarchitecture, pages

343–355, 2007.

[17] J. Hamilton. Internet-scale service infrastructure efficiency. SIGARCH

Comput. Archit. News, 37(3):232–232, 2009.

[18] A. Herdrich, R. Illikkal, R. Iyer, D. Newell, V. Chadha, and J. Moses.

Rate-based qos techniques for cache/memory in cmp platforms. ICS

’09: Proceedings of the 23rd international conference on Supercomput-

ing, Jun 2009.

[19] L. Hsu, S. Reinhardt, R. Iyer, and S. Makineni. Communist, utilitarian,

and capitalist cache policies on cmps: caches as a shared resource.

PACT ’06: Proceedings of the 15th international conference on Parallel

architectures and compilation techniques, Sep 2006.

[20] R. Hundt, E. Raman, M. Thuresson, and N. Vachharajani. Mao: An

extensible micro-architectural optimizer. In Code Generation and Op-

timization (CGO), 2011 9th Annual IEEE/ACM International Sympo-

sium on, pages 1 –10, april 2011.

[21] R. Iyer, L. Zhao, F. Guo, R. Illikkal, S. Makineni, D. Newell, Y. Solihin,

L. Hsu, and S. Reinhardt. Qos policies and architecture for cache/mem-

ory in cmp platforms. SIGMETRICS ’07: Proceedings of the 2007 ACM

Bibliography 136

SIGMETRICS international conference on Measurement and modeling

of computer systems, Jun 2007.

[22] V. Janapa Reddi, B. C. Lee, T. Chilimbi, and K. Vaid. Web search

using mobile cores: quantifying and mitigating the price of efficiency.

In ISCA ’10, New York, NY, USA, 2010. ACM.

[23] Y. Jiang, X. Shen, J. Chen, and R. Tripathi. Analysis and approxi-

mation of optimal co-scheduling on chip multiprocessors. PACT ’08:

Proceedings of the 17th international conference on Parallel architec-

tures and compilation techniques, Oct 2008.

[24] Y. Jiang, K. Tian, and X. Shen. Combining locality analysis with online

proactive job co-scheduling in chip multiprocessors. High Performance

Embedded Architectures and Compilers, pages 201–215, 2010.

[25] Y. Jiang, K. Tian, and X. Shen. Combining locality analysis with online

proactive job co-scheduling in chip multiprocessors. High Performance

Embedded Architectures and Compilers, page 201215, 2010.

[26] M. Kandemir, S. Muralidhara, S. Narayanan, Y. Zhang, and O. Ozturk.

Optimizing shared cache behavior of chip multiprocessors. Microar-

chitecture, 2009. MICRO-42. 42nd Annual IEEE/ACM International

Symposium on DOI - UR -, pages 505–516, 2009.

[27] M. Kandemir, T. Yemliha, S. Muralidhara, S. Srikantaiah, M. Irwin,

and Y. Zhnag. Cache topology aware computation mapping for multi-

cores. PLDI ’10: Proceedings of the 2010 ACM SIGPLAN conference

on Programming language design and implementation, Jun 2010.

[28] D. Kaseridis, J. Stuecheli, J. Chen, and L. John. A bandwidth-aware

memory-subsystem resource management using non-invasive resource

Bibliography 137

profilers for large cmp systems. High Performance Computer Archi-

tecture (HPCA), 2010 IEEE 16th International Symposium on DOI -

10.1109/HPCA.2010.5416655, pages 1–11, 2010.

[29] S. Kim, D. Chandra, and Y. Solihin. Fair cache sharing and partition-

ing in a chip multiprocessor architecture. PACT ’04: Proceedings of

the 13th International Conference on Parallel Architectures and Com-

pilation Techniques, Sep 2004.

[30] R. Knauerhase, P. Brett, B. Hohlt, T. Li, and S. Hahn. Using os ob-

servations to improve performance in multicore systems. Micro, IEEE

DOI - 10.1109/MM.2008.48, 28(3):54–66, 2008.

[31] R. Knauerhase, P. Brett, B. Hohlt, T. Li, and S. Hahn. Using OS Ob-

servations to Improve Performance in Multicore Systems. IEEE Micro,

28(3), 2008.

[32] C. Kozyrakis, A. Kansal, S. Sankar, and K. Vaid. Server engineering

insights for large-scale online services. IEEE Micro, 30, July 2010.

[33] J. Lin, Q. Lu, X. Ding, Z. Zhang, X. Zhang, and P. Sadayappan. Gain-

ing insights into multicore cache partitioning: Bridging the gap between

simulation and real systems. High Performance Computer Architec-

ture, 2008. HPCA 2008. IEEE 14th International Symposium on DOI

- 10.1109/HPCA.2008.4658653, pages 367–378, 2008.

[34] F. Liu, X. Jiang, and Y. Solihin. Understanding how off-chip memory

bandwidth partitioning in chip multiprocessors affects system perfor-

mance. High Performance Computer Architecture (HPCA), 2010 IEEE

16th International Symposium on DOI - 10.1109/HPCA.2010.5416655,

pages 1–12, 2010.

Bibliography 138

[35] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wal-

lace, V. J. Reddi, and K. Hazelwood. Pin: building customized program

analysis tools with dynamic instrumentation. PLDI ’05, pages 190–200,

New York, NY, USA, 2005. ACM.

[36] J. Mars and R. Hundt. Scenario based optimization: A framework

for statically enabling online optimizations. CGO ’09, pages 169–179,

Washington, DC, USA, 2009. IEEE Computer Society.

[37] J. Mars and M. L. Soffa. Synthesizing Contention. In Workshop on

Binary Instrumentation and Applications, 2009.

[38] J. Mars, L. Tang, R. Hundt, K. Skadron, and M. L. Soffa. Bubble-

up: Increasing utilization in modern warehouse scale computers via

sensible co-locations. In MICRO ’11: Proceedings of The 44th Annual

IEEE/ACM International Symposium on Microarchitecture, New York,

NY, USA, 2011. ACM.

[39] J. Mars, L. Tang, and M. L. Soffa. Directly characterizing cross core

interference through contention synthesis. In Proceedings of the 6th

International Conference on High Performance and Embedded Archi-

tectures and Compilers, HiPEAC ’11, pages 167–176, New York, NY,

USA, 2011. ACM.

[40] J. Mars, N. Vachharajani, R. Hundt, and M. Soffa. Contention aware

execution: online contention detection and response. CGO ’10: Pro-

ceedings of the 8th annual IEEE/ACM international symposium on

Code generation and optimization, Apr 2010.

[41] J. D. McCalpin. Stream: Sustainable memory bandwidth in high per-

formance computers. http://www.cs.virginia.edu/stream/, Feburary

2005.

Bibliography 139

[42] D. Meisner, B. T. Gold, and T. F. Wenisch. Powernap: eliminating

server idle power. ASPLOS ’09, pages 205–216, New York, NY, USA,

2009. ACM.

[43] A. K. Mishra, J. L. Hellerstein, W. Cirne, and C. R. Das. Towards

characterizing cloud backend workloads: insights from google compute

clusters. SIGMETRICS Perform. Eval. Rev., 37(4):34–41, Mar. 2010.

[44] K. Nesbit, M. Moreto, F. Cazorla, A. Ramirez, M. Valero, and

J. Smith. Multicore resource management. Micro, IEEE DOI -

10.1109/MM.2008.48, 28(3):6 – 16, 2008.

[45] M. Qureshi and Y. Patt. Utility-based cache partitioning: A low-

overhead, high-performance, runtime mechanism to partition shared

caches. MICRO 39: Proceedings of the 39th Annual IEEE/ACM Inter-

national Symposium on Microarchitecture, Dec 2006.

[46] P. Ranganathan and N. Jouppi. Enterprise it trends and implications

for architecture research. High-Performance Computer Architecture,

2005. HPCA-11. 11th International Symposium on DOI - 10.1109/H-

PCA.2005.14, pages 253– 256, 2005.

[47] G. Ren, E. Tune, T. Moseley, Y. Shi, S. Rus, and R. Hundt. Google-

wide profiling: A continuous profiling infrastructure for data centers.

IEEE Micro, 30:65–79, 2010.

[48] A. Sandberg and D. Eklöv. . . . Reducing cache pollution through detec-

tion and elimination of non-temporal memory accesses. SC ’10 Proceed-

ings of the 2010 ACM/IEEE International Conference for High Perfor-

mance Computing, Networking, Storage and Analysis, Nov 2010.

[49] L. Soares, D. Tam, and M. Stumm. Reducing the harmful effects of

last-level cache polluters with an os-level, software-only pollute buffer.

Bibliography 140

Microarchitecture, 2008. MICRO-41. 2008 41st IEEE/ACM Interna-

tional Symposium on, pages 258 – 269, 2008.

[50] S. Son, M. Kandemir, M. Karakoy, and D. Chakrabarti. A compiler-

directed data prefetching scheme for chip multiprocessors. PPoPP ’09:

Proceedings of the 14th ACM SIGPLAN symposium on Principles and

practice of parallel programming, Feb 2009.

[51] S. Srikantaiah, M. Kandemir, and M. Irwin. Adaptive set pinning:

managing shared caches in chip multiprocessors. ASPLOS XIII: Pro-

ceedings of the 13th international conference on Architectural support

for programming languages and operating systems, Mar 2008.

[52] S. Srikantaiah, M. Kandemir, and Q. Wang. Sharp control: controlled

shared cache management in chip multiprocessors. MICRO 42: Pro-

ceedings of the 42nd Annual IEEE/ACM International Symposium on

Microarchitecture, Dec 2009.

[53] R. Szeliski. Image alignment and stitching: a tutorial. Found. Trends.

Comput. Graph. Vis., 2(1):1–104, 2006.

[54] D. Tam, R. Azimi, and M. Stumm. Thread clustering: sharing-aware

scheduling on smp-cmp-smt multiprocessors. In Proceedings of the 2nd

ACM SIGOPS/EuroSys European Conference on Computer Systems

2007, EuroSys ’07, pages 47–58, New York, NY, USA, 2007. ACM.

[55] L. Tang, J. Mars, and M. L. Soffa. Reactive niceness: Static/dynamic

compilation for qos in warehouse scale computers. In submission.

[56] L. Tang, J. Mars, and M. L. Soffa. Contentiousness vs. sensitivity:

improving contention aware runtime systems on multicore architec-

tures. In Proceedings of the 1st International Workshop on Adaptive

Bibliography 141

Self-Tuning Computing Systems for the Exaflop Era, EXADAPT ’11,

pages 12–21, New York, NY, USA, 2011. ACM.

[57] L. Tang, J. Mars, and M. L. Soffa. Compiling for niceness: Mitigating

contention for qos in warehouse scale computers. In accepted to The

ACM/IEEE International Symposium on Code Generation and Opti-

mization (CGO), 2012.

[58] L. Tang, J. Mars, N. Vachharajani, R. Hundt, and M. L. Soffa. The im-

pact of memory subsystem resource sharing on datacenter applications.

ISCA ’11, pages 283–294, New York, NY, USA, 2011. ACM.

[59] L. Tang, J. Mars, N. Vachharajani, R. Hundt, and M. L. Soffa. The

impact of memory subsystem resource sharing on datacenter applica-

tions. In Proceedings of the 38th annual international symposium on

Computer architecture, ISCA ’11, pages 283–294, New York, NY, USA,

2011. ACM.

[60] Y. Xie and G. H. Loh. Dynamic Classification of Program Memory

Behaviors in CMPs. In The 2nd Workshop on Chip Multiprocessor

Memory Systems and Interconnects, 2008.

[61] D. Xu, C. Wu, and P.-C. Yew. On mitigating memory bandwidth con-

tention through bandwidth-aware scheduling. PACT ’10: Proceedings

of the 19th international conference on Parallel architectures and com-

pilation techniques, Sep 2010.

[62] E. Zhang, Y. Jiang, and X. Shen. Does cache sharing on modern CMP

matter to the performance of contemporary multithreaded programs?

PPoPP 2010, pages 203–212, 2010.

Bibliography 142

[63] X. Zhang, S. Dwarkadas, and K. Shen. Hardware execution throttling

for multi-core resource management. Proceedings of the 2009 conference

on USENIX Annual technical conference, page 23, 2009.

[64] L. Zhao, R. Iyer, R. Illikkal, J. Moses, S. Makineni, and D. Newell.

Cachescouts: Fine-grain monitoring of shared caches in cmp platforms.

PACT ’07: Proceedings of the 16th International Conference on Parallel

Architecture and Compilation Techniques, Sep 2007.

[65] S. Zhuravlev, S. Blagodurov, and A. Fedorova. Addressing shared re-

source contention in multicore processors via scheduling. ASPLOS ’10:

Proceedings of the fifteenth edition of ASPLOS on Architectural support

for programming languages and operating systems, Mar 2010.

[66] S. Zhuravlev, S. Blagodurov, and A. Fedorova. Addressing shared re-

source contention in multicore processors via scheduling. In ASPLOS

’10: Proceedings of the fifteenth edition of ASPLOS on Architectural

support for programming languages and operating systems, volume 38,

2010.

	 Introduction
	Memory Resource Sharing and Contention
	Implications of Memory Resource Contention
	The Impact of Contention on Performance
	The Impact of Contention on Server Utilization
	Trade-offs Between Performance and Utilization

	Mitigating Contention
	Two Strategies for Mitigating Contention
	Mitigating Contention to Improve Performance
	Mitigating Contention to Improve Utilization

	Summary of Contributions

	 Background and Related Work
	Warehouse Scale Computers
	Cost
	Application QoS
	Job Scheduling, Application Colocation and Utilization
	Machine Level

	Related Work
	Impact of Memory Resource Sharing
	Novel Hardware Solutions to Mitigate Contention
	Software Runtime and OS Approaches to Mitigating Contention
	Cache Contention Aware Compilation

	 The Impact of Memory Resource Sharing
	Memory Resource Sharing
	Intra-Application Sharing
	Experiment Methodology
	Measurement and Findings
	Investigating Performance Variability
	Summary

	Inter-Application Sharing
	Experiment Design
	Measurement and Findings
	Varying Thread Count and Architecture
	Summary

	 Thread-to-core Mapping
	A Heuristic Approach to TTC Mapping
	Evaluating the Heuristics

	An Adaptive Approach to TTC Mapping
	Evaluating AToM

	 Compiling for Niceness
	QoS-Compile Overview
	Identify Contentious Code Regions
	Contentiousness and Sensitivity
	Identify Contentious Regions

	Compiler Transformations for Rate Reduction
	Padding
	Nap Insertion
	Understanding Cooldown and Warmup

	Evaluation
	Setup and Methodology
	Model for Code Region Identification
	Compiler Transformations
	QoS-Compile: Put it All Together
	Google Applications

	Summary

	 Reactive Niceness
	Reactive-Niceness Overview
	RN-Compile: Compiling for Reactive Niceness
	RN-Runtime: Dynamic Detection and Reaction to QoS Degradation
	Runtime
	Detection and Reaction

	Evaluation
	Setup and Methodology
	Effectiveness of Reactive-Niceness: Simple Heuristic
	Effectiveness of Reactive-Niceness: Targeted Heuristic
	Effectiveness of Reactive-Niceness: Phase Level Behavior
	Overhead
	Energy Efficiency of using Reactive-Niceness
	Varying Architecture

	Summary

	 Conclusions and Future Directions
	Summary of Themes and Results
	Future Direction
	Managed Runtime for QoS and utilization in WSCs
	Runtime systems and research infrastructure for WSCs

