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UNIFICATION OF REGISTER ALLOCATION AND INSTRUCTION
SCHEDULING

IN COMPILERS FOR FINE-GRAIN PARALLEL ARCHITECTURES

David A. Berson, Ph.D.
University of Pittsburgh, 1996

The interaction between instruction scheduling and register allocation has signi�cant impact
on the quality of code generated, particularly in compilers targeting �ne grain parallel architectures.
The problem results from the fact that instruction scheduling and register allocation have con
icting
goals. Instruction scheduling tries to maximize parallelism by scheduling as many instructions as
possible in parallel, which requires a large number of values to be held in registers for short periods
of time. On the other hand, register allocation attempts to hold a small number of values in registers
for long periods of time, resulting in limiting the number of instructions that can be scheduled in
parallel.

This dissertation presents a method for unifying these tasks by allocating all needed registers
and functional units to an instruction simultaneously. No previous technique has achieved this degree
of integration between the two tasks. The work in this dissertation is based on a framework consisting
of three components: a technique for measuring a program's demand for all resources, a single
intermediate representation of the measured demands, and a set of transformations that perform
resource allocation.

The approach taken in this work is based on a new paradigm of resource allocation, called
Measure and Reduce in which the resource requirements of the program are measured and excessive
demands are removed by reduction transformations. The information computed during the meas-
urement of the demands for each resource is incorporated into a single intermediate representation.
The reduction transformations for all resources operate on this intermediate representation, allow-
ing transformations for di�erent types of resources to be performed simultaneously. Therefore, an
instruction can be allocated all resources it needs at once, resulting in uni�ed resource allocation.
The intermediate representation is based on a hierarchical form of dependence DAGs, enabling the
transformations to naturally handle instruction level parallelism. In particular, the register transform-
ations form a framework for live range splitting in the absence of a full ordering of the instructions,
as required by previous splitting techniques.

Application of the reduction transformations is �rst demonstrated by a heuristic for perform-
ing register allocation during local instruction scheduling. Global register allocation is performed by
exploiting the hierarchical nature of the intermediate representation. Heuristics are also given for us-
ing the transformations during global code motion, resulting in uni�ed allocation and a more 
exible
use of available resources than previous resource constrained techniques.

The results of numerous experiments comparing the new techniques to previous attempts
at phase integration are reported. The experiments indicate that the uni�ed allocation of resources
generates higher quality code than methods that partially integrate the allocation phases. In addition,
while precise measurement of register requirements is NP-Complete, in practice precise measurements
are obtained easily and e�ciently. Thus, when these measurements are combined with traditional
register allocation techniques in hybrid algorithms, the quality of code generated is improved.
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Chapter 1

Introduction

The relentless push for more computing power has brought computer architectures that

exploit instruction level parallelism (ILP) into every day environments in the form of superscalar

and VLIW workstations and desktop computers. With each advance in computer architectures, the

synergy between architectures and compilers becomes more apparent, presenting new challenges for

compilers. These challenges introduce new complexities to previously addressed tasks and high-

light the drawbacks of the way in which compilers were structured for previous architectures. This

dissertation presents new methods to generate higher quality code for ILP architectures by creating

advanced techniques for register allocation and instruction scheduling. These techniques are speci�c-

ally designed to address the new complexities caused by ILP while avoiding the drawbacks resulting

from straightforward extensions of previous register allocation and instruction scheduling techniques.

Because of the number and complexity of tasks that must be performed in a compiler,

the compilation process has been divided into manageable units called phases. These phases are

grouped together based on the representation of the program that they use. Each phase typically

solves one particular problem. As a result of addressing each problem separately, e�ective heuristics

can be developed for each problem, allowing a good solution to the individual translation problems.

However, the results of one phase can have an impact on the solution of the next phase, and thus

the overall quality of the generated code. This impact can have a negative result on the overall code

quality.

The separation of the compilationprocess into phases does not consider possible interactions

between the tasks performed. For example, consider the interaction between instruction scheduling

and register allocation. Both precedence constrained instruction scheduling and register allocation

are well known NP-complete problems. Therefore, for purposes of achieving reasonable compile

times, heuristics are used for both tasks. Instruction scheduling tends to require a large number of

values to be live in registers to keep all of the functional units busy. On the other hand, register

1



2

allocation tends to keep fewer values live at a time in an e�ort to avoid the need for expensive memory

accesses through register spills.

If register allocation is performed �rst, it limits the amount of ILP available by introducing

additional dependences between the instructions based on temporal sharing of registers. If instruction

scheduling is performed �rst it can create a schedule demanding more registers than are available,

creating more work for the register allocator. In addition, the spill code subsequently generated must

be placed in the schedule by a post pass cleanup scheduler.

In addition to the problem of interactions between the register allocation and instruction

scheduling phases, the heuristics themselves must be changed to compensate for the added complex-

ities of ILP. To fully exploit ILP the sequential order in which the instructions appear in the source

code must be replaced with the partial ordering imposed by the data and control dependencies inher-

ent in the program. In this partial ordering there is some freedom for instructions to move around in

the schedule. While some instructions are on a maximum length path through the ordering, others

have slack time in when they can be scheduled. Techniques must be developed to guide the selection

of an instruction order that exploits ILP while maintaining resource requirements at a level supported

by the architecture.

The goal of this research is to redesign the compiler back end to unify the phases performing

resource allocation and to make the remaining phases, such as global code motion, conscious of their

impact on resource allocation and thus the resulting execution time of the program being compiled.

Performing the allocation of all resources simultaneously achieves a higher degree of integration than

previous techniques proposed. The bene�t of this degree of integration is that the impact of all

allocation decisions can be assessed in terms of the overall resource allocation problem and thus the

quality of code generated.

1.1 Previous Approaches

Approaches to integrating register allocation and instruction scheduling can be characterized by three

properties: the degree of exploitation of ILP, the degree of integration, and the representations used.

The degree of exploitation of ILP can be viewed as the extent to which the information about inherent

parallelism is used during instruction scheduling and register allocation. At one end are heuristics

that assume a complete ordering, typically the ordering provided by the programmer. At the other

end are techniques that rely solely on the partial ordering determined by the minimal dependences

needed to preserve semantic correctness. In the middle are techniques that use the partial ordering
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Figure 1.1: Intermediate program representations

for only some tasks, (e.g., instruction scheduling) or use it for parts of a task (e.g., during register

allocation information about parallelismmay be used for computing live ranges but not for selecting

spill points). Such techniques exploit parallelism by selecting orderings of instructions to achieve

better resource utilization without unnecessarily reducing available parallelism.

The degree of integration achieved between the heuristics can also vary signi�cantly. At

one end are approaches in which the tasks are performed independently in separate phases, resulting

in no integration. At the other end is uni�cation, that is, both tasks are performed simultaneously

in a single phase. A uni�ed phase gives equal consideration to both tasks during each allocation

decision. In the middle of the spectrum are a number of approaches that use separate phases for each

task but incorporate varying types and amounts of information from one heuristic into the other to

add limited \awareness" of the heuristic's impact on subsequent heuristics. Closely related to the

integration of phases is the types of representations used for each task. The use of vastly di�erent

representations used by instruction scheduling and register allocation presents a major obstacle to

integration as incorporation of information in di�erent forms is di�cult.

The straightforward approach to generate code for ILP architectures is to �rst schedule

the instructions using list scheduling and then allocate registers using traditional graph coloring

algorithms. List scheduling naturally exploits inherent ILP as it traverses the program's instructions.
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Coloring based register allocation has no concept of ILP and only takes advantage of parallelism if

it happens to generate spill code near idle slots in the schedule. The separation of the tasks o�ers

little opportunity for integration as each task uses a vastly di�erent representation of the program.

List scheduling uses a Directed Acyclic Graph (DAG) while coloring base register allocation uses

an interference graph. Figure 1.1(a) shows a sample program DAG while Figure 1.1(b) shows the

corresponding interference graph. There is no obvious method to incorporate the information in

these two representations into one common representation. Thus, it is not obvious how to consider

register interferences during instruction scheduling or instruction heights during register allocation.

An alternative to considering register interferences during scheduling is to track register

pressure. Goodman and Hsu present such an algorithm [GH88]. In their algorithm the scheduler

alternates between two states. In the �rst state register pressure is low and the scheduler selects

instructions to exploit ILP. When the register pressure crosses a threshold the scheduler switches to

a second state that selects instructions to reduce register pressure, possibly sacri�cing opportunities

to exploit ILP in the process. Additionally, no spilling of values is performed. When register pressure

falls back below the threshold, the �rst state is reentered. In this manner scheduling and allocation

are partially integrated using a single representation. A problem arises in that the scheduler cannot

always select instructions to keep register pressure below the maximum allowed by the architecture.

Furthermore, some programs have su�ciently complex register interferences such that some values

must be spilled. As a result, a cleanup register allocation phase must be run subsequent to the

integrated scheduler. This cleanup phase uses traditional coloring base register allocation, resulting

in the degradation of instruction scheduling.

A problem with considering register allocation issues during instruction scheduling is that

scheduling for ILP replaces the programmer's complete ordering of instructions with a partial order

representing the parallelism available. As a result, live ranges that did not interfere because they

were temporally ordered will interfere once the temporal ordering is removed. Recent research has

extended register allocation techniques to address this possible overlapping of live ranges [Pin93,

NP93]. However, these techniques still do not fully exploit the partial ordering information available

to address the problems of which values to select for spilling and where to place the spill code.

A fundamental problem in integrating instruction scheduling and register allocation is the

fact that heuristics for each problem use vastly di�erent representations that do not provide uniformly

adequate information for both problems being addressed. Consider the programDAG in Figure 1.1(a)

and assume that there are three functional units and �ve registers available to execute the DAG. To

exploit all available parallelism seven functional units and seven registers are needed to execute the
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instructions A1, B1, C1, C2, D1, D2, and D3 in parallel. List scheduling based on critical path lengths

would select A and B for the �rst instruction issue slot and then would have to make a choice between

C and D. Ideally, the scheduler would be able to \look ahead" and see that scheduling D with A

and B would push register pressure over the limit when attempting to schedule subsequent cycles.

As a result C would be scheduled with A and B, while D would be delayed until more registers are

available. The result of such a scheduling decision is shown in Figure 1.2. By delaying D the length

of the schedule has increased by only one instruction cycle and no spill code is needed.

Previous integration of register pressure into list scheduling is only able to compute register

pressure based on the instructions already scheduled. After selecting A and B for the �rst slot the

register pressure is only two, suggesting that there is no problem. Previous techniques for integrating

scheduling information into register allocation guide the selection of which value to spill based on

the relative slack times of the candidates for spilling. Unfortunately, slack time does not provide

su�cient information to determine when spilling can be avoided.

1.2 Uni�cation

This dissertation develops a new technique to integrate register allocation and instruction scheduling.

The technique includes a new representation and algorithms that use the representation to alloca-
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tion registers and functional units simultaneously. The representation, the Global Uni�ed Resource

Requirements Representation (GURRR), combines information about a program's requirements for

both registers and functional units with scheduling information in a single DAG based representation.

In this manner GURRR facilitates the determination of the impact of all scheduling and allocation

decisions on the critical path length of the code a�ected.

GURRR is based on a key concept of computing resource requirement measurements, re-

ferred to as Uni�ed ReSource Allocation (URSA), which computes sets of instructions that can safely

share a single instance of a resource. From this information URSA computes the minimum number

of instances of the resource needed to exploit all available parallelism. In terms of registers, this

computation determines the maximum number of values that can be alive simultaneously. Although

the speci�c computations of resource sharing di�er for functional units and registers, the results of

the computations for both types of resources are easily incorporated onto the program DAG.

A byproduct of the computation of how many instances of a particular resource are needed

by a program is a set of elements that each represents a group of instructions that can share a single

instance of the resource. This information is used to precisely identify the areas of the program where

the resource is either over or under utilized. GURRR also incorporates this utilization information

in its representation.

The availability of utilization level information suggests a new approach to resource alloca-

tion, the Measure and Reduce paradigm. This paradigm is based on the observation that allocation

decisions are only required when the need for resources exceeds the number actually available. Un-

der this paradigm, the resource usage information is used to select instructions to move from over

utilized areas to under utilized areas. This process of moving instructions to the under utilized areas

is referred to as Resource Spackling. The combination of utilization level information for all resources

with direct access to scheduling information enables new uni�ed resource allocation techniques. By

allocating all resources needed by an instruction simultaneously, and making allocation decisions

based on their impact on the critical path length, a uni�ed allocation phase is achieved.

Advantageous application of Resource Spackling to individual instructions depends on heur-

istics that select instructions and determine the best place to spackle them. Several such heuristics are

presented. The �rst heuristic applies Resource Spackling to local instruction scheduling and register

allocation. This heuristic naturally performs global register allocation when applied to a hierarch-

ical intermediate representation in a bottom up manner. Global register allocation and assignment

include other issues such as assignment and copy placement. Hierarchical Allocation of REgisters

(HARE) was developed as a part of this work to be such a heuristic. A heuristic for incorporating
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Resource Spackling into global code motion is also presented. These heuristics must also consider

architectural features such as pipeline interlocks and resources with special usage characteristics.

Extensions to the heuristics to address these features are discussed.

1.3 Organization of the Thesis

The remainder of this dissertation discusses the realization of the techniques highlighted here, and

addresses the practical considerations of target architectures and comparisons to previous techniques.

Chapter 2 discusses previous work by other researchers related to the work presented in this dis-

sertation. Chapter 3 gives an overview of the components developed in this work and how they �t

together. Chapter 4 describes the measurement of resource requirements. Chapter 5 shows how

the resource requirements are incorporated into an intermediate representation. Chapter 6 gives the

theoretical basis for performing resource allocation using the information computed and provided in

the intermediate representation. Chapter 7 describes heuristics for performing resource allocation for

functional units and registers simultaneously in a local scheduler. Chapter 8 describes how uni�ed

resource allocation is performed during global code motion. Chapter 9 addresses issues related to

global register allocation and assignment. Chapter 10 incorporates ILP architectural features and

constraints into the resource measurement and allocation model. Chapter 11 describes important

methods used in the prototype implementation. Chapter 12 presents and analyzes the experiments

performed in this work. Finally, chapter 13 contains the conclusions of this work and directions for

future research.



Chapter 2

Related Work

Register allocation and instruction scheduling are well known problems in compiler research

and their interactions have been previously studied. This chapter discusses research in these areas

as it relates to the dissertation, as well as the intermediate representations on which the heuristics

for these problems depend.

2.1 Program Representations

The contribution of each in task in the compiler to the quality of code generated is dependent on the

power of transformations enabled by the intermediate representation used. In particular, instruction

scheduling and global code motion depend on speci�c properties of the representation to perform

powerful transformations.

Traditionally, compilers have used the Control Flow Graph (CFG) and basic block depend-

ence DAGs as the intermediate representations for instruction scheduling due to their straightforward

computation and concise representation of the program. The CFG is also used to collect a variety

of information, including data
ow information and value live ranges, used to construct register in-

terference graphs [ASU86]. A number of extensions to the CFG have been created to aid the various

tasks performed in the back end of the compiler.

In order to provide a larger scope for global code motion heuristics, basic blocks have

been grouped together in a variety of ways. Traces [Fis81], Super Blocks [HMC+93], and Hyper

Blocks [MLC+92] each form collections of basic blocks which satisfy properties required by speci�c

scheduling techniques.

The Program Dependence Graph (PDG) is another representation which combines control

and data dependence information in a way that simpli�es many transformations [FOW87]. Control

dependencies are used to identify regions of instructions that execute under the same conditions.

8
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Regions support more powerful global code motion techniques than are possible on CFG based

representations [GS90, BR91].

Another method for enabling global code motions is to convert the intermediate represent-

ation into Static Single Assignment (SSA) form, which uniquely assigns names to each de�nition of

a variable [RWZ88]. The use of unique names simpli�es constant propagation and other analysis

[AWZ88]. Furthermore, SSA removes false dependences which would otherwise limit the range of

motion for instructions, i.e., due to anti and output dependencies. SSA was originally formulated on

the CFG but has been incorporated in PDG based representations [BMO90].

The Program Structure Tree (PST) is a hierarchical representation that can be used by

divide-and-conquer algorithms to speedup data
ow analysis and computation of SSA [JPP94]. A

number of representations allowing direct interpretation have been proposed, including the Depend-

ence Flow Graph [PBJ+91, JP93] and Value Dependence Graph [WCES94]. However, these rep-

resentations do not directly identify the control dependencies desired by region-based global code

motion algorithms. The Program Dependence Web [BMO90] is an interpretable representation that

places a variation of SSA form on the PDG.

While many of the representations mentioned support powerful forms of instruction schedul-

ing and global code motion, none of them provide resource usage information such as total register

and functional unit demands. As a result, these representations cannot be used as is for uni�ed

resource allocation.

2.2 Global Code Motion

The movement of instructions between basic blocks is limited by both data and control dependences.

In some cases architectural features can reduce these limitations. Speculative execution allows in-

structions to be moved above conditional branches by placing the results of the moved instructions

in a shadow area [HP87, SHL92]. These results are then committed to the register �le and memory

only if and when the conditions for the instructions' execution are later met. Guarded execution as-

sociates a predicate with each instruction to be executed [DHB89, HD86]. The predicate represents

the conditions under which the instruction should be executed. Instructions can be moved below a

join in the control 
ow graph by using guarded execution to determine if the instruction should be

executed or not. These techniques allow compilers more options when performing code motion.

Several compilation techniques that perform code motion to increase ILP have been de-

veloped. These techniques include Trace Scheduling [Fis81], Percolation Scheduling [AN88], and
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Region Scheduling [GS90]. Each of these techniques has a di�erent method of identifying instruc-

tions that may be moved and considers di�erent approaches in selecting their potential destinations.

Trace Scheduling creates large basic blocks, called traces, consisting of sequences of basic

blocks along a program path that has a high probability of being executed. Code reordering within

a trace is used to generate a good schedule for the trace at the expense of decreased performance on

o�-trace blocks due to the insertion of compensation code in those blocks. Percolation Scheduling

uses code motion operations on a control 
ow graph. The operations perform less code duplication

than trace scheduling and place fewer restrictions on the movement of instructions. Region Schedul-

ing's code motion operations operate on a Program Dependence Graph (PDG) [FOW87]. Region

Scheduling identi�es the largest set of potential destinations for an instruction and produces the least

amount of code duplication.

Each of the above techniques uses list scheduling to schedule instructions and considers

only functional units. There are several extensions to Percolation Scheduling to handle resource

constraints. The �rst presents the idea of using a heuristic to control the application of operations

in the presence of functional unit constraints [EN89]. Register constraints have also been addressed

in a limited manner [ME92, Nor95]. However, these extensions do not consider using spilling to

improve usage.

Another technique for increasing ILP across basic block boundaries is Shape Matching

[MGS92]. This technique handles only functional units and attempts to overlap the ends of adjacent

blocks. It is similar to Moon and Ebcio�glu's approach in that available resources in the middle of a

block are not considered.

The scheduling techniques discussed so far have concentrated on using all available func-

tional units, while mostly ignoring their impact on register allocation. Scheduling which consider the

impact of scheduling on register allocation are discussed in section 2.4.

2.3 Register Allocation

Traditionally, register allocation is performed by coloring an interference graph, whose nodes repres-

ent live ranges and edges the interference between the live ranges [CAC+81, Cha82]. This process

assigns colors representing registers to live ranges. When there are insu�cient registers available a

live range is spilled to memory. Such a live range must be loaded into a register before each use and

written back to memory after each de�nition. A priority function is used to select which live range

to spill. The goal of the priority function is to minimize the number of memory accesses, both as a
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result of the number of live ranges spilled and the number of times each value must be accessed from

memory. The priority function is based on the cost of a spill divided by the number of interfering

live ranges.

Several enhancements to the basic coloring process have been proposed to reduce the num-

ber of spills generated by the coloring process. Briggs suggests several heuristics for simplifying

the interference graph to increase the likelihood of coloring the graph without resorting to spilling

[BCKT89]. Although the original proposed priority function included an execution estimate factor

in the computation of the cost of a spill, most subsequent methods have favored a factor using the

loop nesting depth instead. The use of the loop nesting depth is motivated by the observation that

spills inside of nested loops are executed more frequently than those at a shallower nesting depth or

outside loops. Bernstein et al. use a combination of three di�erent priority functions to select values

for spilling that will remove the most interferences from the graph [BGM+89].

Live range splitting was introduced in an e�ort to reduce the cost of spilling [CH90, KH93].

When spilling is required the live range selected for spilling is split into several smaller live ranges.

The smaller live ranges are then treated as separate values requiring registers. The essential idea is

that some of the smaller live ranges will not need to be spilled and so will not need to access memory.

Memory accesses will only be required for those smaller live ranges that are spilled.

Hierarchical register allocation has been introduced as a method for reducing the number

of dynamic memory references [CK91]. This technique creates tiles corresponding to basic blocks in

the control 
ow graph. The tiles are colored from the inside out with respect to the nesting of control

structures. The result is that values in loops have a better chance of remaining in registers. This

results in spilling pass-thru values, those values that are alive at entry and exit and are not used in

a block, [CAC+81]. More recently, hierarchical allocation has been extended to PDGs [NP94].

These hierarchical approaches su�er from two problems. First, they only consider one case

of placing spills in less frequently executed locations, i.e., outside of loops. They do not try to

place more spills in conditionally executed code and fewer spills in unconditionally executed code.

Second, once a tile or region has been allocated registers, its values are never candidates for future

spilling. The relative execution frequencies may be such that spilling inside a previously allocated

tile or region results in a lower overall execution time.

The RASE technique attempts to balance the use of registers by local and global values by

computing a cost function for each basic block [BEH91]. The cost function estimates the increase

in the block's critical path length for a given number of registers. The cost includes a factor of the

execution frequency of the block. The interference graph represents the number of registers required
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by each basic block and the cost function is used to select basic blocks that should have their number

of allocated registers reduced. Although RASE considers both execution counts and resulting critical

paths lengths, it has a limited hierarchical view of registers, by viewing them as either global or local.

Probabilistic register allocation takes a di�erent approach to register allocation [PF92]. This

technique is based on the principle that the probability that a value is still in a register when an

instruction needs to use it is roughly proportional to the inverse of the distance from its de�nition

or last use to the current use. The technique uses the distances between de�nitions and uses of each

value to compute initial value probabilities. Probabilities are also assigned to each control branch

in the program. These branch probabilities are then multiplied with the initial value probabilities to

re
ect the e�ect of di�erent control paths on the �nal value probabilities. The �nal value probabilities

are then used as priorities for allocating registers to the values. The technique iteratively selects the

highest priority value and allocates a register to it and then recomputes the probabilities and priorities

of the remaining values.

Probabilistic register allocation does address the cost of spills from the point of view of

spilling values that are least frequently executed; it favors spills in shallowly nested loops over deeply

nested loops and in conditionally executed code over unconditionally executed code. However, it

does not consider the scheduling of the generated spill code.

All of the allocation techniques discussed so far have been developed for single issue archi-

tectures. Two recent techniques have considered the impact of multiple issue architectures on the

interference graph. Pinter has developed the parallel interference graph to represent the additional

interferences between live ranges that occur when instructions can be reordered and issued in parallel

[Pin93]. Norris and Pollock use a similar interference graph and attempt to reduce register pressure

by making some scheduling decisions during register allocation [NP93]. Neither of these techniques

addresses the selection of values for spilling to minimize the spill code's impact on the program's

execution time.

All of these techniques use some form of the register interference graph as their intermediate

representation. Although this graph is typically constructed by performing live range analysis on

the CFG, it is quite di�erent from the CFG. As a result, the representations used for instruction

scheduling and register allocation do not lend themselves well to incorporating information about the

impact of one task on the other.



13

2.4 Integrated Register Allocation and Instruction Scheduling

Due to the known interaction between register allocation and instruction scheduling and its impact

on resulting quality of generated code, previous research has investigated methods for integrating the

two tasks. These techniques can be characterized as making one of the two tasks partially aware of

its impact on the other. Two such approaches are possible based on the order in which the tasks are

performed: register sensitive scheduling and schedule sensitive register allocation.

The register sensitive scheduling approach performs scheduling prior to register allocation

so that the scheduler can make scheduling decisions that keep the demand for registers at or below

the number available. Goodman and Hsu use a list scheduling approach that monitors the register

pressure of the instructions scheduled in the form of the number of values live at each point in the

schedule [GH88]. As each instruction is scheduled the register pressure value is updated by the

number of live values de�ned and killed by the instruction. In its normal mode, the list scheduler

selects instructions to schedule which are on the critical path of the block. However, when the register

pressure rises above a preset threshold an alternate selection criteria is used. In this situation the

scheduler selects instructions which reduce the register pressure by killing more values than it de�nes.

Coloring based register allocation is subsequently performed to insert spills where scheduling was

unable to restrict the number of registers needed to the number available. Extensions to this approach

haven been made by Bradlee et al.[BEH91].

The schedule sensitive register allocator approach performs register allocation prior to in-

struction scheduling. One such approach is proposed by Bradlee et al.[BEH91]. A prepass scheduling

phase is performed to construct a cost function for each basic block. These cost functions estimate

the minimum number of registers that can be allocated to the block without signi�cantly impacting

its critical path length. Register allocation is then performed using register limits computed by the

cost functions. A �nal instruction scheduling phase is then performed.

Another schedule sensitive register allocation approach is described by Norris and Pollock

[NP93]. In their approach, the register allocator considers the impact of register allocations on the

subsequent phase instruction scheduling. Since register allocation is performed �rst the instructions

are not yet fully ordered. Thus the parallel form of the register inference graph must be used to

represent live range interferences. The advantage of using only a partial ordering of the instructions

is that register interferences can sometimes be removed by imposing temporal dependences on the

instructions so that live ranges do not overlap. The disadvantage is that prior to this dissertation,

no methods were known for performing live range splitting on a partial ordering of the instructions.

Thus spilling was performed instead.
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The integration techniques described were created to address the parallelism available in

pipelined architectures. While they can be extended to target multiple issue architectures, they were

not designed with the added complexities of these architectures in mind.

An integrated register allocation and scheduling method has also been introduced for soft-

ware pipelining [NG93]. The goal of the technique is to minimize register requirements for a time

optimal pipelined loop. It does not consider actual resource constraints and does not incorporate

register spilling. In addition, the formulation of the problem as a linear programming problem limits

its application to software pipelining of loops.



Chapter 3

Overview

The research presented in this dissertation consists of a number of components designed

to incorporate uni�ed resource allocation into a compiler. As a result, there are many dependencies

and interactions among these components. This chapter gives an overview of the concepts and

components developed.

First, a framework is presented to support uni�ed resource allocation. Second, compiler

back end phases are either replaced with phases that perform uni�ed resource allocation or are

modi�ed to take resource allocation into account when making decisions. These new or modi�ed

phases achieve uni�ed resource allocation or resource allocation awareness by using the presented

framework.

3.1 Uni�ed Resource Allocation Framework

The objective of Uni�ed Resource Allocation is to support both the Measure and Reduce paradigm,

and the ability to make back end phases aware of their impact on resource allocation. The Measure

and Reduce paradigm is based on the observation that resource allocation decisions are only required

when there is a demand for more resources than are available. When there are su�cient resources

to meet the demand, only resource assignment must be performed, which must also consider its

impact on the program's resulting execution time. In this paradigm, the task of resource allocation

is viewed as reducing resource usage in the areas with excessive resource demands. These excessive

areas must be located by measuring the resource demands of the program. The reductions are

accomplished by performing transformations on the intermediate representation of a program. The

URSA framework consists of three components: techniques for measuring the program's demands

for resources, an intermediate representation of a program that indicates resource demands, and

techniques to implement reductions in resource requirements.

15
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The �rst component of the URSA framework is a set of techniques to compute resource

requirements. When compiling a program to exploit ILP, the dependencies in an acyclic segment of

the program are used to represent the set of all semantically correct ways of scheduling the segment.

Di�erent schedules may result in di�erent resource requirements. The approach taken in the Measure

and Reduce paradigm is to remove all schedules that result in excessive resource demands using the

reduction techniques. The remaining set of schedules can safely be assigned the available resources.

Thus, the measurement technique must consider the worst case schedule in terms of the number of

resources required. Each type of resource may have one or more schedules that produces its worst

case requirements.

In addition to computing the maximum number of resources required, the measurement

techniques must identify the locations in a program where there are excessive resource demands and

the locations where a resource is under utilized and available for additional allocations. These three

types of resource measures are the result of the analysis techniques developed in this research.

Although resources like functional units and registers have di�erent usage properties, their

requirements are measured using a common technique. The technique uses a special relation that

models the various usage properties to hide the details from the measurement technique. Issues of

the precision of the measurements are addressed when dealing with register types of resources.

By operating on acyclic segments of a program, the measurement techniques can be used

by a wide variety of compilers using di�erent intermediate representations. This work concentrates

on one particular intermediate representation which supports several advanced phases of interest for

integration.

The intermediate representation used in URSA is called the Global Uni�ed Resource Re-

quirements Representation (GURRR). GURRR is based on an instruction level Program Dependence

Graph (PDG). The PDG representation was chosen for several reasons. First, the dependencies rep-

resented in the PDG indicate which instructions in the program can be executed in parallel and which

must be executed sequentially. Second, the PDG provides valuable control dependence information

used by powerful global code motion techniques, which are important in exploiting ILP. Finally,

the PDG is usable by many common optimization phases; therefore the phases do not have to be

rewritten or designed for a new intermediate representation. A GURRR of a program is obtained

from its PDG by adding the three types of resource requirements information computed by the �rst

component of URSA.

The third component of the URSA framework is a set of techniques to perform the allocation

of resources to instructions. The techniques refer to special nodes in GURRR that indicate resources
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available for allocation as Resource Holes. The techniques are called Resource Spackling because they

perform allocations by trying to �ll the resource holes with instructions. The spackling techniques

compute properties of the resource holes that a�ect how instructions can be placed in them. Cases

are then identi�ed as to whether or not the placement of instructions in a hole will increase the

execution time of the program.

3.2 URSA Applications

The URSA framework is used as the basis for the new and modi�ed compiler back end phases.

GURRR provides the resource requirements measurements in an intermediate representation usable

by the phases. The spackling techniques are used in any phase that wishes to allocate resources.

This research examines three areas of optimization in the compiler back end: resource allocation,

application of transformations such as global code motion, and exploitation of architectural features

and constraints.

URSA's spackling techniques are general enough to be used in several allocation schemes.

This research develops a reduction phase which replaces the phases for local scheduling and global

register allocation. It also presents a global scheduling phase modi�ed to perform uni�ed allocation.

The reduction phase implements the Measure and Reduce paradigm to produce an interme-

diate representation of a program that can be feasibly scheduled. Conceptually, the reduction phase

removes excessive parallelism, either in the form of too many instructions that can be executed in

parallel or too many values simultaneously alive in registers, by introducing additional sequentially

between the o�ending instructions. The introduction of sequential dependencies is performed by the

reduction transformations. The reduction transformations result in moving instructions from the

locations with excessive requirements and placing them in resource holes. Simultaneous allocation is

achievable by �nding overlapping resource holes for all resources that an instruction demands.

Global scheduling consists of moving instructions between control dependence regions in

GURRR to evenly distribute ILP on a larger scale than simply within individual regions. URSA

techniques are used to ensure that such global code motions are only performed when there are

available resources and would result in a reduction in a program's execution time. The availability

of resources is ensured by spackling the moved instructions into resource holes in the destination

region.

The application of code transformations serves several purposes. They can be used to

introduce more ILP, ideally reducing the execution time of a program. They can also be used to
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Figure 3.1: Comparison of back end organizations
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enable additional transformations, such as ILP exposing transformations, global code motions, and

partial dead code elimination. Transformations interact with resource allocation in two ways. First,

the resource requirement measurements can be used to drive the application of transformations. The

measurements indicate pairs of areas where resource demands are unbalanced; one area demands

too many resources while the other under utilizes them. In such situations either ILP exposing

transformations or global code motion should be performed to redistribute the parallelism. When

areas are not imbalanced neither redistributing or enabling transformations need to be considered.

The second interaction between transformations and resource allocation is predicting the

e�ect of a transformation. For example, assume at a particular point in a program, resources

maybe under utilized and several ILP exposing transformations maybe applicable. The di�erent

transformations may each expose a di�erent amount of parallelism. The transformation selected

should be the one that exposes an amount of parallelism that most closely matches the unused

resources. If too much parallelism is exposed, then the resulting excessive resource requirements that

must be reduced after the transformation. The incremental nature of the computation of the resource

requirements information enables the e�ects of each candidate transformation to be estimated and

the best one to be chosen.

A comparison of phases between a typical traditional compiler back end and a URSA based

compiler is shown in Figure 3.1. In both cases source level optimizations are performed before the

generation of their respective intermediate representations. Figure 3.1(a) shows the phases in a

traditional compiler back end. Following the application of optimizations and transformations, local

and global instruction scheduling is performed and then register allocation is carried out. A second

local instruction scheduling phase is performed to schedule any inserted spill code. Finally object

code is generated. Figure 3.1(b) shows the phases in an URSA based back end. Most optimizations

are performed immediately after the GURRR intermediate form is generated. These optimizations

are ones that will always reduce execution time (e.g., strength reduction) or register demands (e.g.,

copy propagation). Resource allocation is performed next using the spackling techniques of URSA to

perform requirements reductions. The allocation phase may elect to perform optional optimizations

and transformations that aid the reductions (e.g., reordering commutative operations). Once all

resources have been allocated, additional code improvements are performed. These improvements

include transformations to uncover appropriate amounts of additional parallelism and global code

motions to evenly distribute parallelism and reduce critical path lengths. Such improvements are

only performed if there are su�cient resources available for the instructions either locally or in areas

reachable through global code motions.



Chapter 4

Resource Requirements

The �rst step in developing techniques for the measure and reduce paradigm is performing

the analysis of a program's resource needs. This chapter discusses the problems to produce such an

analysis, including handling of resources with di�erent usage characteristics, operating on segments

of a program, and computing the di�erent types of usage information needed.

A number of di�erent intermediate representations are used by the back ends of compilers.

All of these representations break up a program into small segments to simplify the tasks performed

in the back end. Although di�erent techniques are used to partition the segments and result in

di�erent sets of information available about the segments, all representations use a segment that

is acyclic. Examples of acyclic segments include basic blocks in a Control Flow Graph [ASU86],

superblocks [HMC+93], traces from Trace Scheduling [Fis81], and control dependence regions from

a Program Dependence Graph [FOW87]. These di�erent types of acyclic segments are generically

referred to as blocks.

Acyclic blocks provide convenient pieces of a program to analyze for resource requirements,

as instruction level parallelism is easily expressed and control 
ow can be considered as needed.

Blocks are typically represented using the Directed Acyclic Graph (DAG)1. The nodes of the DAG

represent the instructions or operations being scheduled. The edges in a DAG represent several types

of dependencies, including data dependencies, preservation of semantic correctness, and scheduler im-

posed temporal dependencies. The temporal dependence edges are added to introduce sequentiality,

that is, reduce parallelism where needed to reduce resource requirements. Thus, the DAG repres-

entation of dependence information represents a partial ordering of the instructions, i.e., the DAG

represents all schedules which honor the required dependencies.

To support the reduction of excess resource requirements, the measurement algorithmmust

1This work uses the following conventions when representing and discussing DAGs: if node b is dependent on node
a then the edge is drawn from a to b, and if a node is not dependent on any other node, it is called a root and is
placed at the top of the DAG.
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provide several types of information about resource usage in each block. In particular, three types

of information must be determined:

1. Total number of resources required;

2. Locations where requirements exceed available resources; and

3. Locations where requirements are less than available resources.

The �rst item is compared to the number of resources available in the architecture to determine if

there are areas with allocation problems. The second item identi�es exactly what set(s) of instructions

cause allocation problems. The third item indicates where there are additional resources available

for allocation.

4.1 Measuring Resource Requirements

This section de�nes the resource measurements and presents techniques for computing them. The

general framework for measuring the various types of resources in the work is described �rst. The

details for the two primary categories of resources are then discussed.

4.1.1 Measurement de�nitions

The measurements of requirements for the various types of resources in a block are obtained using a

single algorithm which operates on a data structure, called a Reuse DAG. A Reuse DAG indicates

which instructions can reuse a resource used by an earlier instruction. The di�erence in the usage

characteristics of the various types of resources is handled during the construction of the Reuse

DAG for each resource. Resources are placed in one of two categories based upon their usage

characteristics.

Definition 1 A resource R is a non-spanning resource if it is in use only during the execution

of a single instruction.

Definition 2 A resource R is a spanning resource if a use can start during the execution of one

instruction and the use continues until the execution of a subsequent instruction. The beginning and

ending instructions are called the de�ning and killing instructions, respectively.

Since a functional unit is in use only while an instruction is being executed, it is a non-

spanning resource. A register is in use from the time that one instruction, the de�ning instruction,
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A: load v

B: w = v * 2

C: x = v * 3

D: y = v + 5

E: t1 = w + x

F: t2 = w * x

G: t3 = y * 2

H: t4 = y / 3

I: t5 = t1 / t2

J: t6 = t3 + t4

K: z = t5 + t6

(a) 3 address code

A

B C D

E F G H

I J

K

(b) DAG

Figure 4.1: Example code and corresponding DAG

places a value in the register until all instructions that need the value have used it from the register.

The last instruction to read the value is the killing instruction.

Several di�erent types of resources may belong to the same resource class. For example,

an architecture may have both integer and 
oating point functional units. In this case there are two

functional unit resource types, integer and 
oating point. Each register bank in an architecture is

also a separate resource type.

The �rst kind of resource requirements information that is computed is the maximum re-

source requirements for each block. The maximum requirements for a resource, in a given block of a

program, is the maximum amount of that resource required under any feasible schedule. It should be

noted that a single schedule may not realize the maximum requirements for all resources, but instead

di�erent schedules may achieve maximum resource requirements for di�erent resources. Thus the

maximum resource requirements represent a worst case scenario.

The algorithm for obtaining the measurements of resource requirements operates on a DAG

representing a partial order describing the dependencies. A chain in a partial order is a subset

of elements such that every pair of elements in the subset are related. Every path in a DAG is

a chain in the corresponding partial order, but a chain is not necessarily a path since it may be

noncontiguous. Figure 4.1(a) shows a basic block of code and Figure 4.1(b) shows the corresponding

DAG. In Figure 4.1(b), the sets of nodes fA, B, F, Kg, fC, E, Ig, fD, G, Jg, and fHg are all chains.

Definition 3 Let relation Q be a partial order on set S2. A chain is a set S0 � S such that if

a; b 2 S0 then either (a; b) 2 Q or (b; a) 2 Q.

2A relation Q on a set S is a partial ordering if and only if Q is re
exive, transitive, and anti-symmetric.
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Definition 4 A decomposition of a partial order P is a partition of P into chains. A decompos-

ition is minimal if there is no other decomposition with fewer chains.

If two nodes are independent, then they may be executed in parallel. The following theorem

relates the maximum amount of parallelism to a minimal chain decomposition.

Theorem 1 The maximum number of independent elements in a partial order is equal to the number

of chains in a minimal decomposition[Dil50].

The DAG in Figure 4.1(b) can be minimally decomposed into a set of four chains, such as

fA, B, E, I, Kg, fC, Fg, fD, G, Jg, and fHg. Thus, at most four nodes at a time can execute in parallel.

If the resources needed can be represented as a partial ordering on the instructions, the

task of computing maximum resource requirements can be performed using Theorem 1. The partial

ordering on the nodes of a DAG, with respect to resource R, is de�ned as follows:

Definition 5 Let CanReuseR be a relation on nodes of the DAG for resource type R indicating

if a resource instance r of type R used by a node can be reused by one of its descendants, i.e.,

(a; b) 2 CanReuseR if and only if there is a node c that ends a's use of r and c 2 Ancestors(b)[fbg.

In other words, given that (a; b) belongs to the relation CanReuseR, there is no schedule

such that node b can execute while resource instance r is still in use as a result of executing a. The

computation of the CanReuseR relation is di�erent for spanning and non-spanning resources.

Definition 6 ReuseR DAG (N; �E) for resource type R is constructed from a program DAG (N;E).

All edges (a; b) 2 �E must meet the following two conditions:

1. (a; b) 2 CanReuseR, and

2. 6 9c 3 (a; c) 2 CanReuseR and (c; b) 2 CanReuseR.

The second condition simply eliminates transitive edges from the ReuseR DAG. Although

this condition is not necessary, it simpli�es later discussions and techniques. ReuseR DAGs for

functional units and registers are denoted as ReuseFU DAG and ReuseReg DAG, respectively. The

notation ReuseR DAG is used when a reference is not restricted to a particular resource. The DAG

in Figure 4.1(b) is both a program DAG and a ReuseFU DAG.

Definition 7 An allocation chain for resource R is a chain n1; n2; :::nl such that (ni; ni+1) 2
ReuseRDAG for any consecutive members ni; ni+1 in the chain.
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function MeasureRequirements( ReuseR DAG (N, E) )

returns set of allocation chains

f
/* build the bipartite graph */

foreach n 2 N

add nodes sn and tn to N̂;

foreach pair of nodes n,m 2 N � N

if ( m 2 Ancestors(n) )

add the edge (sm, tn) to Ê;

/* �nd the maximum matching */
M = BipartiteMatch(N̂, Ê)

/* record the allocation chains in AC */
numChains = 0;

foreach n 2 N such that tn is not matched

f numChains = numChains + 1;

i = n;

add i to AC[numChains];

while ( si is matched )

f i = j, where si is matched to tj;

add i to AC[numChains];

g
g
return AC

g

Figure 4.2: Function measureRequirements()

After a ReuseR DAG has been decomposed into allocation chains each allocation chain can

be assigned a di�erent copy of the resource. However, if there are insu�cient resources, these chains

provide a measure of the resource requirements. Clearly, all chains in a ReuseR DAG are allocation

chains. Therefore, by Theorem 1, a minimumdecomposition of a ReuseR DAG into allocation chains

gives the maximum resource requirements of R for the original DAG.

Ford and Fulkerson [FF65] have shown that the problem of �nding a minimumchain decom-

position can be solved by transforming it into a maximum bipartite graph matching problem. The

bipartite graph represents all possible pairs of nodes (a; b) 2 CanReuseR. Since each node in the

ReuseR DAG must participate in exactly one chain, a maximum matching �nds a minimum number

of allocation chains.

Figure 4.2 gives the Function measureRequirements(), which computes and returns the set

of allocation chains. The algorithm �rst builds the bipartite graph from the ReuseR DAG by adding

a node to each partition corresponding to each node in the DAG and then by adding an edge between

each pair of nodes if the sink node can reuse the source node's resource. Next, the bipartite matching

algorithm is applied. Finally, the allocation chains are constructed by traversing the matching edges.
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sD sG sH sJ

tD tG tH tJ

Figure 4.3: A bipartite graph matching

A B C D

E F G H

Figure 4.4: A complex case for de�ning Kill()

As an example, consider the subDAG fD, G, H, Jg from the DAG in Figure 4.1(b). The

corresponding bipartite graph is shown in Figure 4.3, with the bold arrows indicating a maximal

matching. Since tD is not matched, D is the head of a chain. The edge (sD ; tG) indicates that the

next node in the chain is G. Likewise, G is followed by J, which is the tail of the chain since sJ is not

matched. Since neither tH or sH is matched, node H is the only node in a second chain. Thus, the

two allocation chains are fD, G, Jg and fHg.

4.1.2 Measurement speci�cs for functional units and registers

The de�nition of CanReuseR di�ers for spanning and non-spanning resources to re
ect the di�erent

usage characteristics. Consider the non-spanning usage of a functional unit. A functional unit is only

in use while an instruction is being executed; once the instruction has been executed the functional

unit is available for reuse. In non-pipelined architectures if instruction b is dependent on instruction

a, then b cannot begin execution until a's execution has been completed. Therefore, CanReuseFU is

the partial order represented by the program dependence DAG, and the computation of the functional

unit requirements and excess sets can be performed in polynomial time.

On the other hand, consider a spanning resource such as a register. A register is used to

hold a value from the time that the de�ning instruction executes until the value is killed by the last

instruction that uses it. Therefore, the de�nition of CanReuseReg requires that the killing instruction

be identi�ed for each value de�ned, i.e., the last use instruction to execute. However, URSA does not

assume a speci�c schedule. Since the purpose of the resource requirements computations is to �nd

the worst case scenario, the use instruction that would maximize the number of registers required is

selected to be the killing instruction. Let Kill(a) be the function that returns the node selected to

kill node a's value. Then

CanReuseReg = f(a; b)jb = Kill(a) or b 2 descendents(Kill(a))g (4.1)
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In many cases the de�nition of Kill() is straightforward. However Figure 4.4 shows a case

where de�ning Kill() is NP-complete. In this case all combinations of the nodes in the lower partition

must be examined to �nd the smallest set that kills all of the nodes in the upper partition. In these

cases the values of a set of nodes can be alive at the same time as a number of their dependents.

Kill() must be de�ned to maximize the number of dependents that can be alive at the same time as

their ancestors. This is accomplished by �nding the minimum sized set of descendants that kills all

of their ancestors.

Theorem 2 De�ning Kill() for all nodes in the DAG is NP-Complete.

Proof: By reduction to the Minimum Cover problem, given in Appendix A. �

Thus, a precise solution cannot always be expected when scheduling for parallel architectures or

when code reordering is considered. However, it is useful to note that polynomial time algorithms

exist when the maximum number of inputs is limited to two [Kar72]. Thus, for architectures whose

instruction sets have no more than two physical inputs, precise maximum register requirements can

always be computed.

The de�nition of Kill() can be broken into cases based on subDAGs. In several cases Kill()

can be de�ned in linear time. In the remaining cases the problem of de�ning Kill() for the sub-DAG

is equivalent to a minimum cover problem. A heuristic for the minimum cover problem, based on

the greedy algorithm, can then be applied to each identi�ed sub-DAG.

The sub-DAG fB, C, E, Fg of the DAG in Figure 4.1(b) is an example of the di�cult case.

An optimal solution to the minimum cover problem for this sub-DAG will choose the same node to

kill both B and C. Let the solution be F. Then, Kill(B) = Kill(C) = F, so (B; F) 2 CanReuseReg,

(C; F) 2 CanReuseReg, (B; E) 62 CanReuseReg, and (C; E) 62 CanReuseReg. Thus, three allocation

chains are required to decompose this sub-DAG.

The impact of imprecise solutions to the minimum cover problems must be considered. If

the cover found is not minimum, then fewer allocation chains are found than should be. Thus, the

register requirements may be underestimated. An upper bound on the imprecision can be computed

by �nding the minimum number of nodes in T whose sum of edges from nodes in S is equal to or

greater than the number of nodes in N . Since the requirements can be underestimated, the reduction

of requirements may not produce a DAG whose requirements can be met by the target machine.

Any remaining excess register requirements will be identi�ed during the assignment phase. The

assignment phase can use simple on-the-
y heuristics to resolve the con
icts. Due to the nature of

the problem, the sub-DAG, and the minimumcover heuristic it is not expected that many con
icts will
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be left unresolved for the assignment phase. Results in chapter 12 show that only simple heuristics

were needed to compute precise measurements in all cases encountered in the benchmark programs.

4.2 Excessive Sets

The second step in measuring resource requirements is to identify all locations where a program needs

more copies of a resource than are available. The blocks with excessive resource requirements contain

sets of instructions that if executed concurrently would require more resources than are available.

Each such set of instructions is called an excessive set. The excessive set information is used to

determine which blocks must have their resource requirements reduced. URSA's transformations

do not require enumeration of all excessive sets, but only the sets of allocation subchains that are

independent of each other and whose size exceeds the number of resources available.

Definition 8 An excessive set ESR for resource type R is a set of instructions fn1; n2; : : : ; nmg
which has the following properties.

1. 8ni; nj 2 ESR, ni and nj are independent,

2. m � jRj, where jRj is the number of copies of resource R available.

The enumeration of all excessive sets of instructions that occur in a block is a NP-Complete

problem by virtue of the fact that there can be an exponential number of such sets. In practice, all

that is needed is the set of all instructions that belong to at least one excessive set.

Definition 9 A summary excessive set SESR for resource R is the union of all excessive sets

ESR in a given block.

In practice, summary excessive sets are computed using a working list technique. Each

instruction in the working list is added to the summary excessive set if it is independent of at least

jRj instructions on separate allocation chains forR. All unexamined instructions that are independent

of the excessive instruction are then added to the working list. The initial instruction of the list is

located by scanning all instructions until one that meets the excessive test is found. This growing

process is graph linear in time.

Consider the minimal decomposition ffA, B, E, I, Kg, fC, Fg, fD, G, Jg, fHgg, and assume

that there are three functional units available. The instruction B is the �rst instruction that is

independent of at least three other instructions, C, G, and H. Thus, B is added to the working list and

the summary excessive set. The instructions C, D, G, H, and J are then added to the working list. Of
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these instructions C, G, and H will be added to the summary excessive set while D and J will not. The

�nal summary excessive set is fB, C, E, F, G, Hg.

4.3 Resource Holes

The �nal piece of resource usage information that is computed are resource holes. These are locations

in the program where a copy of a resource is under utilized and available for allocation to additional

instructions. This section discusses how resource holes are found and identi�es properties indicating

how they can be allocated to additional instructions.

Definition 10 A resource hole is a location on an allocation chain where that resource is available

for additional allocations. A resource hole, h, has the following properties:

1. The type of the hole indicates how the hole must be used.

2. The size of the hole, sizeh , is the number of cycles that the hole is available for addition

allocations.

3. The earliest available time, EATh, is the earliest time that the resource can be allocated to

another instruction.

4. The latest available time, LATh is the latest time that the resource can be allocated to another

instruction.

Resource holes and their properties are located by analyzing the allocation chains for the

resource of interest. The properties of a hole are determined by the time of execution of the in-

structions surrounding it. The scheduling of instruction i in the program DAG is limited by the

precedence constraints to a time frame in which it can execute. The time frame is delimited by the

instruction's earliest start time, ESTi, and latest �nish time, LFTi. Let �i denote the execution time

for instruction i. Then i's latest start time, LSTi, is given by LSTi = LFTi � �i. The slack time

for scheduling instruction i is given by slacki = LSTi �ESTi. The identi�cation of resource holes is

performed by examining the instructions' EST s and LFT s on each allocation chain and recording

the information for each hole.

Resource holes can occur in two di�erent situations. The �rst, a free hole, occurs when

an instance of a resource is unused in a section of a basic block. Free holes can occur because no

instructions from an allocation chain can execute in this section of code. They can also occur at the

beginning or end of a block before maximum demands are encountered.
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type size EAT LAT

Free LSTn2 � EFTn1 EFTn1 LSTn2
Slack slack ESTsn1 LFTsnl

Table 4.1: Computation of hole properties

The second type of hole, a slack hole, occurs when resources that are already allocated may

be temporally shared. If slacki = 0 then i is on a critical path and has no 
exibility for scheduling.

If i is not on a critical path then there is some 
exibility on when it can be scheduled. Thus, its

resources may be available for allocation to another instruction.

Definition 11 If two consecutive instructions, ij and ij+1, on an allocation chain cannot be ex-
ecuted consecutively, i.e., LFTij < ESTij+1 , then there is a free hole, h, such that EATh = LFTij ,
LATh = ESTij+1 , and sizeh = LATh � EATh.

As an example, consider the basic block of code in Figure 4.5(a) and the corresponding

DAG in Figure 4.5(b). Assume that the functional unit allocation chains are fBg, fA, C, E, G, H,

I, K, Lg, and fD, F, Jg, and that the register allocation chains are fA, Bg, fC, F, G, H, I, K,

Lg, fDg, and fE, Jg, then Figures 4.5(c) and 4.5(d) show partial schedules for the resources, where

each column represents one allocation chain. Thus the DAG requires three functional units and four

registers to exploit all available parallelism. Assuming that all instructions require unit time, the

DAG requires eight time units to execute. A free functional unit hole exists between instructions F

and J, with size 2 and range (3, 4). Thus, two instructions could be allocated to that allocation chain

between F and J. Another free functional unit hole exists between J and the end of the block.

Definition 12 If there is a set of consecutive instructions I = fi1; i2; :::; ing and a constant s such
that 8

ij2I
slackij = s, then there is a slack hole h, such that EATh = ESTi1 , LATh = LFTin , and

sizeh = s.

In Figure 4.5(d) there is a slack functional unit hole involving instructions A, B, and the end

of the block. B has a slack time of 5, and a range of (1, 7). Thus, �ve instructions could be allocated

to B's allocation chain. Any number of these �ve instructions can be allocated between A and B, with

the remainder after B.

The computation of both the size and the availability of a hole is summarized in Table 4.1.

Nodes n1 and n2 surround a free hole, and nodes sn1 and snl are the �rst and last nodes in a slack

hole. LST and EFT are the latest start time and earliest �nish time of a node, respectively. Slack is
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A: load a

B: b = 2 * a

C: c = a + 1

D: d = a - 3

E: e = c * d

F: f = c - d

G: g = e / f

H: h = g + 5

I: i = h * 2

J: j = h + 4

K: k = i / j

L: l = b + k

(a) Basic block of code

A

B

C D

E F

G

H

I J

K

L

(b) Corresponding DAG

B
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L
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(c) Partial schedule of functional units

A
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F
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H

I

K

L

D

E

J

(d) Partial schedule of registers

Figure 4.5: Example DAG of a basic block
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the slack time of each node in the hole. The hole nodes are annotated with these characteristics. The

computation of the LST and EFT for the instruction and region nodes is graph linear in time. The

location of the holes requires O(N ) time, and the worst case number of holes found is 2N , where N

is the number of instruction and region nodes in the region.

When Resource Spackling is performed it is preferable to �nd a resource hole large enough

to hold the instruction or instructions being placed in it. However, it is possible that no such holes

exist. In such cases the instructions are inserted in the most desirable hole despite its size, with the

result that the length of the critical path through the DAG is increased. This technique is referred

to as wedged insertion. In practice it is convent to place zero sized holes between all instructions

where there would otherwise be no hole due to the instructions being on a critical path to facilitate

wedged insertion.



Chapter 5

Global Uni�ed Resource Requirements
Representation

In this chapter an intermediate representation that incorporates the resource requirements

information described in Chapter 4 is presented. The incorporation of the resource requirements

enables the compiler back end to fully integrate phases that allocate and schedule di�erent types of

resources, such as registers and functional units. A single representation simpli�es such integration

by presenting all information in a consistent manner, including where and how all resources of interest

are used and available, as well as factors that a�ect the execution time of the program, such as critical

path lengths and execution counts of regions.

5.1 Integrated Resource Allocation Representation

Algorithms that integrate resource allocation need resource usage information to make e�ective alloc-

ation decisions that have a minimal impact on the execution time of the program. Resource allocation

decisions only need to be made when there are locations in a program segment that require more

instances of a resource than are available. Advanced resource allocation algorithms, such as those

based on the Measure and Reduce paradigm and to some extent global schedulers, move instruc-

tions from locations where there are insu�cient instances of a resource to locations where extra

resource instances are available. Thus, the resource usage information must indicate all locations

where resources are either over utilized or under utilized. Since the architectures targeted in this

work exploit ILP, the representation used must take into account the ability to schedule instructions

in parallel. This chapter identi�es a set of properties for intermediate representations and shows how

the work discussed in the previous chapter can be used in an intermediate representation to satisfy

these properties.
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5.1.1 Integrated Resource Allocation Properties

An intermediate representation should satisfy the following properties to support uni�ed resource

allocation. These properties are called the Uni�ed Representation Properties.

Property 1 [Integrated Representation] The representation can be used to determine the impact of

a resource allocation or set of resource allocations on all resource demands in all segments and the

execution time of the program.

Property 2 [Measurability] The representation enables measurement of all segments' demands for

all resources. A resource measurement is precise if it indicates the minimum number of copies of

the resource needed to exploit all parallelism uncovered in each program segment.

Property 3 [Resource Usage] The representation identi�es all locations in each segment where

resources are either over utilized or under utilized.

Property 4 [Executability] The representation indicates if each program segment in its current

state can be executed using the available resources. A program segment is executable if and only if

for each resource the number of copies required is less than or equal to the number of copies available.

A program is executable if and only if all its segments are executable.

Ideally, the representation should supply precise resource measurements. However, as dis-

cussed in Chapter 4 and Appendix A, the problem is NP-Complete for spanning resources. Thus,

there is a trade-o� between the precision of the measurements and the time taken to compute them.

Appendix A also discusses fast heuristics developed for measuring spanning resource requirements

that are demonstrably precise.

The measurability of the representation allows resource usage information for all resources

to be computed. An intermediate representation that provides resource usage information for all

resources enables uni�ed resource allocation.

5.1.2 GURRR

GURRR is an intermediate representation that meets the uni�ed representation properties and is

used to investigate uni�ed resource allocation algorithms. To support a variety of parallelization

techniques, including powerful code motions, GURRR is based on a modi�ed form of the Program

Dependence Graph (PDG).
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The Instruction Program Dependence Graph is used to represent instruction level parallel-

ism not explicitly expressed in the traditional statement level PDG. Since a single program statement

may result in several intermediate code statements, representing the program at the intermediate code

level permits access to more ILP. To support a wider range of code motions the representation is

converted to Static Single Assignment form (SSA) [RWZ88, AWZ88]. Special instruction nodes can

be added to carry loop and array access information to enable the exploitation of medium grain

parallelism as well. Compilers using PDG based representations perform resource allocations on a

region by region basis. Thus, regions correspond to the program segments mentioned in the uni�ed

representation properties.

The Instruction PDG (IPDG) is a graph G = (N;E), in which the set of nodes, N , is a

union of the following node types.

1. Instruction nodes, I, are similar to statement nodes found in traditional PDGs, but represent

intermediate opcodes.

2. Region nodes, R, in the PDG identify a unique set of execution conditions or control depend-

encies.

The set of edges, E, is a union of the following edges types.

1. Control dependence edges, C � fI �Rg[ fR�Ig, connect the region node to the instruction

and subregion nodes that execute under the conditions that it identi�es. Control edges are also

added from the instruction nodes specifying those conditions to the region node.

2. Data dependence edges, D � fI [Rg� fI [Rg, connect the instruction nodes and represent

the dependence of the instruction nodes on data values computed by earlier instruction nodes.

In addition, data dependence edges are added from the instruction nodes de�ning values to

the region nodes containing uses of the values to summarize the dependence of the region as a

whole on data values computed by earlier instructions.

3. Transitive data dependence edges, DT � fI [ Rg � fI [ Rg, indicate indirect dependencies
between nodes due to a sequence of data dependencies. The addition of these edges simpli�es

the computation of the ordering of nodes within a region.

GURRR extends the IPDG to include the resource usage information required to meet

the uni�ed representation properties. In addition to summarizing control dependence information,

region nodes in GURRR are used to summarize resource usage information. Since the regions are

organized in a hierarchical manner, the summary for a region must include resource usage information
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for both the instructions and subregions that it contains. Regions in GURRR also store execution

counts, indicating how many times the region is expected execute during a run of the program. This

information enables the allocation algorithms to make better decisions on how many resources to

allocate in each region.

The Measure and Reduce allocation scheme presented in this dissertation explicitly decides

which instructions should be delayed until all resources that it requires are available. To support

these scheduling decisions GURRR must represent additional constraints placed on the ordering of

nodes. GURRR must also contain information used to measure the resource requirements. A part of

this information is identifying which instructions can share an instance of a resource. The following

additions are made to the IPDG's nodes and edges to meet these requirements and obtain GURRR.

1. Resource hole nodes, H, represent the resource holes found on the allocation chains. Each hole

node is annotated with the resource availability characteristics.

2. Temporal dependence edges, T � N�N , are used to represent sequential dependencies. These

edges are used to supply additional ordering constraints on the nodes, such as placement of

hole nodes, and instruction and region node scheduling.

3. Reuse edges, U � fI [Rg � fI [Rg, connect nodes that can temporally share an instance of

a resource under any schedule allowed by all of the dependencies in a region. A separate set of

reuse edges is used for each resource type.

The stipulation that Reuse edges are added only when a resource can be shared under

all semantically correct schedules allows for parallel execution and code reordering. An allocation

algorithm, such as Measure and Reduce, can select any allowable schedule and determine the worst

case resource requirements. When only a single schedule, such as the original order of the sequential

source code, is used, the resource requirements measurements are less precise, since the schedule

does not account for as many overlaps of uses of resources.

Figures 5.1(a) and 5.1(b) show a simple program and the corresponding GURRR. The target

architecture has three functional units and three registers. Control, data, and temporal dependencies,

and reuse edges are indicated by bold, normal, dashed, and dotted lines, respectively. To improve

readability only the reuse edges for registers are displayed.

To be useful for uni�ed resource allocation, GURRR must satisfy the uni�ed representation

properties. GURRR satis�es the Measurability property by using the reuse edges and allocation

chains to compute each region's requirements for all resources. As discussed in section 5.2.1, the

resource measurements are precise for functional units and usually precise for registers. GURRR



36

1: load A

2: load B

3: C = A - 10

4: D = A * B

5: E = B + 12

6: F = D / C

(a) Code segment

A B

C D E

F

HFU

HFU HFU

HReg

HReg

Region1

T

(b) GURRR

T

Control Dependence

Data Dependence

Transative Data Dependence

Temporal Dependence

Reuse

Figure 5.1: Example of GURRR

provides resource usage information for all resources on the IPDG. All types of dependencies are

represented by the various types of edges in GURRR, allowing the execution time of a region to be

computed. The combination of all of this information on a region by region basis and in hierarch-

ical summaries satis�es the Uni�ed Representation property. In each region the excessive sets and

resource hole nodes identify all locations that over utilize and under utilize resources, respectively,

satisfying the Resource Usage property. Finally, the number of instances of a resource required by

a region is stored in the region node. This number can be compared to the number of instances of

the resource available for allocation to the region to determine if the region is executable. Due to the

hierarchical nature of GURRR, the program is executable if the root region is executable, satisfying

the Executability property.

At times during the measurement of resource requirements and use of GURRR by the

compiler back end, it is convenient to consider only subsets of the information provided by GURRR.

Four combinations of subsets of nodes and edges commonly used are identi�ed. Each combination

is a subgraph composed of selected subsets of nodes and edges.

Definition 13 Given a graph G = (N;E), the subgraph of G induced by N 0 � N with respect

to Ê � E is the graph G0 = (N 0; E0), where E0 = f(u; v) 2 Ê : u; v 2 N 0g

1. The Control Dependence Graph, CDG, is the graph induced by I [R with respect to C.

2. The Data Dependence Graph, DDG, is the graph induced by I [R with respect to D.

3. The Region DAG for a region R, RegionR DAG, is the graph induced by fnjn 2 I [ R [
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H and (R; n) 2 Cg with respect to D [ DT [ T . This graph provides all of the information

needed to allocate all resources in the region.

4. The Reuse DAG for a region R and resource R, ReuseR DAG, is the graph induced by

fnjn 2 I [R and (R; n) 2 Cg with respect to U .

The CDG and DDG are the same as those found in the IPDG. The Region DAG contains

all dependence and resource usage information required for performing local uni�ed resource alloc-

ation. The CDG and Region DAGs for other regions may be used when performing various types

of integrated global resource allocations. The Reuse DAG is typically used only by the resource

usage computation algorithms. These algorithms measure the resource requirements, compute the

excessive sets, and add the resource hole nodes.

As an example of the various subgraphs, consider the code segment of an if-then statement

in Figure 5.2(a) and assume that the target architecture has a single type of functional unit resource

and a single type of register resource. In the subsequent �gures, edges representing redundant

ordering information are removed to aid readability. The control and data dependence subgraphs

are shown in Figures 5.2(b) and 5.2(c) respectively. The functional unit and register Reuse DAGs

are shown in Figures 5.3(a) and 5.3(b) respectively. The region 2 node, R2, does not occur in

the functional unit Reuse DAG since its instructions are not executed in parallel with region 1's

instructions. The R2 node occurs in the register Reuse DAG since the values it computes can be

alive simultaneously with some of the values computed in region 1. Since the two values D1 and D2

share a register, the R2 node represents the register demand of instruction t. The brlt predicate

node does not occur in the register Reuse DAG since it does not write to a register. The functional

unit Reuse DAG for region 1 can be covered by the four allocation chains fC, brltg, fA, D1,

F, Hg, fB, Eg, and fGg, indicating a maximum requirement of four functional units to exploit all

parallelism in the region. The register Reuse DAG can be covered by the six allocation chains

fC, Fg, fA, D1, Hg, fBg, fEg, fR2g, and fGg, indicating that it is possible for six values to be

simultaneously alive.

Figure 5.3(c) shows the partial schedule for functional units in region 1 imposed by the data

and temporal dependencies. Each column represents an allocation chain. There are free resource

holes before C, after both brlt and E, and before and after G. Instructions D1, E, and G have slack time

in when they can be scheduled. Since the functional units are not needed for the entire time, these

nodes exist in slack holes. Figure 5.3(d) shows the region DAG for region 1 with only the functional

unit hole nodes. Free and slack hole nodes are marked with FH and SH respectively. A transitive data

dependence edge has been added from node C to node F to indicate the transitive dependence caused
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1: load A

2: load B

3: C = A * 4

4: D1 = A * B

5: E = B + 3

6: brlt C, 9

7: t = D1 + C

8: D2 = t * 5

9: F = D / E

10: G = B + 10

11: H = F + G

(a) Code segment

R1

A B C brlt M

R2 R3

D E F L1 G H I J K L2

TrueFalse

(b) Control Dependence Subgraph

A

B C

brlt
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�

M

(c) Data Dependence Subgraph

Figure 5.2: Sample Code and GURRR Dependence Subgraphs
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Figure 5.3: GURRR Resource Usage Information
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by nodes t and D2, which are not in region 1. The largest set of instructions that can be executed in

parallel is fC, D1, E, Gg, which would be excessive if the target architecture provided fewer than

four functional units.

The partial schedule for registers is shown in Figure 5.3(e). The allocation chain containing

R2 does not have any instructions from region 1 and consists of two free holes separated by the node

R2. Figure 5.3(f) shows the region 1 DAG without the functional unit holes.

5.2 Computing GURRR

GURRR is initially constructed and used as the input form for the integrated phases in the back end

of the compiler. However, as the phases operate they transform the program. These transformations

must be made in GURRR. Furthermore, The resource usage information must be updated to re
ect

the impact of the transformations. This section discusses both the initial construction and incremental

updating of GURRR.

5.2.1 Construction of GURRR

The construction of GURRR begins with an IPDG and is performed in a hierarchical manner on the

DAG of region nodes resulting from the forward control dependencies. The regions are visited one at

a time in a bottom up order and the local components are constructed. A summary of the resource

requirements of subregions is used during the construction in the parent region. The resulting global

resource requirements are contained in the root region.

Special processing occurs when there are mutually exclusive subregions, such as the then

and else subregions of an if statement. In this case, the region containing the if statement is

only concerned with the maximum requirements of the set of mutually exclusive subregions. The

subregions nodes are marked as mutually exclusive and the construction takes the maximum of the

requirements for each resource.

The steps in the construction of GURRR for each region are performed as follows.

Add transitive data dependence edges: Transitive data dependence edges are added

between all instruction and region nodes. The computation of the transitive data dependence edges

can be done in graph linear time. In the worst case O(N2) edges are added. These edges are required

for the proper computation of the Reuse DAGs.

Build Reuse DAGs: The ReuseR DAG is the instantiation of the relation CanReuseR

for resource R. The ReuseR DAG is constructed by adding an edge from node a to node b for each
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(a; b) 2 CanReuseR, where both a and b use resource R.

The sets of nodes whose resource can be reused by node n are computed in a forward

topological traversal of the DAG using the equation

CanReuseR[n] = avail[n]
[

P2predecessors(n)

CanReuseR[P ]:

Avail[n] is at most all of n's immediate predecessors whose instances of R can be safely reused by

n. The computation of avail[n] is dependent on whether the resource is classi�ed as spanning or

non-spanning. For non-spanning resources, avail[n] is the set of n's closest ancestors that use R.

Computing avail[n] for spanning resources requires a special component analysis. The identi�cation

and analysis of most components can be performed in graph linear time. However, for a few com-

ponents the analysis is NP-Complete. The computations of avail[n] and CanReuse are graph linear

and the resulting Reuse DAGs contain O(N2) reuse edges.

Find allocation chains: The number of allocation chains for each resource is recorded in

the parent region's node. Once the requirements have been measured, the allocation chains are used

to compute excessive sets and resource holes.

Find excessive sets: The summary excessive sets are stored in the region node for use

by the allocation phase. The process of growing excessive sets is graph linear in time.

Find resource holes and add hole nodes: Free hole nodes are added between the

consecutive nodes surrounding the hole. Slack hole nodes are added between the predecessor of the

�rst instruction or region node in the hole and the successor of the last node in the hole.

5.2.2 Incremental Updating of GURRR

GURRR is able to re
ect changes in resource requirements resulting from the transformations applied

to the program. The brute force approach is to recompute all information from scratch after each

transformation is applied. This can be a costly approach, and it does not provide any support for

predicting the impact of a transformation. It would be useful to be able to estimate the impact

of a possible transformation on the resource requirements. This section discusses techniques for

incrementally updating GURRR.

In previous work on specifying transformations a basic set of program edits to describe the

transformations has been used [WS91, Dow94]. The following set of Standard Edit Functions (SEFs)

is de�ned, which apply a transformation to the elements of a PDG.

Addelement Create a new element

Deleteelement Delete an element
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Copyelement Create a new element and copy label information of an existing element

Moveelement Delete and recreate an element, preserving label information

Modifyelement Change the label information

There are two sets of the above operations, one for nodes and one for edges, giving a total of ten

SEFs. Since nodes will never be added without corresponding edges, and the edge SEFs can be

viewed as combinations of adding and deleting edges, only the AddEdge and DeleteEdge SEFs are

considered.

The computation of the CanReuse relation is graph linear. The updating of avail[n] in-

formation is limited to the nodes a�ected by the AddEdge and DeleteEdge SEFs. The updated

information is then propagated through the region DAG. The Reuse DAG is updated by adding and

deleting edges corresponding to the nodes inserted and removed in the CanReuse relation.

The matching algorithm used to compute allocation chains is incremental in nature; each

matching is a partial solution and new matchings are added by �nding augmenting paths. Thus,

the modi�ed Reuse DAG with edges deleted and added can be used as a partial solution. The

complexity for this solution is O(
p
mE), where m is the number of chains in the initial partial

solution. An alternative approach can �nd only unit length augmenting paths in graph linear time,

possibly introducing some imprecision.

Updating of the excessive sets is performed in two steps. First, the nodes in the existing

excessive sets are tested to see if they are still in parallel with an excessive number of other nodes.

This step can be limited to the nodes that have had edges added to them. Second, nodes not in the

excessive sets are tested to see if they now should be added to the working set. The initial set of

nodes considered in this step can be limited to those that have had edges removed.

Transformations can a�ect holes by creating new ones, removing existing ones, and by

changing their characteristics. All of these changes can be found by examining each node whose EST

and/or LFT has changed. However, the nature of the matching algorithm used to �nd the allocation

chains can cause unchanged holes to migrate between allocation chains. The sequential edges used

to place the hole nodes in the region DAGs can be updated to re
ect the migrations in linear time

in the number of hole nodes.



Chapter 6

Resource Spackling

In URSA's approach to the Measure and Reduce paradigm, instructions in excessive sets

are allocated resources by placing them in resource holes. The placement is achieved by introducing

additional temporal dependences between instructions. This process is called Resource Spackling.

Spanning resources are more complex than non-spanning resources due the fact that spanning uses

may have to be split, requiring insertion of store and load instructions. Since the mechanics of

resource spackling di�er for spanning and non-spanning resources, two di�erent transformations

are needed, spanning resource spackling and non-spanning resource spackling. When the type of

transformation is clear from the context, the transformation is generically referred to as the spackling

transformation in this dissertation.

Preconditions must be placed on the instruction and hole selected for the transformation

to ensure that the program's semantics are preserved and that a reduction in resource requirements

is achieved. In some situations the preconditions do not limit instructions to a single location. In

these cases heuristics are used to select a speci�c location based on relative costs. Such heuristics

are described in subsequent chapters.

This chapter presents the two spackling transformations as applied to GURRR, as well

as the conditions required of the instruction and hole pair selected for transformation. It is shown

that as long as there are excessive sets it is possible to �nd a hole into which an instruction from an

excessive set can be spackled. Thus, all excessive resource requirements can always be removed. The

spanning resource spackling transformation is presented �rst. The non-spanning resource spackling

transformation is then shown to be a simpli�ed form of the spanning transformation.
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defH
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Figure 6.1: Filling a non-spanning resource hole

6.1 Filling Spanning Resource Holes

The spanning resource spackling transformation arranges for two spanning uses of a resource to

temporally share a single instance of the resource in an interleaved manner. The transformation

deals with two groups of nodes. The �rst group consists of the node at which the hole starts and

all nodes that use its value. Together these nodes represent the spanning use de�ning the hole. The

second group consists of the node selected for insertion into the hole and all nodes that use its value.

Together these nodes represent the spanning use to be inserted. These nodes are combined into

several useful subsets.

Definition 14 Let H be a spanning resource hole and I be the use to be inserted into H. The
following sets of nodes are used during spackling spanning resource uses.

1. The hole H is delimited by the nodes where the spanning value is de�ned by the instruction
defH , and the end of the hole, node Hend.

2. The instruction defI de�nes the value I to be spackled into H.

3. The set useH , consisting of nodes useH1
: : :useHn

, is the set of all uses of defH . In cases
where defH 's live range must be split, these nodes are partitioned into three sets, preUsesH,
holeUsesH, and postUsesH.

4. The set useI, consisting of nodes useI1 : : :useIm, is the set of all uses of defI. In cases where
defI's live range must be split, these nodes are also partitioned into two sets, holeUsesI and
postUsesI.

5. The 7-tuple T = ( defI, holeUsesI, postUsesI, defH , preUsesH, holeUsesH, postUsesH )
is referred to as a S-spackling tuple.

To achieve a reduction in resource requirements the spackling transformation places the

node I into the hole H. Circumstances may require either or both of the live ranges to be split. When
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defH 's live range must be split its uses are partitioned into the sets preUsesH, holeUsesH, and

postUsesH, which are placed prior to, in, and after the hole, respectively. When defI 's live range

must be split its uses are partitioned into the sets holeUsesI and postUsesI, which are placed in

and after the hole, respectively. Figure 6.1 shows the a�ected portion of the program graph before

and after the transformation. The dashed box in Figure 6.1(b) represents the resource hole into

which I is spackled.

Figure 6.1 depicts the various sets of nodes as being disjoint. However, the S-spackling

transformation must handle cases when nodes exist in more than one set. These cases arise when

either a node belongs to both live ranges, or defI uses the value de�ned by defH .

Condition 1 [Overlapping Sets] The following cases describe when two sets in a S-spackling tuple
may overlap.

1. defI 2 preUsesH

2. postUsesI \ postUsesH 6= ;
3. holeUsesH \ holeUsesI 6= ;

All other pairs of sets in the S-spackling tuple must be disjoint.

The procedure spackleSpanning(), shown in Figure 6.2, performs the actual modi�cations

of GURRR depicted in Figure 6.1. For clarity, the code to handle the special cases mentioned in the

Overlapping Sets Condition is omitted. The procedure spackleSpanning() performs a single span-

ning resource spackling transformation and is called from the driver procedure reduceSpanning(),

shown in Figure 6.3. For each call to spackleSpanning() the driver �rst �nds a pair of de�nitions

for the transformation and creates the S-spackling tuple by splitting their uses. After calling the

spackling transformation the driver updates the resource requirements information. This process is

repeated as long as there is an excessive set for the spanning resource under consideration.

The remainder of this section is dedicated to proving two important properties of the al-

gorithms given. The �rst property is that spackleSpanning() is a safe transformation, that is, it does

not produce a representation of the program that violates the properties of GURRR and it preserves

semantic correctness. The second important property of the algorithms is that reduceSpanning()

will terminate.

Since GURRR is a graph based representation of dependences, several standard graph

functions are useful in this discussion.
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procedure spackleSpanning( defI, holeUsesI, postUsesI,

defH, preUsesH, holeUsesH, postUsesH )

f
/* spill the inserted value if needed */

if ( postUsesI != ; )

f storeI = newStore();

loadI = newLoad();

foreach n 2 postUsesI

f delEdge( defI, n, Data );

1: addEdge( loadI, n, Data );

g

2: addEdge( defI, storeI, Data );

g
else

loadI = NULL;

/* spill the spanning value if needed */
if ( postUsesH != ; )

f storeH = newStore();

loadH = newLoad();

foreach n 2 postUsesH

f delEdge( defH, n, Data );

3: addEdge( loadH, n, Data );

g

if ( storeI )

4: addEdge( storeI, loadH, Temporal );

5: addEdge( defH, storeH, Data );

6: addEdge( storeH, defI, Temporal );

g
else

loadH = NULL;

/* constrain hole uses into hole */
foreach n 2 holeUsesI [ holeUsesH

f if ( loadI )

7: addEdge( n, loadI, Temporal );

if ( loadH )

8: addEdge( n, loadH, Temporal );

g

/* constrain pre uses to before hole */
foreach n 2 preUsesH

9: addEdge( n, defI, Temporal );

g

Figure 6.2: Procedure spackleSpanning()
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procedure reduceSpanning( block, resource )

f
computeRequirments( block, resource );

while ( block has excessive sets )

f
(defH, defI) = selectSpackle( block, resource );

(holeUsesI, postUsesI, preUsesH, postUsesH) = splitUses( defH, defI );

spackleSpanning( defI, holeUsesI, postUsesI, defH, preUsesH, holeUsesH postUsesH );

updateRequirements( block, resource );

g
g

Figure 6.3: Procedure reduceSpanning()

Definition 15 The following functions take two sets as parameters and return the status of de-
pendences between them.

1. depends(A, B) returns true if and only if there is a direct or indirect dependence of any type
from any node in the set A to any node in the set B.

2. noDeps(A, B) returns the negation of depends(A, B).

After all spackling transformations have been performed the resulting GURRR of the pro-

gram is used to determine the order of the instructions during code emission. Thus, the GURRR for

a region must be acyclic and spackleSpanning() must not introduce cycles. Existing dependences

between the nodes of interest are used in the selection of defH as well as in the splitting of the uses

of defH into their respective sets. Based on the temporal dependences added by the transformation

preconditions are placed on the sets in the S-spackling tuple to ensure that no dependence cycles are

introduced.

Condition 2 [Acyclic] An S-spackling tuple T is acyclic if the following conditions hold:

1. noDeps( postUsesI, holeUsesI )

2. noDeps( postUsesH, defI [ holeUsesI )

3. noDeps( defI, defH [ preUsesH )

4. noDeps( holeUsesH, preUsesH [ defI )

5. noDeps( postUsesI [ postUsesH, holeUsesH )

The above preconditions on the splitting of the uses are necessary and su�cient for the

routine spackleSpanning() to avoid introducing cycles. Furthermore, it is easily seen that the

algorithm preserves semantic correctness. The transformation spackleSpanning() performs two

sets of graph manipulations. The �rst set generates spill code, which consists of adding store and
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load instructions and moving the post subsets of uses from the original de�ning instruction to a

new load. When the S-spackling tuple satis�es the Acyclic Condition all newly added direct and

indirect dependences between pairs of existing nodes will not introduce dependence cycles. The

sequentializations introduced by spill code are lines 1 through 6 in Figure 6.2. Examination of the

algorithm shows that all values are properly spilled. That is, uses of values which are delayed by

spilling still access the same values after they are reloaded.

Thus, the transformation spackleSpanning() satis�es the property that semantic correct-

ness is preserved. The second required property is that reduceSpanning() terminates. Since the

procedure loops until there are no more excessive sets, termination is guaranteed if two requirements

are meet:

1. each application of spackleSpanning() reduces the number of interfering spanning instances.

2. while an excessive set can be found, an application of spackleSpanning() can also be found,

and

Requirement 1 implies that progress is made during each iteration of reduceSpanning(). Require-

ment 2 is a perquisite to applying spackleSpanning(). The satis�ability of each requirement is

proved in turn.

Further examination of the procedure spackleSpanning() is required to demonstrate the

termination property. To this end it is convenient to introduce the notion of spanning instances,

which are analogous to register live ranges in that they both describe a spanning use of a resource.

A live range is described as extending from the de�nition of that value to the last instruction to use

that value. On the other hand, a spanning instance is described as extending from a use of a value

back to the de�nition of a value. Thus, each use of a given value forms a separate spanning instance.

This viewpoint is useful because di�erent uses of a single value may be handled di�erently by the

spackling transformation. A more formal de�nition is given as follows.

Definition 16 A spanning instance is a pair of instructions (def; use), where def is a de�nition
node which de�nes a value, and use is a use node which uses that value. A single de�nition may
be a member of multiple spanning instances. Let (def1; use1i) and (def2; use2j ) be two spanning
instances, then they are said to be unique if and only if def1 and def2 are not the same node. A
pair of unique spanning instances are said to be fully ordered if and only if

depends( use1i, def2 ) _ depends( use2j, def1 ) (6.1)

A pair of unique spanning instances that are not fully ordered are said to be interfering.

Traditional coloring based register allocation two live ranges are said to overlap one another

if the later value is de�ned before the earlier value is killed. This condition can be restated in terms
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of spanning instances. Let def1 and def2 be two di�erent instructions de�ning values. Then their

de�nitions interfere if and only if there exists spanning instances (def1; use1i) and (def2; use2j)

which interfere. This de�nition of interference naturally extends live range analysis to DAG based

representations of a program and is therefore useful in describing spanning resource spackling.

In addition to partitioning the uses in such a way that the transformation does not introduce

cycles, the splitting routine must also ensure that the partitioning will achieve a reduction in resource

demands. A reduction occurs when the interfering spanning instances are placed in sets of their

respective partitions such that they become fully ordered. The cases where the interfering spanning

instances become fully ordered after the spackling transformation are given below.

Condition 3 [Reducing] Let T be a S-spackling tuple. T is reducing if and only if there exists
a pair of interfering spanning instances (defH ; useHi

) and (defI ; useIj ), and at least one of the
following statements is true

useHi
2 preUsesH ^ useIj 2 holeUsesI [ postUsesI (6.2)

useIj 2 holeUsesI ^ useHi
2 postUsesH (6.3)

useHi
2 holeUsesH ^ useIj 2 postUsesI (6.4)

It is straightforward to show when the spackling transformation is given a S-spackling tuple

which satis�es the Reducing Condition the interfering spanning instance is removed.

Lemma 1 Let T be a S-spackling tuple that satis�es the Reducing Condition. Then the spanning
resource spackling transformation will a�ect a reduction in the number of interfering spanning in-
stances.
Proof: If the defI spanning instance is placed in useholeI then the defH spanning instance is
ordered either before or after it by the transformation. If the defH spanning instance is placed
in usepreH then the defI spanning instance is ordered after it by the transformation. If the defH
spanning instance is placed in useholeH then the defI spanning instance must be placed in usepostI ,
which is always ordered after all nodes in holeUsesH. In all cases the interference is removed,
resulting in fewer interfering spanning instances. �

To show that a satisfactory S-spackling tuple always exists it is necessary to consider all

possible partial orderings between the four nodes of a interfering spanning instance. Let the inter-

fering spanning instance be composed of the pairs (D1; U1) and (D2; U2). A partial ordering can be

identi�ed by a unique string of the formwxyz, where each variable represents a particular component

of a partial ordering:
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pattern cases reason
A*** 27 symmetry between D1 and D2

*A** 18 (27) no interference
**B* 12 (27) no interference
**NA 4 (9) U1 A U2 implies U1 A D2

BN** 5 (9) D1 B D2 implies D1 B U2

*N*B 4 (9) U1 B U2 implies D1 A U2

NBNN 1 symmetrical to NNAN

NNAA 1 symmetrical to NBNB

NBAA 1 symmetrical to NNAB

Table 6.1: Invalid and symmetrical orderings removed from consideration

w - the relation between D1 and D2

x - the relation between D1 and U2

y - the relation between U1 and D2

z - the relation between U1 and U2

Each component of the identi�er can take one of three values:

B: node n is ordered before node m

A: node n is ordered after node m

N: there is no order between node n and node m

There are a total of 81 combinations of the ordering values for the components of the ordering

descriptors. After removing the illegal and symmetrical combinations, there are only 10 cases left,

which are shown in Figure 6.4. The sets of partial orders removed are given in Table 6.1, where the

character * indicate any of the values A, B, or N. The �rst column gives the pattern of cases removed.

The second column gives the number of unique cases covered by the pattern and the total number of

cases in parentheses. The �nal column explains the reason for removal.

The ground work has now been laid to show that a S-spackling tuple can always be found

which satis�es the Overlapping Sets, Acyclic, and Reducing Conditions. An algorithm exists which

can �nd such a partition in two passes over the use nodes. In the �rst pass, all use nodes that must

come before the hole are placed there and remaining use nodes are placed after the hole. The second

pass then moves use nodes that follow the hole into the hole to ensure a reduction will occur. This

movement is performed using a topological traversal. Thus the algorithm operates in graph linear

time. Feasible placements of the uses for each unique case are given in Table 6.2.
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D1 D2

U1 U2

(j) Case nban

Figure 6.4: All unique orderings of two interfering spanning instances
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case U1 U2

NNNN preUsesH holeUsesI
NNAN postUsesH holeUsesI
NBNB preUsesH holeUsesI
NBAB holeUsesH postUsesI
BBNN preUsesH holeUsesI
BBNB preUsesH holeUsesI
BBAN holeUsesH postUsesI
BBAB holeUsesH postUsesI
BBAA postUsesH holeUsesI
NBAB postUsesH holeUsesI

Table 6.2: Splittings of interfering spanning instances

Theorem 3 If there is a spanning excessive set then a S-spackling tuple T exists that satis�es the
Overlapping Sets, Acyclic, and Reducing Conditions.
Proof: by construction.

Given that there is an excessive set, there must exist at least two interfering live ranges. If
there is a dependence between them then let defH be the de�nition on the source of this dependence
and defI be the other de�nition. Otherwise arbitrarily choose defH and defI from the two de�nitions.
Let H be the hole following defH.

The simplest partitioning of the uses of the two live ranges to satisfy the Acyclic Condition
is the following. If defI is dependent on any uses from the set useH , place those uses in preUsesH.
Place all remaining uses of defH and all uses of defI in the sets postUsesH and postUsesI,
respectively. This partitioning ensures all nodes on which defI is dependent on are ordered before
it. All remaining nodes are either dependent on defI or independent of it, and so can be safely
ordered after it.

The partitioning must now be adjusted to satisfy the Reducing Condition. Let the set
post be the union of the sets postUsesH and postUsesI from the step above. Since there are no
cyclic dependencies between the nodes, at least one of the uses in post must have no ancestors in
post and can be moved into its respective holeUsesH or holeUsesI set without violating the Acyclic
Condition. Let usemove be this use and let usestay be the other use of the pair of interfering spanning
instances. Then allowing for the situations where a either or both of usemove and usestay may be
in both postUsesH and postUsesI as identi�ed by the Overlapping Sets Condition, there are three
cases.

1. There is a useHi
in preUsesH as a result of the �rst partitioning step. Then equation 6.2 of

the Reducing Condition is already satis�ed.

2. usemove 2 useI and usestay 2 useH . Then placing usemove in holeUsesI satis�es equation 6.3.

3. usemove 2 useH and usestay 2 useI . Then placing usemove in holeUsesH satis�es equation 6.4.

Thus, after moving at most one use into the hole, all conditions are satis�ed as required. �

The above theorem shows that if there is an excessive for a spanning resource, then a redu-

cing transformation can always be performed. Since every program contains a �nite number of span-

ning instances, only a �nite number of interfering spanning instances in excessive sets can exist. By

Theorem 3 if there is an excessive set then an application of the transformation spackleSpanning()

can be applied, which will reduce the number of interfering spanning instances. Therefore routine

reduceSpanning() must eventually terminate and it satis�es the termination property.



53

hole start

hole end

I

(a) Before

hole start

I

hole end

(b) After

Figure 6.5: Filling a non-spanning resource hole

6.2 Filling Non-spanning Resource holes

The non-spanning spackling transformation arranges for two instructions to temporally share a single

instance of a non-spanning resource. The transformation simply introduces a temporal dependence

between the two instructions. For the sake of completeness this section outlines the transformation

and the necessary conditions required of the instructions.

Definition 17 Let H be a non-spanning resource hole delimited by the nodes Hstartand Hend. Let
I be the instruction to be inserted in this hole. The 3-tuple ( Hstart, Hend, I) is referred to as a
NS-spackling tuple.

To achieve a reduction in resource requirements the instruction I must be independent of

at least one of Hstart and Hend. With out loss of generality, Hstart is chosen to be the node.

Condition 4 [Independence] Let T be a NS-spackling tuple. T is independent if and only if

nodep(I, Hstart) ^ nodep(Hstart, I) (6.5)

The portion of the program graph a�ected by the non-spanning spackling transformation

is shown in Figure 6.5. The non-spanning spackling transformation, spackleNS() simply consists

of two calls to addEdge() to add a temporal edges from Hstart to I and from I to Hend. A driver

procedure similar to reduceNS() is used to select NS-tuples, perform the transformation, and update

the resource requirements information.

Instead of interfering spanning instances, non-spanning spackling deals with the number of

other instructions in the excessive set which are independent of I.

Definition 18 Let E be a non-spanning excessive set and let I 2 E. Then the set excessiveI =
fnjnodep(I; n) ^ nodep(n; I)g is I's excessive set, and numExI = jexessiveI j.
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Lemma 2 Let T be a NS-spackling tuple that satis�es the independence condition. Then the following
statements are true:

1. if there is a non-spanning excessive set then a NS-spackling tuple T which satis�es Condition 4
can be found,

2. spackleNS() reduces numExI , and

3. spackleNS() does not introduce any dependence cycles

Proof: All statements follow immediately from the combination of the independence condition and
the de�nition of non-spanning excessive sets. �

Using the concept of an instruction's excessive set it can be seen that reduceNS() termin-

ates. Since every program contains a �nite number of instructions, there must be a �nite number

of instructions in non-spanning excessive sets and thus each excessiveI is also �nite. By Lemma 2

if there is an excessive set then an application of the transformation spackleNS() can be applied,

which will reduce the number of non-spanning interferences. Therefore routine reduceNS() must

eventually terminate.



Chapter 7

Uni�ed Allocation

The previous chapter described the mechanics of performing Resource Spackling. However,

the application of these techniques in a uni�ed resource allocation scheme must address several addi-

tional issues. Allocation of functional units has only a local impact on the program, while allocation

of registers has both local and non{local e�ects due to the nature of spanning uses. Uni�ed resource

allocation is achieved by the simultaneous allocation of multiple resources. This simultaneous alloc-

ation performs resource spackling using a set of resource holes. To preserve semantic correctness

additional constraints must be placed on the holes as a set. Finally, a method is needed to compare

the cost of several allocation alternatives to prioritize them in terms of cost. This chapter describes

heuristics to handle all of these issues.

7.1 Local Scheduling and Register Allocation

In the Measure and Reduce paradigm, local resource allocation is performed by introducing sequen-

tiality between instructions whose resource demands exceed available resources. The sequencing

places two instructions, which are on separate allocation chains, onto a single allocation chain. The

result is that the two instructions are allocated a single instance of the resource and they share it

temporally. Sequencing must be performed when there are excessive sets in a block.

Sequentialization is performed by selecting an instruction, i, in the excessive set that has

the greatest slack time to be moved into holes. The slack time is used to prioritize the instructions

since it indicates 
exibility in �nding a place to move the instruction. If there is a set of overlapping

holes for all resources that i excessively uses within i's execution range, then i can be inserted in

those holes without increasing the critical path length of the block.

If there is no set of holes within i's execution range, then an increase in the critical path

length is unavoidable. There are two options. First, there may be a set of holes close to i's execution

55
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Procedure reduceBlock( block )

f
While block has excessive sets do

f I = all instructions in all excessive sets for all resources;

select i 2 I with maximum slacki;

R = the set of resources that i excessively uses;

if ( 9 8
r2R

hole hr whose ranges overlap with each other and i's execution range)

holes = this set of holes;

else

f close = the set of holes hr s.t. r 2 R whose ranges overlap and are closest

to i's execution range;

wedge = the set of holes created by wedged insertion for R;

holes = the set, either close or wedge that minimally increases the critical path

length of block;

g

8
hr2holes

place i in hr by adding sequentialation edges;

if ( excessive spanning uses remain )

spill uses between the excessive set and the hole containing i;

remove i from excessive set information;

g
g

Figure 7.1: Function reduceBlock()

range to which i can be moved. Second, wedged insertion (section 4.3) can be performed to create

a set of holes for i's excessive uses. Both options can be considered and the one that minimizes the

increase to the critical path length can be selected. A function based on this approach is given in

Figure 7.1. Pseudo code for the algorithm for �nding overlapping resource holes is presented in the

next section.

As an example, consider the DAG in Figure 4.1(b). First assume that the target architecture

has at least �ve registers and three functional units. Then the nodes B, C, E, F, G, and H are all members

of at least one functional unit excessive set. Nodes G and H each have a slack time of one. There is

a functional unit slack hole around each of G and H, so G's hole overlaps with H's execution range.

Figure 7.2(a) shows the result of inserting H in G's hole. Dashed arrows indicate sequentializing

dependencies, i.e., dependencies due to reuse of resources rather than data values.

Now assume that only four registers are available and F is selected to kill both B's and C's

values and H is selected to kill D's value. Then nodes B, C, E, G, and H are in both functional unit and

register excessive sets. Node G has slack time but there are no holes in its execution range. Therefore

the algorithm must increase the critical path length. There are a functional unit and a register hole

available after F executes since it kills two values and only needs one register for itself. Inserting G

in the hole following F would increase the critical path by one instruction. Wedged insertion would
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Figure 7.2: Local reductions of resource requirements

increase the critical path length more because the pseudo-hole must be large enough to spill and

reload a value. Therefore the algorithm chooses the hole close to G instead of performing wedged

insertion. The resulting DAG is shown in Figure 7.2(b).

Although the creation of some live values may be delayed by sequencing, the instructions

that compute the live values may need input values. These input values remain alive from where they

are computed to where the excessive instructions are moved. In Figure 7.2(b) the value computed

by G was delayed until there was a register available for it. However, D's value remains alive until

after both G and H execute. In this example it is impossible to reduce the register requirements

below four using sequentialization alone. When such a situation occurs sequentialization must be

combined with register spilling. There are two options for selecting what values to spill. Either the

values in the excessive set may be computed and spilled, or the input values may be spilled. The

option selected depends on what holes are available. Computing and spilling the excess values prior

to the excessive set requires �nding additional functional unit and register holes, while spilling the

input values requires additional functional unit holes to where the values are moved. An additional

criterion to consider is the number of values that must be spilled in each case.

Continuing with the above example, assume the same killing instructions and that the target

architecture has three registers and two functional units. As before, the nodes B, C, E, G, and H are in a

register excessive set and only instructions G and H have slack time. Free functional unit and register

holes become available after F executes, and another set of free functional unit and register holes
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Function �ndOverlappingHoles( DAG, i, resourcesNeeded ) returns holeSet

f
/* �nd all usable holes */

foreach resource r 2 resourcesNeeded

f viable[r] = ;;
foreach hole h of type r

if ( r is spanning )

f if ( canSplitUses(h, i) )

viable[r] [= h;

g
else

f if ( canInsert(h, i) )

viable[r] [= h;

g
g

/* �nd best set of holes */
bestCost = MAXINT;

bestSet = ;;
foreach holeSet hs 2 fh1 : : : hjresourcesNeededjg
f if ( noCycles(hs) )

f cost = insertCost( i, hs );

if ( cost < bestCost )

f bestCost = cost;

bestSet = hs;

g
g

g

return bestSet;

g

Figure 7.3: Function �ndOverlappingHoles()

become available after I executes. G and H are placed in the free holes. However, the sequentialization

would still leave the excessive set fB, C, D, Eg. Thus a spill must be performed. To minimize the

number of spills, the algorithm spills the input value, D. The resulting DAG is shown in Figure 7.2(c).

The algorithm presented in Figure 7.1 uses the framework to simultaneously allocate re-

gisters and functional units. More advanced algorithms, such as one based on �rst sequencing

instructions in order of number of excessively used resources can also be developed using the frame-

work.

7.2 Finding Overlapping Holes

Uni�cation of resource allocation is achieved by performing resource spackling for all re-

sources needed by an instruction simultaneously. This process requires that a set of resource holes

be found that are independent of each other, i.e., no cycles will be introduced if the instruction is
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inserted into all of them. A straightforward approach is to consider all combinations of holes for

all needed resources. This approach �rst examines all holes of each needed resource type and re-

cords those which are viable. All combinations of these viable holes are then generated. For each

combination the algorithm �rst checks that the holes are mutually independent and if so, computes

the cost of using them. The combination with the least cost is then selected for uni�ed allocation

of resources needed by the instruction. A sketch of such an algorithm is given in Figure 7.3. The

function canSplitUses() checks the dependences and splits the uses of the hole and inserted instruc-

tion live ranges as described in Chapter 6 for spanning resources. The function canInsert() checks

the dependences for inserting instructions in non{spanning holes as also described in Chapter 6.

Function noCycles() checks if the holes are mutually independent. More elaborate heuristics can

be constructed which prioritize the search for holes and use more intelligence in determining which

holes are independent of each other.

7.3 Selection Heuristics

The spackleSpanning() transformation depends on heuristics to select a particular instruction

and hole pair and a partitioning of their uses into the required sets. The requirements placed on

the partitioning of uses of spanning resources for the transformation leave some latitude to the

partitioning heuristics. The design of these heuristics needs to weigh the impact of potential 6-tuples

on the resulting quality of code generated. Several criteria for consideration are suggested in this

section.

Since the application of the spackleSpanning() transformation sequentializes independent

nodes, the length of the critical path of the scheduling unit may increase. Using the following

de�nitions the impact on the critical path length can be accurately predicted.

Definition 19 Assume the 7-tuple given to spackleSpanning().

1. The defH store time, �storeH , is the execution time of a store instruction if postUsesH is
nonempty and zero otherwise.

2. The defH load time, �loadH , is the execution time of a load instruction if postUsesH is
nonempty and zero otherwise.

3. The defI store time, �storeI , is the execution time of a store instruction if postUsesI is
nonempty and zero otherwise.

4. The defI load time, �loadI , is the execution time of a load instruction if postUsesI is
nonempty and zero otherwise.

5. The function height(subtree) return the height of the tree subtree, which is de�ned to be
the length of the critical path of the tree.
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There are �ve subtrees of interest:

1. before = fdefH [ useH [ defI [ useIg

2. preH = fdefH [ storeH [ preUsesHg

3. postH = floadH [ postUsesHg

4. holeI = fdefI [ storeI [ holeUsesI [ holeUsesHg

5. postI = floadI [ postUsesIg

The length of the critical path of the local tree before the potential transformation is given by

cplbefore = height(before) (7.1)

The length of the critical path of the local tree after the potential transformation is given by

cplafter = height(preH) + height(holeI) +max(height(postH); height(postI)) (7.2)

If the height, Iest, and depth, Ilft, of each node I is precomputed, then the values of

height(before), height(preH), and height(preI) can be computed in a single pass of the respective

subtrees. Furthermore, if the topological ordering of the nodes in the scheduling region is saved, the

values height(postH) and height(postI) can also be computed in linear time. These values are then

used to compute the di�erence in local critical path lengths.

cpl� = cplafter � cplbefore (7.3)

To determine if the potential transformation has any impact on the overall critical path

length of the scheduling region, Equation 7.3 can be compared to the slack time of the subtree

before.

The impact of two candidate (defH , defI) pairs can be compared using Equation 7.3.

However for any given (defH , defI) pair more than one partitioning may exist. Simple heuristics

can be designed to partition the uses in an attempt to minimize the resulting cpl�, given whether

zero, one or two values are spilled.

Orthogonally, when given appropriate latitude, the heuristics can select which values should

be spilled. If the partitioning restrictions allow, either or both of postUsesH or postUsesI to be

empty, the need for spilling the respective value is removed. The size of the resulting preH or holeI

tree must be compared to the cost of spill code to determine if such a case is bene�cial.
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Two special cases exist when defH is a load instruction. Such a case may occur as a result

of an earlier application of spackleSpanning(). Minimally, the storeH instruction is not needed

as the value is already available in memory. In addition, the defH instruction itself can be removed

if the set preUsesH is empty. Such a case can occur if a previous spackleSpanning() transform-

ation does not delay postUsesH until there are su�cient resources. The subsequent application of

spackleSpanning() then increases the delay time.



Chapter 8

Global Code Motion

Global code motion is a technique used to redistribute ILP among di�erent basic blocks

and regions of a program. The goal of this redistribution is to reduce the program's execution time

through more e�cient use of resources. Reduction of a program's execution time depends on an

accurate assessment of the usage of all resources. This chapter presents heuristics to use resource

spackling to handle the particular problems encountered when performing resource allocation during

global code motion.

8.1 Resource Conscious Global Code Motion

The goal of global scheduling is to move instructions from a source block to a destination block to

decrease the execution time of the source block. A decrease in execution time is achieved when the

critical path length is reduced in the source block while the critical path length of the destination

block is not increased. The instructions moved are called �ll instructions since they are inserted in

holes in the destination block.

Fill instructions may be found in several source blocks, some of which depend on the types

of execution supported by the target architecture, e.g., speculative or guarded execution. Consider

the control 
ow graph of an if statement in Figure 8.1. Instructions can be moved between blocks

that share the same set of control dependencies, such as blocks B1 and B2. Instructions can be moved

above conditional branches, from Bthen and/or Belse to B1 if either the moved instructions do

not violate data dependencies or if the architecture supports speculative execution [HP87, SHL92].

Instructions can be moved below join points or above split points, from Bthen and/or Belse to B1 or

B2, if the architecture supports guarded execution [DHB89, HD86]. Lastly, instructions can be moved

either below conditional branches or above join points by duplicating the moved instructions on each

branch, e.g., from B1 or B2 to both Bif and Belse. The individual cases are not considered while
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Figure 8.1: Code motion techniques and architectural supports

describing the mechanics of �lling holes. It is assumed that the features of the target architecture are

known to the algorithm and only instruction moves supported by the architecture are considered.

Without loss of generality only the upward movement of �ll instructions is discussed.

If the direction of code motion is upward, the instructions are taken from the beginning

of the source block. If the direction of code motion is down, the instructions are taken from the

end of the source block. There are, as discussed later, special situations where it is desirable to

move instructions that are not on a critical path, even though these will not have a direct impact

on reducing the overall execution time. In these situations the moved instructions make additional

resources available which can be used by subsequent moves, resulting in a reduction in execution

time.

Existing global code motion techniques [Fis81, AN88, GS90] can be adapted to use Resource

Spackling based heuristics to unify functional unit and register allocation, and determine which code

motions are bene�cial. Two properties of code motion must be satis�ed to realize a bene�t.

1. The critical path length of the destination block must not be increased.

2. The critical path length of the source block must be reduced.

To satisfy the �rst property, it must be ensured that there are su�cient resources available

for all instructions being moved. If this is not the case wedged insertion would have to be performed,

negating the reduction in the critical path length in the source block.

To satisfy the second property, all instructions which are at one end of a block and are on

a critical path must be moved together; otherwise the critical path length will not be reduced.

Definition 20 A critical set of instructions with length L is the smallest set of instructions that

must be removed from the end of a block to reduce the block's critical path length by L cycles.

Consider removing nodes from the top of the DAG in Figure 4.1(b). The �rst critical set is

fAg. When A is moved the length of the DAG is reduced by the execution time of A. Then the next



64

Function �ll( dest, source )

f
reduce = 0;

While dest has holes do

f
cs = next set of critical instructions from source;

foreach instruction i in the critical set

f compute ESTi based on its dependencies in the destination block

LFTi = LFT of the last instruction in the destination block

g
/* �nd overlapping resource holes */

foreach instruction i in the critical set, in decreasing

order of ESTi

f forall resources r required by i

f select holes hr such that they overlap with the other holes

selected and with i

if no such holes exist

f undo all moves from the current critical set;

return reduce;

g
Insert i into h's allocation chain;

g
Update the hole description information;

g
reduce = reduce + min

i 2 cs
( �i );

g
return reduce;

g

Figure 8.2: Function �ll()

critical set is fC, Dg. Although B can now be moved, it is not in the critical set since moving it would

not a�ect the length of the critical path.

Three methods for performing resource conscious global code motion are suggested:

1. Move individual instructions from minimal critical sets;

2. Apply reduction techniques to minimal critical sets; and

3. Apply reduction techniques to an estimated maximal critical set.

In the �rst approach one instruction at a time from the critical set is moved to the destination

block. Thus, one instruction at time from a critical set is allocated its resources. If all instructions

cannot be allocated their resources, none of the instructions in the critical set are moved. The

allocation of resources is similar to that in local schedulers. Overlapping resource holes are found

for all resources required by each instruction. However, the holes must be within the instruction's

execution range, and wedged insertion is not performed, since the goal is to avoid increases to the

critical path length of the destination block.
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Figure 8.3: Example of global code motion

The set of �ll instructions must be inserted into the identi�ed holes. Insertion requires

each instruction to be placed in the proper allocation chains. This modi�cation to the allocation

chains will change the size and shape of the holes in which the �ll instructions are inserted. For non-

spanning resources, �ll instructions may be interleaved with instructions already in the destination

block. Spanning resources should ideally have all �ll instructions inserted consecutively, since any

gaps between inserted instructions can only be used if there is enough room to accommodate an

instruction to spill the use. Slack holes that have instructions inserted will have their size reduced,

and may have their range reduced due to dependencies of the �ll instructions.

Consider moving instructions from block 2 to block 1 in Figure 8.3(a) using method 1.

Assume that there are three functional units and four registers available. The �rst critical set consists

of instructions M1 and M2. Instruction M2 can be inserted in the functional unit hole following F and

the register hole following D since the holes overlap. M2's value must be spilled since the register hole

is not available to the end of the DAG. M1 can be inserted in the functional unit hole following B and

the register hole following G, which results from killing F. The value computed by M1 need not be
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spilled. The resulting DAGs are shown in Figure 8.3(b). Next M3 and M4 are moved up. Since M4

is selected to kill both M1 and M2 it can use the same functional unit and register as M2. Instruction

M3 can use M1's functional unit, and it will also take M1's register, forcing M1 to use B's register. B's

value must now be spilled around the inserted instructions and M3's value is spilled before B's value

is reloaded. The resulting DAGs are shown in Figure 8.3(c).

The second and third methods remove critical sets from the source block and place them in

the destination block. The reduction techniques discussed in chapters 6 and 7 are used to remove any

resulting excessive sets. The transformation is made permanent if there is no increase in execution

time of the destination block. The di�erence between methods 2 and 3 is in the size of the critical set

moved. Method 2 uses the same minimal length critical set as method 1. Method 3 uses heuristics to

compare the resources available in the destination block and requirements of candidate critical sets

to estimate the largest critical set that can be moved and supported by the destination block.

The methods use available spanning resources in the destination block to di�erent degrees

of e�ciency. The methods are listed in increasing order of e�ciency. There are two ways in which

spanning resources may be ine�ciently used. In the �rst case, consider moving two instructions, a

and b that use the same value, v, already computed in the destination block. Method 1 may move

instruction a, allow it to reuse v's register, spilling v in the process. When instruction b is moved,

it must be placed after v is reloaded, possibly causing the movement of the critical set to fail due

to an increase in the schedule. Methods 2 and 3 would attempt to schedule both a and b before the

spill, leaving more room to move subsequent instructions that are dependent on either a or b.

In the second case, consider moving instructions c and d, where d uses the value computed

by c. If the register used to hold c's value is not available from the execution of c to the end

of the block it must be spilled. In methods 1 or 2 when the subsequent critical set containing

instruction d is moved, it may fail because c's value must be reloaded before it can be used. Method

3 would determine ahead of time if both instructions c and d can be moved. If so, the reduction

transformations will avoid spilling c's value before it can be used by d. As can be seen, the overhead

for more e�cient use of spanning resources is increased bookkeeping and complexity of determining

the appropriate length of critical set to be moved.

Traditional global schedulers, based on list scheduling, are able to identify available func-

tional units, i.e., functional unit holes. However, since the scheduler is separate from the register

allocator, it does not know if there are registers available for the instructions that are moved up.

Similarly, these schedulers cannot recognize when instructions from other blocks should be moved

up above instructions in the block with slack time, since these schedulers usually schedule all instruc-
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tions in the current block �rst. Resource Spackling can move instructions from other blocks above

instructions with slack time in the current block when overlapping resource holes are available.

The methods for identifying holes and performing code motion allow Resource Spacklingto

�ll holes that occur in the middle of a block, even if registers are not available from the hole to the

origin of the �ll instructions. Such capability is an improvement over techniques that do attempt to

consider resource demands [ME92]. When holes occur only at the beginning or end of basic blocks,

the problem degenerates to Shape Matching [MGS92]. However, Shape Matching considers only

functional units, while in this case Resource Spackling performs the equivalent of shape matching

across all resources at once.

When �ll instructions have live uses of spanning resources at the end of the hole, the uses

must be spilled to free the resource for uses that follow the hole. Thus, a spill instruction is inserted

as the last instruction in the hole and a corresponding load instruction must be inserted in the

source block. The insertion of store and load instructions may increase the critical path length

if the load instruction takes longer to execute than the instructions removed from the block. This

scenario suggests that instructions should not be moved if load instructions must be inserted in

the source block, but this limits the reductions that can be made. A better approach is to allow

temporary increases in the source block's critical path. The movement of the �rst set of critical

instructions allows subsequent critical sets to be moved. If several sets of instructions are moved

their total reduction may o�set the cost of inserting load instructions for the last (live) spanning

uses of the moved instructions. In this case there is a net reduction in the source block's critical

path, as desired.

If instructions are moved below a conditional branch or above a join point, the instructions

must be duplicated on each branch. In this situation the execution time along the selected path of

execution is reduced. In the best case the duplicated code can be placed in holes on the duplication

branches. In the worst case, the execution time along the duplicated path(s) will not change. The

worst case occurs when there are not enough holes in the duplication branches to absorb the duplicated

instructions. In this case they are simply added to the end of the block. The duplicated instructions

must be executed anyway and they were already on a critical path created by concatenating the two

blocks. Thus, moving them from one block to another cannot increase the execution time.
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8.2 Selection of Fill Sets

When several di�erent sources of �ll instructions are available for consideration, a decision must be

made as to which set is most bene�cial. Only sets for which the destination block has room are

considered, although the techniques mentioned in the previous section can be used to try to sets that

apparently exceed the currently available resources. In practice, the code motion must be performed

tentatively in case the whole critical set cannot be moved without increasing the critical path.

A technique commonly used for selecting instructions to move in other code motion schemes

is to choose instructions from the source block with the highest branch probability. This Resource

Spackling based heuristic generalizes the approach by using execution counts of the basic blocks. This

approach allows more direct handling of moving instructions across several conditional branches or

join points. There are several other possible factors that can be considered, such as the amount of

wasted hole space, the number of store instructions inserted, the amount of duplicated code, and

how far the instructions can be moved.

The techniques presented here permit �ll instructions from several di�erent source blocks to

be moved to the same destination block. However, due to the nature of spanning resources, once �ll

instructions from one source have been selected it is more likely that the next set of �ll instructions

will be selected from the same source block than from a di�erent source block. The reason is that �ll

instructions from the same source block may be able to reuse some of the spanning resources used

by the �rst set of �ll instructions, while �ll instructions from a di�erent source block will require

additional resource instances. Thus, choosing the �rst �ll instruction set for a set of holes may be a

more critical decision than subsequent �ll instruction sets.

The above observation, along with the problem of inserting load instructions in the source

block suggests an alternative approach to selecting �ll instructions. In this approach each source

block is considered independently and as many critical sets as possible are tentatively moved. Then

the overall impact can be assessed in terms of the criteria of wasted space and number of store

instructions inserted. An additional bene�t of such an approach is that it allows a better criterion

than selecting the block with the highest branch probability. Instead, the execution count can be

multiplied by the reduction in the critical path. As an example, consider two branches, A and B,

with execution counts equivalent to branch probabilities of :7 and :3 respectively. Assume that the

critical path length of A can be reduced by 2 while the critical path length of B can be reduced by 5.

Then the overall reduction in execution time if A is reduced is 2� :7 = 1:4 while the overall reduction

in execution time if B is reduced is 5 � :3 = 1:5. Thus, block B should be the source block, even

though block A has a higher branch probability.



Chapter 9

HARE

The previous chapters have described how the resource requirements of a program can be

measured and incorporated into an intermediate representation, as well as the mechanics of per-

forming resource allocation by placing instructions in resource holes. This chapter presents an

application of the URSA framework that integrates instruction scheduling with global register alloc-

ation and assignment, called Hierarchical Allocation of REgisters (HARE). HARE addresses several

register allocation issues, such as coalescing, spill code placement, SSA copy placement, and register

assignment, by enhancing the previously known algorithms by making them resource conscious.

9.1 Overview of HARE

HARE consists of a phase for the allocation and a phase for assignment of registers. The allocation

phase is a hierarchical application of the Measure and Reduce paradigm to GURRR that uni�es

instruction scheduling and global register allocation. The primary task of the allocation phase is

the selection of values to spill and the placement of spill code to minimize the execution time of the

program. The assignment phase hierarchically assigns registers to the values computed. In addition,

the assignment phase inserts register copy instructions.

The goal of HARE is to improve the quality of code generated by the allocation and as-

signment of registers. To accomplish this, each phase considers both the availability of registers

and functional units and the overall cost of a register allocation decision using the region execution

counts. The major steps of the algorithm are shown in Figure 9.1.

Register coalescing is performed on the GURRR of a program prior to allocation. Tradi-

tionally, coalescing is performed in instances where the source and destination live ranges of a copy

instruction do not interfere. The two live ranges interfere when there are other uses of the source

value that can execute in parallel with the copy instruction. However, by using GURRR, HARE ex-

69
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Procedure allocateAndAssign( PDG )

f
/* compute GURRR */

buildPDG();

convertToSSA();

coalesceValues();

addReuseDags();

/* do hierarchical register allocation */
foreach region reg in bottom-up order

f while ( reg has excessive sets )

f find all resource holes in reg;

call estimateRegion(reg) which selects nodes from the

excessive sets and places spill code in FU holes;

consider the cost of reduction transformations that

1) use holes in reg

2) place spill code in a dependent if region

3) reduce register demands of a dependent region

call allocateRegion(reg) to perform allocations selected by

estimateRegion();

g
g

/* do register assignment
in each step the number of registers assigned in a
region is minimized */

foreach region reg in bottom-up order

foreach value def in reg reaching other regions

assignDef(def);

foreach region reg in bottom-up order

foreach � node phi in reg

assignSsaDef(phi);

foreach region reg in bottom-up order

foreach unassigned value def in reg

assignDef(def);

g

Figure 9.1: Top level register allocation algorithm
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tends coalescing by identifying cases when the live ranges can be ordered to remove the interference

without increasing the execution time. Temporal dependencies can be added from the other uses to

the uses of the copy instruction if the length of the critical path is not increased as a result. The

two live ranges are then combined and the copy instruction is removed. After coalescing, the initial

register reuse information is computed.

Consider the program DAG of a region in Figure 9.2(a) and assume that instruction J is

a copy instruction of the value computed by instruction G. Instructions H and I are the other uses

of G. The only use of J is instruction L2, which is already dependent on instructions H and I. Since

L2 can be executed after both H and I without increasing the execution time of the region, J can

be coalesced with G. Instruction J is removed and a data dependence is added from G to L2. The

resulting program DAG is shown in Figure 9.2(b).

Register allocation is performed in a bottom-up traversal of the regions. In each region

the allocation is performed by measuring and reducing excessive register requirements. When an

excessive register use is encountered, several options for its reduction are considered, including

delaying the de�ning instruction, di�erent resource holes for spill code, rematerialization of the

values, and additional register reductions in subregions. For each option any increase in the critical

path of the region or subregion is multiplied by the execution count of the region or subregion to

give a total cost in terms of execution time. The minimum cost option is then selected. The result

of the allocation phase is that each region is transformed by the reductions and allocated a su�cient

number of registers for all values computed by the dependent instructions and child regions.

The assignment of registers must also be performed hierarchically to ensure that no more

than the allocated number of registers are assigned in each region. The assignment phase consists

of three bottom-up traversals of the regions where each pass assigns all values of a particular type.

The types are: 1) global variables, 2) values used or de�ned by SSA � nodes, and 3) values local

to a single region. The second traversal determines when register copy instructions are required and

uses the functional unit resource hole and execution count information to place the copy instructions

to minimize any increase in the program's execution time.

The hierarchical nature of the GURRR supports the summary of the resource requirements

of the instructions in a region in the region node. These requirement summaries are then used

in computing the resource requirements for the parent region(s). Figure 9.3(a) shows the register

Reuse DAG for region 1. Summary nodes for regions 2 and 3 are included in region 1's ReuseReg

DAG. These nodes represent the register requirements of the child regions, which are indicated by

the numbers in parenthesis. Since regions 2 and 3 are the branches of an if-then-else statement,
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Figure 9.3: Region 1 Register usage

the maximum of their requirements is used to compute the register requirements of region 1. Thus,

region 1 requires a total of four registers. One of these registers is used only for values computed

in region 1, two registers are used only for values computed in the child regions, and one register is

used in both region 1 and region 3. The schedule for registers in region 1 is shown in Figure 9.3(b).

Regions 2 and 3 are shown on two and three register allocation chains, respectively. Regions 2 and 3

are drawn on the lines to indicate that they identify boundaries for the register holes, i.e., the last two

registers are available for use in region 1 both before and after the branches of the if-then-else,

but are used in the branches.

9.2 Allocation and spill code placement

A goal of HARE during allocation is to minimize the cost of spill code introduced. Three factors a�ect

the cost and thus the selection of a reduction transformation: 1) placement of spills in less frequently

executed regions, 2) selection of values that permit spill code to use under utilized resources, and

3) less costly alternatives to memory accesses, such as rematerialization. When several reduction

transformations are possible, HARE estimates the cost of each transformation and selects the one

that will cause the least increase in the overall execution time of the program.
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Figure 9.4: Example of rematerialization

Besides spilling values to reduce register demands, HARE also considers rematerialization

of values. In addition to the traditional candidates for rematerialization, such as loading constant

values and computations using system registers and constants [BCT92], HARE examines the selected

instructions and the data dependence graph to identify values that can be recomputed from other

values already in registers. As an example, consider the program DAG in Figure 9.4(a) and assume

that the architecture has three functional units and �ve registers. The set of the six instructions fB,
C, F, G, H, Ig is an excessive set. The instruction F is selected for reduction since there is distance

between its �rst and second uses. While functional units are available to execute the load, they are

not available to execute the store before instructions G, H, and I, and thus the execution time would

be increased if F were spilled. However, HARE can determine that since the values computed by

B and C are still in registers after the execution of G, H, and I, the value computed by F can be

rematerialized. The resulting program DAG is shown in Figure 9.4(b). Since HARE considers the

availability of functional units to perform the rematerialization, arbitrarily large computations can

be candidates for rematerialization.

The di�erent types of reduction transformations considered are listed in the algorithm in

Figure 9.1. Assume that HARE is being applied to region 1's ReuseReg DAG in Figure 9.3(a) and

that the architecture provides three registers. The value C is selected for spilling since value B is used

in both region 1 and region 2. Option 1 considers placing the spill code in region 1, with the store

being executed currently with the branch instruction and the load being executed after the branches

return and before M. Option 2 considers placing the spill code in region 3. Spill code is not required

for region 2 in this case since the total register requirements of regions 1 and 2 do not exceed the
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load A

B = A + 3; C = A * 4

brlt B, 10

D = C + 2

E = D / 4; F = D * 6

L1 = E + F

G = B /10

H = G + 7; I = G - 2

K = H * I

L2 = K + G

M = L + C

(a) Original CFG

load A

B = A + 3; C = A * 4

brlt B, 10; store C

D = C + 2

E = D / 4; F = D * 6

L1 = E + F

G = B /10

H = G + 7; I = G - 2

K = H * I

L2 = K + G

load C

M = L + C

(b) Spill option 1

load A

B = A + 3; C = A * 4

brlt B, 10

D = C + 2

E = D / 4; F = D * 6

L1 = E + F

G = B /10; store C

H = G + 7; I = G - 2

K = H * I

L2 = K + G; load C

M = L + C

(c) Spill option 2

load A

B = A + 3; C = A * 4

brlt B, 10

D = C + 2

E = D / 4; F = D * 6

L1 = E + F

G = B /10

store G

H = G + 7; I = G - 2

K = H * I; load G

L2 = K + G

M = L + C

(d) Spill option 3

Figure 9.5: CFGs for the spill options

architecture's resources. Option 3 considers reducing region 3's register requirements from three to

two. Again, region 2 does not need to be reduced in this example since it does not appear in an

excessive set. The control 
ow graphs resulting from each option are shown in Figure 9.5.

The cost of a potential reduction transformation is determined by multiplying the estimated

increase in the length of region's critical path by the region's execution count. There are several

possible methods for estimating the impact of a reduction transformation on the length of the critical

path. A simple estimation technique is presented.

The estimation technique determines the execution time of all spill code introduced and

compares it to the total time of the availability of the functional units used to perform the spilling or

rematerialization. Pseudo code for the estimation algorithm is given in Figure 9.6. The availability of

the functional units is found by summing the size of all of the functional unit holes in the region. The

instructions that compute values that are in the register excessive set are grouped by their distance

from the beginning of the excessive set. In each group enough values are selected so that the group

will no longer have an excessive number of values. To provide the most 
exibility in using available

functional units, the instructions with the most slack time are selected.

Each instruction selected is checked to see if its value can be rematerialized instead of
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Function estimateRegion( region, goal )

returns estimated cost of reducing region to use only goal registers

f
/* compute availability of holes in region */

holeTime = 0;

foreach functional unit hole h in region

holeTime = holeTime + h.size;

/* determine requirements for holes*/
reduce = ;;
group the nodes in the excessive set for region;

foreach group grp

if ( jgrpj > goal )

reduce = reduce [ jgrpj - goal instructions with most slack time;

/* use hole time for instructions spilled in region */
foreach node n 2 reduce that must execute in region

if ( canRematerialize(n) and

rematerializeTime(n) < spillTime(n) )

holeTime = holeTime - rematerializeTime(n);

else

holeTime = holeTime - spillTime(n);

/* determine where to spill other nodes */
foreach node n 2 reduce that may be spilled in a dependent region child

f if ( canRematerialize(n) and

rematerializeTime(n) < spillTime(n) )

need = rematerializeTime(n);

else

need = spillTime(n);

if ( child.holeTime > 0 || holeTime <= 0 )

child.holeTime = child.holeTime - need;

else

holeTime = holeTime - need;

g

/* total costs */
if ( holeTime < 0 )

cost = -holeTime * region.execCount;

else

cost = 0;

foreach child region child where spill code was added

if ( child.holeTime < 0 )

cost = cost + (-child.holeTime * child.execCount);

/* compare against reducing a dependent region */
if ( there is a child region child in region.excessiveSet )

f subGoal = child.requirements - (region.requirements - goal);

childCost = estimateRegion( child, childGoal );

if ( cost < childCost )

return cost;

else

return childCost;

g
g

Figure 9.6: Allocation cost estimation algorithm
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spilled. The function canRematerialize(n) determines if and how the value computed by n can

be rematerialized. The time to rematerialize n is then compared to the time to spill n and the

transformation for the smaller of the two is used.

The placement of spill code is performed in two steps. In the �rst step only values whose

spill code is constrained by dependencies to the current region are examined. The cost of the spill

code for these values is subtracted from the available time of the functional units. In the second step

the remaining values, which can have their spill code placed in either the current region or a child

region, are examined. The spill code is placed in the child region if there are su�cient functional

units available in it, or if there are insu�cient functional units available in the current region.

The cost of inserting spill code is determined by multiplying each region's increase in critical

path length by its execution count. Finally, if the excessive set contains child regions, a reduction of

these regions is estimated. The cost of these recursive reductions is compared to reducing the current

region and the least expensive one is selected. The values and places for spill or rematerialization code

selected by estimateRegion() are recorded and used to perform the actual reduction transformations.

A balance between applying local and recursive reductions is achieved by reducing the size

of the excessive set in increments of 1. In this way the spill code may be distributed in all regions

that have available functional units. More advanced estimation techniques consider the functional

unit holes usable by each instruction, instead of assuming all holes in the region can be used by any

instruction. These estimations consider only resource holes that have su�cient available time within

the execution range of the instructions being moved.

Consider region 1 in Figure 9.3(a) and the corresponding code in Figure 9.5(a). Assume

that regions 1, 2, and 3 have execution counts of 10, 3, and 7, respectively and that the architecture

provides two functional units and three registers. Option 1 selects C for spilling and places the spill

code in region 1. The store can be placed in the functional unit hole containing C. However, there is

no hole to hold the load, since it must be executed after the brlt and before M. Thus the execution

time of region 1 is increased by 1, giving option 1 a cost of 10. Option 2 places the spill code for C

in region 3. There are su�cient functional unit holes in region 3 for both the store and load. Thus

there is no increase in the length of region 3's critical path and option 2 has a cost of 0. Option 3

reduces region 3's requirements from three to two by spilling G. Since there is a hole available for

the load but not for the store or load, the length of region 3's critical path increases by 1, giving

option 3 a cost of 7. Option 2 has the lowest cost and is thus selected in this example.

Special handling must be given to the then and else regions of an if-then-else statement

when placing spill code in them or considering recursive reduction transformations. Spill code must
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be duplicated in both regions. When recursive reductions are considered the amount that each

region must be reduced is di�erent if they have di�erent total requirements. Assume that the region

containing the if-then-else statement has requirements of R, and that the then and else regions

are in the excessive set and have requirements of Rthen and Relse, respectively. The requirements of

the region are given by the equation R = P + max(Rthen; Relse), where P is the number of values

in R that are alive in parallel with the child regions. The child regions must reduced by the amount

subgoali = goal � (P + Ri).

9.3 Assignment and placement of copy instructions

The allocation phase allocates a su�cient number of registers for each region for all values that

it and its subregions compute, but does not indicate which particular registers should be used by

each region. The assignment phase must assign the registers so that the total number of registers

assigned to all subregions does not exceed the number of registers allocated to the parent region.

The values are divided into three types, based on their e�ect on the overall assignment. The three

types are: 1) non-SSA global values, 2) SSA global values, and 3) values local to a single region.

Global values are assigned registers �rst since their assignment a�ects multiple regions. The SSA

global values are assigned after the other global values due to the nature of the � nodes. The �

nodes may require more registers than are allocated to the region containing the defs and uses of the

� nodes. When this situation occurs, register copy instructions must be inserted. The insertion of

these copies is performed after the other global values are assigned registers so that the instances

where copy instructions are required are properly identi�ed. Finally, the values local to each region

can be assigned the registers not used by global values.

The assignment phase operates in a bottom-up manner to maximize the sharing of registers

whenever allowed. Each region node records several pieces of information about the registers being

assigned. Assigned is the set of registers that have been assigned to an instruction in the region

or in one of its subregions. Interfere is the set of registers in ancestor regions that interfere with

instructions in the current region.

A previously unassigned register is assigned to a value in a region only when there are

no other previously assigned registers that can be used. This approach minimizes the number of

registers used by each region and its child regions.

Pseudo code for selecting a register is given in Figure 9.7. The value being assigned a

register is identi�ed by the instruction that computes it, say n. Any register in use by an instruction
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Procedure assignDef( n )

f
/* �nd all registers that n's value interferes with */

used = ;;
foreach i 2 fng [ all uses of n

used = used [ i!region.interfere
S

j is independent of n

j.defAssign [ j.useAssign;

/* look for previously registers */
wRegion = region;

avail = wRegion.assigned - used;

while ( avail == ; && wRegion != NULL )

f wRegion = wRegion.dependsOn;

avail = wRegion.assigned - used;

g
/* select a register */

if ( avail == ; )

f register = any register not in used;

add register to region.assigned for all ancestor regions;

g
else

register = any register in avail;

/* assign the register to the value */
n.def = n.def [ register;

foreach use u of n

u.use = u.use [ register;

update region.interfere for all affected regions;

g

Figure 9.7: Assignment algorithm

that interferes with n is determined. Values that interfere with n may either be independent of n or

be alive in an ancestor region at the time that n's region is executed. The set of registers already

assigned in the region is checked to see if it contains any registers that would not interfere with n.

If not, the ancestor regions are each checked in turn. If such a register is available it is selected

for the assignment. If no such register is available a previously unassigned register is selected. The

selected register is assigned to the instruction and recorded in all of the instruction's uses, as well as

the a�ected regions.

The procedure assignDef() can be used as given for non-SSA global values and local values.

For SSA values the assignment algorithm must determine if register copies are needed and if so,

place them to minimize the increase in the overall execution time. This algorithm is summarized in

Figure 9.8. The algorithm �rst determines which registers are available for each def reaching the �

node and use reached by the � node. The function �ndAvail() is similar to the availability calculation

in assignDef(). If all of the defs and uses have a common register available, that register is selected

and used for the assignment.
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Procedure assignSsaDef( n )

f
/* �nd all registers that interfere the � node n */

used = ;;
foreach i 2 fng [ all uses of n

used = used [ i!region.interfere
S

j is independent of n

j.defAssign [ j.useAssign;

/* look for a previously used register */
wRegion = region;

avail = wRegion.assigned - used;

while ( avail == ; && wRegion != NULL )

f wRegion = wRegion.depends on;

avail = wRegion.assigned - used;

g
foreach i in all defs reaching n

availi = findAvail( i );

/* select a register */
ok =

T
i

availi;

if ( ok != ; )

f register = any register in ok;

add register to region.assigned for all ancestor regions;

g
else

f foreach i in all defs reaching n

costi = copy cost( di, n );

possible =
S
i

availi;

register = register in possible that minimizes the sum of

costi for availi not containing it;

g

/* assign the register to the value */
n.def = n.def [ register;

foreach use u of n

u.use = u.use [ register;

update region.interfere for all affected regions;

g

Figure 9.8: SSA assignment algorithm
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load A, R1

R1 = R1 + 3; R2 = R1 * 4

brlt R1, 10

R1 = R2 + 2

R1 = R1 / 4; R3 = R1 * 6

R1 = R1 + R3

R1 = R1 /10; store R2, C

R2 = R1+ 7; R3 = R1- 2

R3 = R2 * R3

R1 = R3 + R1; load C, R2

R1 = R1 + R2

Figure 9.9: Final register assignment

If no such register is available, register copy instructions must be inserted. The cost of

inserting a register copy for each def reaching the � node is computed. A register that minimizes the

copy costs for those defs that cannot use it is selected and used for the assignment. The defs that

cannot use the selected register are assigned alternate registers from their available register sets and

copy instructions are inserted at the appropriate locations.

The cost of inserting a copy instruction is computed by the function copyCost(), which

checks for available functional units in each region between the def and the � node. If an available

functional unit is found, the location is recorded, and there is no cost. If no functional unit is

available the copy instruction is inserted in a region where both the source and destination registers

are available, and the cost is the execution time of the copy instruction times the execution count of

the region containing the copy instruction.

Consider assigning the three registers R1, R2, and R3 to the example program in Fig-

ure 9.5(c). The �rst phase assigns registers to the non-SSA global values B and C. There are no

previously used registers available, so R1 is assigned to B and R2 is assigned to C. The second phase

assigns registers to the SSA global values L1 and L2. Both L1 and L2 interfere with C but can use R1

or R3. Since R1 has been previously assigned, it is assigned to L1 and L2. Since the same register

is assigned to both values, no copy instructions are needed. The third phase assigns all remaining

values to registers. In region 2, D, E, and F must be assigned registers and interfere with C. D and

E are assigned R1 since it was previously assigned in the region, and F is assigned R3. In region

3 the values G, H, I, and K must still be assigned registers. They are assigned R1, R2, R3, and R3

respectively. Finally the values A and M in region 1 must be assigned values. Since neither interferes

with any other value they can both be assigned R1. The result is that region 2 uses the two registers

R1 and R3, and both regions 1 and 3 use all three registers. The resulting code is shown in Figure 9.9.



Chapter 10

Architectural Considerations

In addition to exploiting ILP, compilers for �ne grain parallel architectures must consider

other architectural characteristics as well. These characteristics include pipelined functional units,

implicit uses of speci�c registers by some instructions, and instructions and values that may use

any of several types of resources. When methods to handle such characteristics are incorporated

into a compiler better quality code can be generated through more aggressive resource allocation

and assignment. This chapter describes a set of extensions to URSA to exploit these architectural

features.

10.1 Instruction Pipelining

The two primary factors that limit the e�ectiveness of an instruction pipeline are data dependency

hazards and collisions, which occur when two instructions attempt to use a pipeline stage at the same

time. Data dependence hazards are best addressed during the allocation of registers to data values.

Collisions must be considered when assigning instructions to a particular functional unit's pipeline.

The problem posed by pipelined multiple issue architectures is that given a set of instructions cur-

rently assigned to functional units, is the best assignment of the next set of instructions to functional

units must be determined. The algorithm presented in this section �rst minimizes any increase in

the length of the critical path through the DAG, and then minimizes idle time due to waiting for a

safe time to issue each instruction. The values computed in this algorithm are also used by URSA's

allocation phase when decisions are made on how to reduce an excessive requirements set.

The limitations placed on issuing instructions to the pipeline to preserve the program's

semantics are represented as interlocks between instructions in this dissertation. These interlocks

delay instructions until they can be executed without altering the semantics of the program. Interlocks

are required to prevent improper access to data values, such as trying to read a register before its
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value is available, or writing a new value to a register before a previous instruction has had time

to read the old value. In addition, an interlock occurs between instructions A and B if B cannot be

issued on the �rst cycle after issuing A due to A still using a portion of the pipeline when instruction

B would need it. This permits architectures supporting instructions of di�erent execution times to

be considered. The interlock problem requires more analysis in multiple issue architectures, since a

ready instruction may experience data related interlocks with several currently executing instructions.

In such a situation the instruction must wait for all of the interlocks to be resolved.

Definition 21 The function InterlockD(A;B) returns the number of cycles after issuing instruc-

tion A that instruction B must wait before it can be issued, to prevent register inconsistencies for

registers shared with A. The minimum value returned is 0, indicating that no data dependencies

exist between A and B.

Definition 22 The function InterlockF (A;B) returns the number of cycles after issuing instruc-

tion A that instruction B must wait before it can be issued on the same functional unit as A to

guarantee that all pipeline stages will be available to B when needed. The minimum value returned

is 1, indicating that B can be issued on the next cycle after issuing A.

The problem of assigning of functional units to a set of instructions can be modeled as a

weighted bipartite matching problem [FF65]. The source partition of nodes represents the available

functional units, while the destination partition of nodes represents the instructions to be assigned.

Edges are added between all pairs of functional unit and instruction nodes. Each edge is weighted

with the cost of assigning the instruction to the functional unit. The cost represents the increase in

the critical path length if the corresponding assignment is made. Let S be the last set of instructions

assigned to functional units and T be the next set of instructions to be assigned. Let length(s; t) be

the length of the longest path from the beginning of the DAG to the end that executes s followed by

t. The function length(s; t) is de�ned as follows

length(s; t) = max(s:start time + InterlockF (s; t); data delay(t)) + t:longest remaining path

(10.1)

where s:start time is the time that s was issued, t:longest remaining path is the length of the

maximum path from t to the end of the DAG, and data delay(t) is the earliest time that t can be

executed and still honor all data dependencies with other executing instructions. The �rst parameter

of the maximum function computes the earliest time that t can be issued after s on s's functional
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unit. The second parameter, data delay(t), computes the earliest time that t can be issued after

waiting for all of its data dependencies, including any from s, and is given by

data delay(t) = max
p2Parents(t)

(p:start time + InterlockD(p; t)) (10.2)

As an example, consider the path A, B, E, H in Figure 10.1(a). Notice that s:start time = 4,

t:longest remaining path = 6. Assuming that InterlockD(B, E) = 1, and all other interlocks for

E are less than or equal to 1, then length(B; E) = 4 + 1 + 6 = 11. The function data delay() can

easily be extended to include data dependence interlocks from earlier instructions that may reach far

enough to a�ect the instructions currently being assigned.

It should be noted that the length computed by length(s; t) cannot be precise, as all of the

instructions both before s and after t would have to be assigned to functional units �rst to determine

the e�ects of interlocks on the lengths of the paths. Thus, the assignment must proceed from one end

of the DAG to the other. The approach taken in this work is to perform assignments from the top to

the bottom of the DAG as this aids URSA's handling of value live ranges. Each subsequent matching

attempts to balance the lengths of the paths through the DAG; therefore, the impact on the length

of the critical path from having to compute assignments in a successive manner is not expected to

be signi�cant.

A weighted bipartite graph is created by adding an edge from each node in S to each node

in T and weighting each edge (s; t) by length(s; t). A matching of a node si to a node tj represents

an assignment of si and tj to the same functional unit. The goal of a minimized weight matching

algorithm is to �nd a maximummatching that has a minimum sum of weights on the matching edges.

However, the goal of this work is to �nd a maximum matching that also minimizes any increase in

the length of the critical path through the DAG. Since the weights in this work represent the length

of the path resulting from the matching, this problem is referred to as the minimum path increase

maximum matching problem. Well known algorithms exist for �nding a minimum weight maximum

matching. However, these algorithms do not necessarily �nd a matching that has a minimum largest

weight; it is possible that the minimum weighted matching includes the largest weighted edge.

A new algorithm that solves the minimum path increase maximum matching problem has

been developed as a part of this work. The solution has the same form as the minimum weighted

matching solution; only a supporting procedure and cost function need to be modi�ed. In these

algorithms, the matching problem is represented as a network 
ow problem with each edge in the

bipartite graph having unit 
ow [Tar83]. The function length() as de�ned above is used as the basis

for the cost function for the edges.
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A

B C D

E F G

H

4 2 2

6 6 5

(a) Portion of a DAG

B C D

E5 1, 1, 11 1, 0, 11 0, 2, 11

F5 1, 2, 12 0, 0, 11 1, 2, 11

G3 0, 4, 13 1, 6, 13 1, 5, 12

(b) Table of interlocks and lengths

Figure 10.1: Pipeline Example

procedure RelaxShortest( u )

f foreach v 3 (u, v) 2 E

f newLen = u.shortest + cost(u, v);

if ( v.shortest > newLen )

f v.shortest = newLen;

v.shortestPredecessor = u;

g
g

g

(a) shortest paths

procedure RelaxMinimumIncrease( u )

f foreach v 3 (u, v) 2 E

f newMax = max( u.max, mcost(u,v) );

if ( v.max > newMax )

f v.max = newMax;

v.maxPredecessor = u;

g
g

g

(b) minimum increase paths

Figure 10.2: Relaxation procedures

The minimum weighted matching algorithm operates by �nding a shortest path to any

unmatched node t 2 T for each node s 2 S. The shortest path algorithm computes the shortest

path from s to all other nodes in the graph. The algorithm maintains estimates of the shortest path

to each node. These estimates are updated when shorter paths are found. Once the shortest path

from s to u has been determined, the algorithm checks each v that is adjacent to u, to determine

if the path through u to v is shorter than the previous shortest path to v. The procedure that

checks this condition and updates the path information as needed is shown in Figure 10.2(a), where

cost(u; v) = legnth(u; v). This process is referred to as relaxing. The shortest path length estimate

to v is recorded in v.shortest.

The minimum path increase matching problem requires the maximum weight of an edge in

the path to be found, as opposed to the sum of all edges in the path used for the minimum weight



85

matching problem. The cost function used for the minimum path increase algorithm is de�ned as

mcost(u; v) =

8><
>:

length(u; v) � cp if length(u; v) > cp

0 otherwise
(10.3)

where cp is the length of the current critical path through the DAG. The corresponding relaxation

procedure for the minimum path increase algorithm is shown in Figure 10.2(b). The maximum in-

crease estimate is recorded in v.max. With these modi�cations to the cost function and relaxation

procedure, the minimum weight maximum matching algorithm can be used to solve the minimum

increased path maximum matching problem. The minimum increased path algorithm operates sim-

ilarly to the shortest path algorithm, requiring a priority queue for selecting the next minimal node

to relax and updating the priority of each v. If Fibonnaci heaps are used, the minimum increase

path matching algorithm requires O(nlogn +m) time per source node s. This gives an overall time

of O(n2logn + nm) since a minimum path must be found for each s 2 S.

As an example, consider the portion of a DAG in Figure 10.1(a). The dashed lines represent

arbitrary paths. The labels on the edges from A represent the earliest start times of the respective

nodes, while the labels on the edges to H represent the longest paths to H for the respective nodes. The

solid lines represent data dependencies between the two sets of nodes. The table in Figure 10.1(b)

shows 3-tuples for each possible edge in the bipartite graph constructed from the nodes currently

being considered. The subscripts on E, F, and G indicate the earliest start times of the instructions

as computed by data delay() from the data dependence interlocks. The �rst number of each tuple is

the InterlockD() for the possible matching. The second number of each tuple is the InterlockF () value

for the edge, and the third number is the resulting length if the matching is used. Thus, G should be

matched with D to minimize the longest path. Both nodes E and F can be matched to either of nodes

B and C since they cannot a�ect the critical path length. However, the matchings E-B and F-C result

in a lower total weight, which is advantageous to other phases that may interact with URSA.

It should be noted that it is still advantageous to minimize the sum of lengths in the match-

ing for edges that do not increase the critical path, as this represents less time that the functional

units are idle due to interlocks. The increased useful idle time may be used by URSA's reduction

transformations or migration of parallel instructions across DAG boundaries as performed by per-

colation scheduling [AN88], region scheduling [GS90], Global Resource Spackling, or other global

scheduling methods [BR91, SHL92]. The minimum increase path algorithm can be augmented to

minimize the weights of non-increasing edges by using length(u; v) as secondary key in the priority

queue and adding the shortest path relaxation logic to Relax Minimum Increase() when v.max =

new max.
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In the description of URSA the allocation and assignment of resources are treated as sep-

arate phases. However, the assignment of resources may impact allocation decisions. In practice

available assignment information is used during allocation to determine the best spackling trans-

formation to apply. As an example, consider three equal instructions, A, B, and C, to be allocated

to two functional units. If C has a larger interlock times for both functional units, then C should be

the instruction that is sequenced after the others, allowing useful instructions to be scheduled during

C's interlock time. Therefore, when considering spackling transformations the interlock information

is used to select instructions for non{spanning resources and to decide how to split the sets of uses

for spanning resources. Interlock delays are factored into the path lengths under consideration.

10.2 Modeling Architectural Constraints

While the integration of pipelining into URSA requires the computation of additional path length

information, the integration of implicit uses and generic requirements requires additional resources.

In this section two methods for representing restrictions on instruction scheduling as additional

resource types are discussed. The methods handle requirements for two cases: speci�c copies of a

resource required by an instruction, and selection from several types of resources for generic resource

requirements. Both methods use additional classi�cations of resources to represent the restrictions

as resource requirements, and thus allow URSA to allocate them as required. The �rst method

uses a special subclass resource for architectural components, such as registers, which are sometimes

implicitly required for some instructions, but may be used as general purposes registers when such

instructions are not being executed. The second method uses a generic resource that includes all

resource types that may be used to meet a requirement.

10.2.1 Reserved Resource Copies

In some architectures, particular instances of a resource are always used by some instructions and

can also be used for general purposes. For example, the VAX instruction set includes the instruction

MOVC3, which copies a string from one location to another. The MOVC3 instruction uses registers

R0-R5 during its operation, overwriting any previous values held in them. The particular instances

of a resource required by such an instruction are referred to as reserved copies and the instructions

as reserved copy instructions. The values in R0-R5 are results that may be used by subsequent

instructions. These uses of the results are marked as reserved copy instructions as well. In the

absence of instructions such as MOVC3, registers R0-R5 can be used as a general purpose registers.
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(a) before reductions

A
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R2

E
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(b) after reserved reduction

A

B C
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J

(c) after register reduction

Figure 10.3: DAG with reserved copy instructions

To address the problem of reserved copy uses, an instruction scheduler must guarantee

that the scheduled code has two properties: 1) there are never con
icting reserved copy instructions

scheduled concurrently, and 2) no live values are destroyed by reserved copy instructions. The �rst

property can be satis�ed by adding a new resource to URSA that represents the reserved copy and

indicating which reserved copy instructions require the resource. This technique can be generalized

to multiple sets of reserved copies. The second property can be handled simplistically by never

allocating general purpose uses to the reserved copies. However, this approach makes ine�cient use

of the resource.

To e�ciently use resources that contain reserved copies, the technique presented treats the

reserved copy as a subclass of the general purpose resource class. URSA �rst performs allocations

for just the reserved copy subclass. URSA then performs allocations for the general resource class,

which includes the reserved copies. In addition to their normal requirements, the reserved copy

instructions are considered to require one copy of the general resource for each reserved copy. The

assignment phase then considers the reserved copy to be available for assignment to all instructions

except those that will execute in parallel with a reserved copy instruction, i.e., if an instruction, I,

can be executed concurrently with a reserved resource instruction, I is assigned any copy from the

set of available non-reserved copies of the resource; otherwise I is assigned any copy from the set of

all available copies of the resource.

As an example, consider the DAG in Figure 10.3(a) and a target architecture with four

registers, one of which is a reserved copy register. The DAG has two reserved copy instructions, R1

and R2, which can be executed concurrently according to the data dependencies. Since no increase in
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critical path length occurs, the reserved copy register resource reduction transformation sequences R2

after R1, as shown in Figure 10.3(b). After this reduction, the set fD, R1, F, C, Eg is an excessive

register set of size �ve. Thus, a general register resource reduction transformation is applied, with

the result shown in Figure 10.3(c).

10.2.2 Generic Instructions

In architectures with multiple types of a resource, such as integer and 
oating point functional units,

some resource requirements can be ful�lled by any one of several types of a resource. For example,

some architectures allow moves to be performed by either integer or 
oating point functional units.

Instructions that can be executed by one of several types of functional units are called generic

instructions [ATGLR93]. The technique presented generalizes this concept to generic requirements

for resources; an instruction may have speci�c register type requirements but generic functional unit

type requirements, or vise versa.

Generic requirements should be scheduled on whatever compatible resource is available.

When there are no compatible resources available, the generic requirement is a member of an excessive

set. In this case, the reduction transformations select the resource type that the generic requirement

will use. The reduction transformation should select the resource type that, when its uses are

sequentialized, results in the least increase to the length of the critical path through the DAG.

The approach taken to extend URSA is to create a new resource type for each type of

generic requirement. A requirement's generic resource type is the union of all of the resources that

can ful�ll the requirement. Instructions that require a number of a speci�c member resource are

considered to also require the same number of the generic resource. The generic requirements of an

instruction are represented in the generic Reuse DAG and not in any of the member Reuse DAGs.

The assignment of an instruction with generic requirements to resources usually occurs in

the assignment phase. However, if the instruction is in an excessive set, URSA's reduction transform-

ations e�ectively make the assignment decision. The reduction transformation selects the member

resource that results in the least increase in path lengths when introducing sequentiality.

As an example, consider the DAG in Figure 10.4(a) and a target architecture with two

integer and two 
oating point functional units, and four integer registers. Nodes labeled In require

an integer functional unit, nodes labeled Fn require a 
oating point functional unit, and the node G is

a generic instruction that may use either type of functional unit and generates an integer value. The

set fI1, I4, I5, I6g requires four integer registers concurrently, so the values in the subDAG

rooted at G cannot straddle this set without causing excessive integer register requirements. The
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Figure 10.4: DAG with a generic requirement

instruction F3 must be delayed until either F1 or F2 has been issued, so that both 
oating point

functional units are in use for the �rst two issuing cycles. A list based scheduling method may try to

schedule G on an integer functional unit in parallel with I3; however, as noted, this would create an

integer register excessive set that would require spills to resolve it. URSA's reduction transformation

is able to determine that delaying G until after the register requirements of fI1, I4, I5, I6g and

assigning G to a 
oating point functional unit avoids the need for spills. This reduction does not

increase the length of the schedule. The result of the 
oating point reduction followed by the generic

reduction is shown in Figure 10.4(b).

It is possible that the di�erent resources that can ful�ll a generic requirement will have

di�erent costs in terms of execution time. If there are several available resources, the assignment

phase can select the resource with the minimum cost. If the generic requirement is in an excessive

set, then the reduction transformation selects a member resource and uses the cost of the selected

resource when determining the impact on path lengths. If the reduction transformation considers

several possible resources for the generic requirement, it can use the respective costs when comparing

resulting path lengths to make a �nal assignment determination.

There are two possible approaches to applying reduction transformations. The �rst is

to reduce only one resource per transformation. The second is to reduce multiple resources in a

single transformation. The �rst approach may result in less e�cient schedules since the separate

transformations may impact each other. The �rst transformation may sequentialize one instruction
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that a second instruction in the second excessive set is dependent on, resulting in a larger than

necessary increase in path length after the second transformation.

In the second approach a single reduction transformation reduces several resources at once.

The selection of the subsets used for sequentialization considers each instruction's impact on all

of the resources being considered. The selection process can then look for instructions that when

sequentialized, would free up any of the resources that can ful�ll the generic requirements.



Chapter 11

Implementation

As a part of this research a prototype implementation was performed. This chapter dis-

cusses the design and implementation of the measurement and spackling algorithms and intermediate

representations used in URSA and Resource Spackling.

URSA and Resource Spackling require several new data structures to represent the addi-

tional information they compute and use. These data structures have a symbiotic relationship with

the host compiler's intermediate representation. To adequately maintain this relationship proper

interfaces between the compiler and URSA are required. Since the implementation is a research pro-

totype, data structures and algorithms were designed to ease the task of porting the implementation.

One of the goals of the implementation was to identify the algorithms and structures that are

critical to creating a useful and practical system. As a result, specialized graph data structures were

created to support e�cient traversals and compute and store GURRR's information in a hierarchical

manner. One of the algorithms most critical to URSA's performance is the bipartite matching

algorithm used to compute allocation chains. Extensions to the intermediate graph representation

were created to support a specialized implementation of this algorithm.

11.1 URSA Interfaces

The allocation and assignment phases addressed by URSA interface and interact with a number of

other components in a compiler. The GURRR computed and used by URSA must be constructed

from the preliminary intermediate representation generated by the front end. The result of URSA

must be passed on to the code emission phase. URSA must also interface with other portions of the

compiler, such as the symbol table and the application of transformations not written to use GURRR.

Finally, it is intended that URSA should target a variety of architectures with di�erent features and

characteristics.
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The implementation of URSA was designed to be modular with respect to the rest of the

compiler in two di�erent respects. First, URSA is designed to be a module within the compiler,

i.e., URSA can be inserted in a host compiler to provide the allocation and assignment of resources.

The host compiler used for the prototype implementation is pdgcc, the University of Pittsburgh's

research compiler which generates a PDG based intermediate representation from C source code

[Fie92]. Second, URSA is not dependent on a particular host compiler. A formal interface is used

between the host compiler's and URSA's structures and algorithms. Thus URSA is not directly

dependent on the host compiler's structures, and in fact, large portions of the implementation can

be used on alternatives to a PDG based GURRR. There are several advantages to this approach.

First, the implementation is more portable; only a small piece of interface code must be written to

rehost URSA to a di�erent compiler. Second, the implementation of the algorithms can exploit a set

of structures designed for the e�ciency of URSA.

URSA requires detailed information about the target architecture to determine the cost of

potential allocations and assignments, as well as what types of global code motion can be performed.

To support 
exible targeting of URSA, con�guration �les are used to describe the architecture. The

con�guration �le contains the following types of information

1. Resource types, e.g., functional units and register banks

2. Generic resource classes

3. Number of each type of resource

4. Architectural features, such as support for predicated and/or speculative execution

5. Description of the instruction set

The description of each instruction includes the resource types used, including implicit uses, and

the number of cycles required to execute it. The grammar used for the con�guration �le is easily

extensible to allow for additional characteristics in the future.

The implementation was designed to load the con�guration information at run time. While

this approach implies slight execution ine�ciency due to some extra levels of dereferencing and more

dynamic memory allocation, it is expected that the bene�ts outweigh the cost. This approach allows

testing and experiments to be run on a variety of of target architectures without having to rebuild

the compiler each time. In addition, compile time con�guration mechanisms are more complex to

implement, as well as cumbersome to maintain and extend.
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11.2 Representation

This section describes the implementation of the Global Uni�ed Resource Requirements Represent-

ation (GURRR). Fundamentally, GURRR is a hierarchical graph consisting of nodes and edges,

each labeled with information. Several types of nodes and edges exist to represent the instructions,

regions, and special summary information. In addition, the representation contains structures for

resource holes and allocation chains. Each structure and design decision is described in turn.

The implementation of GURRR is designed to provide e�cient support for the major oper-

ations performed on it. The �rst operation performed by URSA is the computation of the resource

requirements information, and accounts for the majority of execution time. The second operation

performed by URSA is the set of graph transformations to re
ect the allocations made. Many of

URSA's algorithms involve graph traversals and computing information using bit vector operations.

In addition, information about the program represented is placed in conveniently accessed locations.

In GURRR, as in the PDG, groups of instruction nodes that have common control depend-

encies are identi�ed by region nodes that summarize the control conditions. However, in GURRR,

region nodes are also incident on summary data and temporal dependencies. With respect to the

various types of edges present in the graph, region nodes are no di�erent than instruction nodes.

While region nodes must carry label information describing the region it represents, they must also

carry nearly all of the label information on instruction nodes. Thus, in the implementation there is

a single node structure used for both instruction and region nodes. The node structure contains all

label information needed for instruction nodes. Two additional �elds are added: a type tag and a

generic data pointer. The tag �eld indicates whether the node is a region or summary node. The

data pointer points to the additional label information required when the node is a region node.

The algorithms as described and implemented assume that each node in the graph begins

the use of at most one spanning resource. This assumption is critical to the proper computation

of excessive sets as the live ranges for multiple spanning uses begun by a single node may have

di�erent live ranges. Such de�ning nodes occur in two situations: 1) instructions de�ned by the

target architecture, and 2) region summary nodes representing regions that need multiple instances

of the spanning resource. To enable the algorithms to handle these situations special nodes, called

single de�nitions(SDEFs), are inserted in the representation. An SDEF node, SIj , is inserted in

the graph for each spanning use started by an instruction I. All dependence edges sinking on I are

copied to SIj . All temporal dependences sourcing from I are also copied to SIj . However, only the

data dependences for the jth unique spanning use began by I are copied to SIj . The result is that the

live ranges are properly captured by the SIj nodes. The measurement algorithms ignore instructions
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I that begin multiple spanning uses while the Resource Spackling algorithms ignore the SDEF nodes.

Instructions that use multiple instances of a resource must also be addressed in the Reuse

DAG approach to decomposition. In a bipartite representation an additional pair of nodes can be

added for the instruction for each additional instance of the resource needed. The Reuse DAG

approach keeps track of the maximum number of matching edges that can be incident on a node. For

example, if an instruction uses three registers, that instruction's node can have up to three incoming

and three outgoing matching edges. This technique trades o� the cost of node creation during the

decomposition for the cost of some extra bookkeeping.

Because many computations on GURRR can be done e�ciently as bit vector operations,

each node is assigned a unique integer id. A global indexing array of pointers to nodes is used

to convert an integer identi�er to a pointer to a node. Region nodes have two integer ids: 1) an

identi�er assigned to the representing node, 2) an identi�er is is assigned for the region. Each type of

identi�er has a separate index array of pointers to type speci�c label information. Although not really

necessary, a separate region id simpli�es handling region information, tracking of regions through

transformations, and reduces memory demands.

This approach gives great 
exibility to the representation of edges. There are a number of

types of edges used in GURRR, including, data, control, and temporal dependencies. In addition,

there is a unique reuse edge type for each resource being measured, producing multiple reuse sub-

graphs. For discussion purposes these edges are commonly grouped in several types of subgraphs.

However, in the implementation of the representation, all edges are treated in a similar manner, al-

lowing a single set of edge manipulation routines to be used. Each type of edge is assigned a unique

number, called an edge set. Each node has an array of edge set information. The edge routines

are informed of which edge set to operate on by passing the appropriate array index. An alternate

approach would be to declare a separate object in the node structure for each edge type. Using an

object oriented language, such as C++, stronger type checking could be enforced. Such an approach

has two drawbacks. First, some loss of generality is incurred. There are several situations where

traversals of multiple types of edges must be performed, e.g., a topological traversal of data and

temporal dependencies to compute the full partial ordering of instructions in a region. The repres-

entation implemented easily supports this requirement by iterating over a bit vector set of the desired

indices. Second, an array for reuse edge sets must still be used to support run time con�guration of

the number of types of resources.

In the implementation there are two ways in which an edge can be represented, depending

on whether or not labels are present. The �rst edge representation, is a bit vector, and is used
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when there are no labels on the edges. Each node has a pair of vectors for each edge set; one for

vector for incoming edges and one for outgoing edges. A bit vector edge is added by inserting

the corresponding node's identi�er in the respective bit vectors for both the from and to nodes.

Since several computations used in constructing GURRR required node ancestor and descendant

information, the bit vectors in the appropriate edge sets double as data �elds for these computations.

This representation incurs less overhead by avoiding unnecessary memory management for storing

edge characteristics.

The second edge representation is for labeled edges. For all edges incident on the same

pair of nodes a linked list of label information is created. Each entry in the list is a data structure

containing the label information. Both nodes incident on the edge contain a pointer to the shared

data in their linked lists, allowing consistent access of the label data from either node. To support

the node relative computations, labeled edges are also recorded in the edge set bit vectors.

In practice, all edges of a particular edge set type will either be labeled or not. Thus,

one set of edge manipulation routines is used for both labeled and unlabeled edges. The routines

automatically determine the type of representation to use based on the edge type. Optional additional

parameters to the routines allow overriding of the label type.

In addition to using edge sets to represent dependence information, edge sets are also used

to represent Reuse DAGs. However, additional information is needed for each resource used by

the node. This information includes which immediate ancestors of the node are reusable, and which

values the node kills for spanning resources. An array of resource usage information is allocated for

each node and indexed by the same edge set index used for the edge set array.

Allocation chains also use a dual representation to facilitate several di�erent access methods.

Bit vector sets representing the nodes on each allocation chain are used for computing excessive sets

and determining the number of allocation chains covering interesting collections of nodes. Linked

lists of nodes on each chain are used by algorithms that need to traverse all nodes in particular chain

in the order dictated by their dependences. Such algorithms include the identi�cation of resource

holes.

In the description of GURRR in Chapter 5 resource holes are as a normal graph nodes,

which are incident on edges. Conceptually holes are a separate type of node from instruction/region

nodes; holes have di�erent label information and are incident only on temporal edges. Thus, in the

implementation, hole nodes are not inserted in the graph. Instead, each allocation chain contains two

linked lists, a list for instruction nodes and a list for hole nodes. The nodes in each list are stored in

order from the beginning to the end of the region's DAG. Each hole records which instruction nodes
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it occurs between. Instruction nodes contain ancestor and descendant resource hole bit vectors to

aid the computation of holes available for a �ll instruction.

11.3 Reuse DAG Decomposition

The computation of allocation chains depends on the decomposition of the partial ordering of a Reuse

DAG, which is performed using a bipartite matching algorithm. The construction of a separate bi-

partite graph each time allocation chains must be computed is too time consuming to provide a

practical bene�t. Therefore, the matching algorithm is adopted to the existing graph based repres-

entation of dependences.

In the original description of using bipartite graphs to compute chain decompositions a pair

of nodes i; i0 is created for each instruction i in the Reuse DAG. Let P and P 0 be the two partitions,

then i is placed in P and i0 is placed in P 0 [FF65]. For each pair of related instructions (i; j) in

the Reuse DAG an edge is added from i to j0 in the bipartite graph. Edges sourcing in P and

sinking in P 0 represent nonmatchings. Edges in the other direction, sourcing in P 0 and sinking in

P , indicate matchings between the nodes. The matching algorithm then adds matchings by �nding

augmenting paths using these edges, i.e., a path is found that starts in the �rst partition, ends in P 0,

and alternates between the partitions. The direction of the edges used in the path are then reversed,

changing the unmatched edges to matching ones and the matched edges to nonmatching ones. As a

result of the properties of the path, the number of matching edges increases by exactly one when the

directions are reversed. An example is shown in Figure 11.1. The original Reuse DAG is shown in

Figure 11.1(a) and the corresponding bipartite graph is shown in Figure 11.1(b). Two unit length

augmenting paths are found from A to B0 and from B to F 0. The bipartite graph resulting from

the reversal of the edge is shown in Figure 11.1(d). Now the alternating path C;F 0; B is found. The

result after reversing these edges is shown in Figure 11.1(f).

After the Reuse DAG is constructed the transitive closure of the edges is computed in the

resource's edge bit vectors to obtain the full partial order, i.e., all transitive edges are added to

the Reuse DAG. The resulting DAG has the same set of edges as the bipartite graph. The pairs of

nodes in the bipartite graph are represented using the single node in the Reuse DAG. The matching

algorithm as implemented �nds augmenting paths on the Reuse DAG and records the matching

information in the resource information structure instead of constructing a separate bipartite graph.

Instead of physically reversing edges indicating matches, the matches are recorded in a separate

�eld in each edge set structure. Augmenting paths are found using a special bidirectional traversal
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Figure 11.1: Chain decomposition steps
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algorithm that consults both the reuse edges and the match �elds. Alternating paths on the Reuse

DAG can start at any node, must start and end with nonmatching edges, and alternate between

nonmatching and matching edges. Figure 11.1 contains both the Reuse DAGs and bipartite graphs

for each step of the example discussed above. The stipulation that valid augmenting paths must

alternate between nonmatching and matching edges preserves the bipartite nature of the problem. In

Figure 11.1(c) the path from C to A, C;F;B;A. However, the path traverses two edges of the same

type in a row and thus is not an alternating path.



Chapter 12

Experimentation

To assess the practical application of resource requirements measurements and spackling

concepts in the allocation of resources, several sets of experiments were performed as a part of this

work. The experiments compared the performance of a variety of base and hybrid resource allocation

techniques. The techniques di�er in the type of integration used, as well as in the methods used

to measure requirements and perform reductions. The base techniques consist of register sensitive

scheduling, scheduling sensitive register allocation, and the uni�ed resource allocation method de-

scribed in the previous chapters. The hybrid techniques incorporated URSA's resource requirements

information into the register sensitive scheduling and scheduling sensitive register allocation tech-

niques. In addition to comparing the quality of code generated by the various techniques, statistics

were collected to assess the practicality and bene�t of computing register requirements information.

This chapter describes and discussed the various experiments performed. First the design

of the experiments performed are described. Descriptions of the base techniques are given next. The

presentation of each set of experiments, including variations and hybrids of the base techniques, are

given next. Finally, conclusions are drawn from the data collected.

12.1 Experimental Design

A total of 22 benchmark programs were used in the experiments performed. The programs and

some statistics concerning their resource requirements are listed in Table 12.1. The loops listed are

thirteen of the �rst fourteen loops from the Livermore Loops benchmark suite.

Pro�le information was collected for each benchmark by instrumenting each region with a

unique counter and compiling the benchmark using the gcc compiler. The resulting execution counts

were recorded to a �le and used in the performance analysis of the techniques implemented. In

addition, the execution counts were used as annotations in the source code compiled by the prototype

99
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functional units registers
benchmark maximum average maximum average
bubble 5 2.12 6 2.73
hanoi 9 4.12 7 3.50
heapsort 13 3.67 26 5.88
intmm 5 2.38 7 2.86
nsieve 27 4.29 24 5.35
perm 6 2.23 6 2.17
puzzle 25 2.68 10 3.32
queens 5 1.96 5 2.19
quick 6 2.13 7 2.85
loop1 5 3.00 7 2.86
loop2 11 3.71 12 3.57
loop3 4 2.57 4 2.43
loop4 6 2.78 6 3.12
loop5 13 3.71 14 4.00
loop6 13 3.11 14 3.38
loop7 11 3.33 13 3.75
loop9 12 3.78 31 6.50
loop10 21 4.00 32 5.75
loop11 4 2.71 5 2.83
loop12 4 2.29 4 2.17
loop13 16 2.88 27 4.00
loop14 11 3.09 16 3.80

Table 12.1: Benchmarks used for experimentation

compiler. Thus, these annotations were made available to the techniques during compilation in the

GURRR data structures.

To gauge the performance of the various allocation heuristics under varying levels of resource

pressure, eleven di�erent architecture con�gurations were targeted. The architectures consisted of

eleven of the twelve combinations of 2, 4, and 6 functional units and 4, 8, 16, and 32 registers.

Since each operation performed requires at least one operand, and most typically use two operands,

the architecture with 6 functional units and only 4 registers is considered impractical. In addition,

architectures with a single functional unit and the four sizes of the register �le were used as a base for

comparisons. For all architecture con�gurations memory access instructions are assumed to execute

in 2 cycles, while all other instructions are assumed to execute in one cycle.

Estimated execution times for a given compilationmethod were computed using the formula

totalCycles =
X

r2RegionsofB

r:cpl� r:executionCount (12.1)

where B is the benchmark program, r:cpl is the length of the region's critical path, and r:execCnt is

the region's execution count. The speedup for a heuristic is computed by dividing the base estimated

execution time by the heuristic's estimated execution time. In most cases the base execution time

is the execution of the benchmark program on a single issue architecture compiled using the base
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P-RIG technique. When comparing variations of a particular technique, all variations are compiled

for the same architecture and one is selected as the base for the speedup calculations. The graphs

plot the unweighted average speedup for all benchmarks in the test suite. The individual speedups

for each combination of benchmark, heuristic, and architecure are listed in appendix B.

12.2 Overview of the Algorithms

The experiments performed in this work considered three approaches to integrated resource allocation

and instruction scheduling. The �rst approach is register sensitive instruction scheduling, based on

Goodman and Hsu's integrated prepass scheduler [GH88]. The second approach is schedule sensitive

register allocation, based on Norris and Pollock's parallel register interference graph [NP93]. The

�nal approach is the uni�ed resource allocation technique developed in this work. All of these

techniques were implemented using GURRR as the intermediate representation and explicitly exploit

its hierarchical properties. This section highlights the features of each major technique in terms of

the Measure and Reduce paradigm. Implementation details of these base and hybrid techniques

considered are discussed in the subsequent sections.

Integrated Prepass Scheduler (IPS): This algorithm performs on-the-
y detection and reduction of

excessive resource demands. Instruction allocation is handled by list scheduling. Excessive

functional unit demands are detected when the size of the ready list exceeds the number of

functional units available. Excessive functional unit demands are reduced by delaying instruc-

tions not selected for execution in the current cycle by the priority function. The detection

of register excessive demands is performed by tracking register pressure during scheduling.

When excessive register demands are detected, the priority function favors instructions which

reduce the register pressure. The e�ect is that new live values are sequentialized after previ-

ous values have been killed. However, sequentialization alone cannot always prevent register

pressure from exceeding the maximum number of registers available. Therefore, a subsequent

register allocation pass is used to perform spilling to further reduce register demands.

Uni�ed List Scheduler (ULS): This algorithm was developed in this work and is a modi�cation of

IPS to eliminate the need for a separate spilling postpass. ULS uses an on-the-
y live range

splitting reduction technique. This technique is invoked when IPS would otherwise schedule an

instruction that would cause the register pressure to exceed the number of available registers.

This approach requires a hierarchical representation of the program and performs resource

allocation in a bottom up manner. In this way, the register requirements of lower levels
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are accounted for in summary nodes and global register allocation is achieved. Because this

technique operates hierarchically, global allocation is achieved and the need for a postpass

register spilling phase is eliminated.

Parallel Register Interference Graph (P-RIG): When register allocation is performed prior to in-

struction scheduling for ILP architectures the instructions are only partially ordered. If there

are no dependence between instructions incident on separate live ranges, it can not be determ-

ined if the live ranges will overlap in the �nal schedule. This problem does not occur when

the instructions are fully ordered. Therefore, an alternate version of the register interference

graph, the parallel interference graph (P-RIG) is computed to capture the additional poten-

tial live range con
icts. The P-RIG is then used to detect excessive demands for registers.

The simpli�ed P-RIG is used to detect excessive register demands. The reduction of these

demands is achieved through sequentialization of instructions and spilling of live ranges.

Separate cost computations are used in the priority function for the respective reduction meth-

ods. As a result of the sequentializations introduced by both register reduction methods some

of the functional unit excessive demands also may have been reduced. Any remaining excessive

functional unit demands are identi�ed and reduced by a postpass instruction scheduler.

Uni�ed Resource Allocation (URSA): This approach uses the techniques developed in this disserta-

tion to detect and reduce excessive resource requirements. Excessive resource requirements

are identi�ed by computing excessive sets for both registers and functional units. Reductions

in resource demands are performed using the resource spackling transformations. Like ULS,

resource allocation is uni�ed in that all resources are allocated simultaneously. Resource

spackling reductions for registers perform both sequentialization and live range splitting, de-

pending on how the uses of the interfering de�nitions are partitioned into the sets used by the

transformation.

12.3 Register Sensitive Schedulers (RSS)

The �rst set of experiments performed investigated the performance of the register sensitive instruc-

tion scheduling (RSS) techniques of IPS and ULS. This section describes implementation details and

experimental results of both the base and hybrid algorithms.
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Figure 12.1: Comparison of base RSS techniques

12.3.1 Base Techniques

As described above, IPS and ULS are based on a list scheduling algorithm. As in typical list

scheduling algorithms, the height of ready instructions are used in the priority function that selects

the next instruction to schedule. However, in IPS and ULS register pressure is also used. The register

pressure is measured by computing the number of values alive as each instruction is scheduled. The

change in register pressure, P�, for a candidate instruction, I, is given by

P� = I:defs � I:kills (12.2)

where I:defs is the number of new values de�ned by I and I:kills is the number of live values killed

by I. A live value is killed by I if I is the last use of the value to be scheduled. By adding P� for

the instruction selected to the current register pressure the algorithms have a precise measure of the

number of registers required at each point in the committed schedule.

In both IPS and ULS the register pressure value is compared to threshold values to de-

termine which of several priority functions are used to select the next instruction to schedule. In

IPS a single threshold, 80% of the number of available registers, is used. When register pressure is

below this threshold the priority function selects the instruction with maximum height. If several

instructions have the same height, the priority function selects the instruction with the minimum P�

value. When register pressure is at or above the threshold the priority function reverses the ordering

of the two values. That is, the function selects the instruction with the minimum P� value. In the

event of a tie the instruction with maximum height is selected.

ULS di�ers from IPS in that it adds a second threshold for register pressure and splits a
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live value when this threshold is reached. The splitting threshold is set at the number of available

registers, since exceeding this value results in generated code that cannot be executed. When the

register pressure reaches this threshold an alternate reduction technique is used. The priority function

invoked in this case selects a value to split rather than an instruction to schedule. The value selected

is the one whose earliest remaining use has a minimum height. Thus, this priority function selects

the value that can be delayed for the longest time. A store instruction for the value being split is

injected into the ready list. A corresponding load instruction is injected into the not ready list, with

a temporal dependence on the store instruction. All unscheduled instructions which require the split

value are delayed to use the load's de�nition of the value instead. Since the injected store instruction

reduces register pressure, it is guaranteed to be the next instruction selected by the pressure reducing

priority function on the next iteration of the list scheduler.

The results of using the two algorithms are shown in Figure 12.1. As can be seen, the

ULS algorithm performs much better than the IPS algorithm when register pressure exceeds register

availability. When su�cient registers are available the two algorithms perform similarly. Analysis of

the code generated by the two algorithms showed that the di�erence in performance was attributable

to greater amounts of spill code introduced by IPS. Thus, it is concluded that the fewer loads of a

value performed by live range splitting is of signi�cant bene�t.

12.3.2 Hybrid Register Sensitive Schedulers

Although ULS performs better than IPS, it is still limited by its lack of ability to lookahead and

consider the impact of its scheduling decisions on resource demands later in the schedule. In an

attempt to circumvent this limitation a set of hybrid ULS algorithms were implemented. All of these

algorithms incorporate the resource requirements information computed by URSA into their priority

functions.

As in the original implementation of ULS, the register pressure value determines which

priority function is used. The instruction priority function considers the values in the following

order: future pressure estimate, instruction height, P�. The register sequentializing priority function

considers the values in the following order: P�, future pressure estimate, instruction height. Lower

values for the future pressure estimate have higher priority. The functions are describe below.

� ULS - is the original priority function described in the previous subsection.

� La1ULS - computes the number of allocation chains covered by the descendants of all scheduled

instructions and the instruction under consideration.
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Figure 12.2: Comparison of hybrid RSS techniques

� La2ULS - is similar to La1ULS, except that other instructions in the cycle currently being

scheduled are not considered.

� La3ULS - computes only the number of new allocation chains that would be added by scheduling

the instruction under consideration.

� La4ULS - computes the same priority as in La3ULS, but does not schedule the instruction if it

has slack time and there is at least one other instruction already scheduled in the current cycle

if the register pressure would cross a threshold.

� La5ULS - computes only the number of new allocation chains that would be added by scheduling

the direct descendants of the instruction under consideration.

The results of these experiments, using the ULS as the base technique in the speedup cal-

culation, are shown in Figure 12.2,. It was remarkable that there was little variation in performance

between the priority functions. Examination of the code generated showed that while di�erent in-

structions were selected for scheduling, the di�erences were inconsequential. In many cases most of

the ready instructions had enough common descendants that their look ahead values were the same.

In the cases where there was a di�erence there was little impact on the amount of splitting required.

The strong similarity of the quality of code generated is the result of the inherently limited

ability of list scheduling to look ahead. The groups of instructions within a region tend to be too

interrelated for any priority function based on the number of chains or future excessive demands to

di�erentiate between di�erent ready instructions. Priority function La4ULS was speci�cally designed

to negate the over aggressiveness of list scheduling to trying keep all functional units busy in each
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cycle. Examination of the heuristic's logs shows that few occasions arose to delay instructions that

might increase register pressure and that any such bene�ts realized were typically o�set by delaying

some other instructions that shouldn't have been delayed. It is believed that this result is due at

least in part to the di�erence between the rescheduled height of the instructions and the location

of the instruction in the �nal schedule. The di�erence between these two locations is related to the

dilation of the critical path length that occurs during resource allocation.

12.4 Schedule Sensitive Register Allocation (SSRA)

Then next set of experiments performed investigated the performance of scheduler sensitive register

allocation (SSRA) techniques. This section describes implementation details and experimental results

of both the base and hybrid algorithms.

12.4.1 Base Techniques

This work implemented parallel register interference graph (P-RIG), based on the work of Pinter

[Pin93] and Norris and Pollock [NP93]. The P-RIG is constructed in manner similar to the standard

register interference graph. Because it contains all interference edges between nodes repressing live

ranges that may overlap in the dependence DAG for the region, it is a superset of the RIG computed

for a fully sequential program. After the graph has been constructed, it is simpli�ed by removing

all nodes that are incident on less than K edges, where K is the number of registers available, since

these nodes can always be assigned registers. The remaining nodes represent the excessive demands

as computed by this method.

The reduction of the excessive demands is achieved through sequentialization of instructions

and spilling of live ranges. Live range spilling rather than live range splitting was implemented in

this work since splitting is more complex when instructions are only partially ordered rather than

fully ordered, due to the uncertainty of whether two live ranges will overlap in the �nal schedule.

Spilling is performed by storing the value after it is computed and loading the value prior to each

use. Sequentialization of a live value D1 is performed by �nding a second live value, D2, which

interferes with D1 and introducing temporal dependences from all uses of D2 to D1. Only such

sequentializations that do not introduce dependence cycles are considered.

The priority function used to select a value for spilling or sequentializing compares the costs

for the respective reduction methods for each excessive live range. The cost for spilling a value is
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Figure 12.3: Comparison of SSRA and RSS techniques

given by

costspill =

storeCost � def:execCnt+
P

u2uses
loadCost � u:execCnt

numInterferences
(12.3)

where def:execCnt is the execution count of the region containing the de�nition of the value and

u:execCnt is the execution count of the region containing a use u of the value. The cost for sequen-

tialization is given by

costseq =
max

u2D2uses
(u:EST +D1:LST ) 	 cpl

numInterferences
(12.4)

where cpl is the length of the critical path of the region containing D1, and the symbol 	 represents

the 
oored subtraction function, de�ned as

a	 b =

8><
>:

a� b a > b

0 otherwise
(12.5)

A comparison of schedule sensitive register allocation using the P-RIG to IPS and ULS is

shown in Figure 12.3. In most cases P-RIG performed worse than IPS. As mentioned earlier, the

P-RIG contains more interferences than the typical RIG computed. These interferences represent

a worst case scheduling of the dependence DAG. On the other hand, the RSS algorithms know the

precise register pressure at any point in the schedule and only perform a locally minimum number

of reductions. The result is better performance.

12.4.2 Hybrid SSRA techniques

The SSRA technique can be modi�ed in a number of ways. The computation of the cost of spilling a

value as computed in Equation 12.3 does not consider the fact that de�nition and uses of the values
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Figure 12.4: Comparison of hybrid SSRA techniques

may have slack time. If one of these instructions has some slack time then there is a hole into which

the corresponding memory access can be inserted, reducing its cost. This observation suggests the

following modi�ed formulation of the spill cost, referred to as the slack spill cost:

Scostspill =

(storeCost 	 def:slack)� def:execCnt+
P

u2uses
loadCost� (u:execCnt	 u:slack)

numInterferences

(12.6)

The second observation is that the simpli�ed P-RIG and register excessive sets compute

the same type of information using di�erent methods. The P-RIG approach computes excessive

demands by identifying interferences directly from the program's dependences, while URSA �rst

computes CanReusereg from the dependences and then computes excessive demands from the res-

ulting allocation chains. The relative precision of the two computation methods can be compared by

substituting the register excessive set for the simpli�ed P-RIG set in the SSRA algorithm.

In all, four SSRA techniques, resulting from all combinations of spill cost functions and

excessive demands computations, were implemented and compared.

� p-rig - uses the P-RIG and the spill cost function in Equation 12.3.

� Sp-rig - uses the P-RIG and slack spill cost function in Equation 12.6.

� es-ssra - uses Ursa's excessive sets and the spill cost function in Equation 12.3.

� Ses-ssra - uses Ursa's excessive sets and the slack spill cost function in Equation 12.6.

The results of these compilations are shown in Figure 12.4. There are two remarkable results

from these compilations. The �rst is that the modi�ed priority function degraded performance rather



109

than improving it. Examination of several cases revealed that more spill code was generated because

either some values where spilled prior to attempts to sequentialize live ranges, or values that had

less of an impact on reducing the size of the excessive requirements sets were spilled �rst. The

consideration of slack time tended to negate the e�ects of the priority function's divisor to account

for the number of other live values interfered with.

The second result was that the use of URSA's excessive sets signi�cantly reduce the amount

of spill code generated. Examination of the generated code revealed a common occurrence mentioned

in Brigg's dissertation [Bri92]. Although all nodes in the reduced interference graph interfere with

at least K other values, those K other values may not need all K colors. The simplest example

is an interference graph of four nodes connected in the shape of a diamond, with K = 2. URSA's

chain computations naturally realize when such a situation occurs and count fewer interferences.

The result of fewer interferences is either a smaller excessive interference set is generated than by

interference graph reduction, or no excessive interference set at all is generated while interference

graph reduction does generate one. The better performance of the URSA based coloring hybrids is

directly due to this e�ect.

Examination of cases where the interference graph reduction reported an excessive set while

URSA's chain computation revealed a common situation. There was typically a group of instructions

which legitimately required K � 1, registers and they interfered with a chain of several instructions

which could all share a single register. Figure 1.1(a) in chapter 1 is an abstract example of such

situation. The D subgraph contains six instructions which require three registers while the A subgraph

contains eight instructions which only require one register. In practice, the A subgraph may be a

series of calculations involving constants and indirect array indexing.

12.5 Uni�ed Resource Allocation

A prototype of URSA was implemented using the resource spackling transformations described in

Chapter 6 and cost functions based on the techniques discussed in Chapter 7. The inter-region

motions suggested in Chapter 9 were not implemented.

In addition to comparing URSA to the other techniques mentioned above, experimentation

was performed to tune the priority function used. Di�erent weights and orders for calculating the

component priorities were considered in order to identify key properties of a good heuristic. The

priority functions considered are list below.

� Eursa - favor instructions that interfere with larger numbers of excessive instructions.
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Figure 12.5: Comparison of variant URSA techniques

� Cursa - ignore all priority components except the cost of delaying instructions or spill code.

� Gursa - be greedy instead of conservative in the order of spackling the instructions selected.

� Dursa - favor reductions that sequentialize more instructions with excessive demands. This

function was inspired by Norris and Pollock's sequentialization reductions.

� GDursa - combine the Gursa and Dursa heuristics.

� Nursa - reverse the order the lexigraphic comparison of the priority components. This heuristic

was inspired by the success of the Gursa heuristic.

The results of these experiments are shown in Figure 12.5. The most signi�cant improve-

ment resulted from the use of the greedy heuristic GUrsa. This result was unexpected due to the

fact that Hsu recommends scheduling instructions with the least amount of slack �rst [Hsu87]. This

experiment suggests that scheduling the instructions with the most slack �rst achieves better per-

formance because these instructions are the ones most likely to be moved beyond the range of the

excessive set. Thus fewer reduction transformations are typically required. Most other variations

had little e�ect on the performance of Ursa. However, the reversed ordering of the priority com-

ponents consistently did slightly worse. This result indicates that the base ordering of the priority

components is correct.

The best heuristics from the each set of experiments are compared against the base heuristics

in Figure 12.6. As seen from the graph both URSA and ULS outperformed all prior techniques for all

architectures. Between URSA and ULS there was no clear winner. ULS performed better on the two

issue architectures while URSA performed better on all of the wider architectures. Examination of the
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Figure 12.6: Comparison of base and best techniques

ULS URSA hand
Benchmark CPL Insts. CPL Insts. CPL Insts.
loop2 63 70 95 79 22 40
loop10 117 131 181 150 42 71

Table 12.2: Critical path lengths and number of instructions for 2-4 architecture

individual benchmarks revealed that no single heuristic consistently generated the best or worse code.

Two cases where URSA performed worst than ULS were selected for an in{depth examination. These

cases were the single region loop bodies of loop2 and loop10. These regions were scheduled and

allocated by hand to compare the heuristics to the optimal and identify weaknesses in the heuristics.

The results are shown in Table 12.2.

In both cases, the number of available registers was su�cient and no extra memory accesses

were required. Thus, the di�erence between the number of instructions in the hand coded cases and

the heuristics indicates the total number of load and store instructions inserted by the heuristics.

Examination of the allocation decisions made by ULS showed that it has very limited know-

ledge of the unscheduled instructions. List scheduling in general has no knowledge of the width of the

resource requirements of the unscheduled instructions. Thus heuristics based on list scheduling typ-

ically use only an instruction's height in the dependence DAG to decide how long it can be delayed.

This limitation is evidenced in both cases by the register thrashing resulting from scheduling live

ranges based only on the height of the de�ning instruction.

A similar situation occurs for URSA in loop2. Examination of the region showed that

there was insu�cient slack time in the DAG to insert spill code, let alone attempt to delay live

ranges. As a result URSA attempted to schedule all instructions as close as possible to their heights
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in the DAG. The results obtained by hand coding were achieved by observing that some groups of

instructions would have to be delayed. Thus groups of instructions that were closely related were

delayed enmasse. In this manner values were not computed until they were needed in the �nal

schedule and generation of spill code was avoided. A similar situation occurred in URSA's allocation

of loop10. However, the problem was compounded by the existence of a number of store instructions

at the end of small groups of instructions. Although most of the instructions in the small groups have

little or no slack time, the stores have relatively large amounts of slack time. URSA preferred to

delay these stores to near the end of the region due to the increased availability of functional units to

execute them. Delaying the stores caused the lifetimes of the values they spilled to be lengthened and

thus cause interference with a large number of live ranges on critical paths. Once again, thrashing

of registers occurred. Hand coding again exploited the relations of instructions by delaying and

scheduling instructions in small groups.

12.6 Measurement and Compile Time Statistics

Besides quality of code generated, there are two issues concerning the practical use of the URSA

technique developed in this work:

1. How accurate are the measurement heuristics for spanning resources in practice?

2. What is the compilation time of URSA based techniques compared to existing techniques?

The appropriate sections of the prototype compiler were instrumented to collect data to answer these

two questions.

12.6.1 Measurement Heuristics

The architecture targeted by the host compiler did not contain any instructions that used more than

two input values. Thus, any NP-complete components that were encountered could be solved using

the specialized matching algorithm referenced in Appendix A. However, this matching algorithm

was not implemented in the prototype due to the extra data structures needed. Instead a greedy

algorithm was used to compute the minimum cover sets. As a result, the measurement algorithms

could still produce imprecise measurements. To determine how often such imprecisions occurred the

measurement algorithmwas instrumented with code to record all NP-complete candidate components

that were given to the greedy heuristic for analysis. Both the components and the solutions found by

the greedy heuristic were recorded in a log �le. These log �les were then analyzed o�ine.
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Initially, the o�ine analysis consisted of performing an exhaustive search for the minimal

covering set and comparing its size to the size of the covering set found by the greedy heuristic during

compilation. While the exhaustive search was too costly to implement in the compiler, most of the

components were small enough that o�ine analysis was not unreasonable. However one component

was found which was intractable for performing an exhaustive search. Upon examination of this

component it was noticed that a large number of the parent instructions had single children using

them. Such children must be in the covering set as they are the only ones that can kill these single

use parents. In the particular component being examined, the minimum covering set consisted of all

of the children with single use parents.

As a result, the o�ine analysis algorithm was redesigned to perform a prepass that added

all children of single use parents to the cover set and then to perform an exhaustive search on the

remaining children. As demonstrated in the component examined, the prepass may �nd a minimal

covering set, avoiding the need to run the exhaustive search at all. Such cases are called trivial and

were specially noted by the o�ine analysis program.

In an e�ort to gauge the number of di�erent components encountered in benchmark pro-

grams the o�ine analysis program performed a partial isomorphism of the components. This iso-

morphism consisted of normalizing the node numbers in the range 1 to N, where N is the number of

nodes in the component. The partiality of the isomorphism is a result of the fact that the relative

ordering of the nodes was still preserved.

From all of the measurements performed during the more than 4,000 compilations performed,

a total of 44,432 NP-Complete component candidates were recorded. In all 44,432 cases the greedy

heuristic implemented in the compiler found the minimal solution, resulting in perfect precision for

the calculation of all resource requirements in the benchmark programs considered. The 44,432

problems reduced to only 69 unique components with respect to the partial isomorphism. Of these

69 components, 67 were trivial in that the prepass algorithm found the minimal covering set. The 2

nontrivial components only occurred a total of 8 times out of the 44,432 components encountered.

Performing a complete isomorphism by hand on the 69 semi-unique components reduced them to 42

completely unique components. There was only one completely unique nontrivial component which

contained a total of �ve instructions.

Examination of the two nontrivial components showed that any algorithm that selects chil-

dren for the minimal cover set if and only if they kill at least one of the remaining live parents will

�nd a minimal cover. This result is due to the symmetrical nature of the nontrivial components

encountered.
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Figure 12.7: Comparison of compilation times

This experiment suggests a better method for implementing spanning resource Reuse DAG

computation than was done in the prototype compiler. All NP-Complete candidate components

should be analyzed by the prepass algorithmmentioned above. Only if a true NP-complete component

remains after this analysis should a more expensive analysis algorithm be invoked. Three possible

algorithms are suggested for consideration, based on the desired trade o� between analysis time and

precision of the requirements. This experiment suggests that an exhaustive search is probably not

unreasonable if complete precision is desired; the exponential computation time is most likely easily

amortized over the total compilation time. As a middle ground, either a matching based algorithm

or the greedy heuristic implemented in the prototype compiler can be used. This heuristic can also

be used if a threshold for the size of components handed to an exhaustive search is implemented.

For pure speed a random ordering of the children nodes for searching for those that kill at least one

parent can be used. The algorithmic complexities of these algorithms are 
(2C), O(C2=5), O(C2),

and O(C) set operations respectively, where C is the number of child nodes in the component.

The component identi�cation algorithm has a time complexity of O(N2) set operations,

where N is the total number of nodes in the program DAG. Thus, asymptotically, the di�erence

between the random and greedy heuristics is inconsequential in the overall computation. The com-

bination of the rarity of encountering a true NP-Complete problem and its likely size after reduction

by the prepass makes the selection of an algorithm mostly a theoretical issue.
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12.6.2 Compilation Time

The second issue concerning practical use is the compile times of the respective algorithms. The

times for the base and best hybrid techniques are shown in Figure 12.7. The times shown are only

for the resource allocation phase of the compiler. There are several interesting items to note about

the relative times.

Despite the fact that the resource requirements are recomputed from scratch each time, the

URSA based algorithms had the lowest compilation times. Since only the priority function di�ered

between the two URSA techniques, it is not surprising that they had very similar times.

The ULS algorithmwas the next best performer and was quite close to the URSA algorithms

expect when few registers were available. The reason for ULS performing worse than URSA is unclear.

One possible explanation is that ULS operates on a DAG and introduces temporal dependences as

each cycle is scheduled, requiring an update of transitive dependence information. The number of

such updates is greater than the number times that the resource demands are computed in the URSA

algorithms.

The IPS algorithm is slower than the ULS algorithm by nearly a constant factor. This extra

time is due to the invocation of the register coloring algorithm after the scheduling phase.

The poorest performing algorithms are the coloring based algorithms. The primary reason

for this fact is that the sequentialization reduction is not optimized. As mentioned earlier, this

implementation of the technique attempts to make a minimal sequentialization as possible to avoid

over-sequentialization. As a result, several sequentialization steps may be taken to achieve the desired

e�ect. Norris and Pollock have developed heuristics to reduce the number of sequentialization steps

needed, but have not given the details of their techniques [NP93].

The di�erence in time between the base P-RIG algorithm and the hybrid ES-SSRA al-

gorithm is the time required to compute URSA's resource demands information. This di�erence is

less when more registers are available as fewer reduction steps are performed by the algorithms.

Finally, it should be noted that although URSA's resource requirements computations are

prime candidates for incremental updating, such techniques were not implemented in the prototype.

Instead, full recomputation is performed.

12.7 Comments

Several observerations can be made from the results of the various sets of experiments performed in

this work. First, the most signi�cant impact on the quality of code generated is due to live range
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splitting. The two new algorithms developed in this work, ULS and URSA, both naturally perform

live range splitting as a part of their reduction techniques. Currently, the only apparent method of

incorporating live range splitting into techniques based on register coloring is to use the spackling

transformations. However, after replacing the excessive demands detection and reduction methods

of SSRA techniques, the only di�erence between them and URSA is the priority function used for

selecting which value to split.

The second observation is that while the two new algorithms presented in this work make

signi�cant improvements over prior techniques, there is still a large amount of room for further

improvement. The results of the hand coded examples suggest that further improvements in heuristics

must come from considering reductions in a larger scope.

A third observation made is that list scheduling remains constrained by its limited scope

of knowledge of the code being allocated, as evidenced by the di�culty in a�ecting the quality of

code generated by varying the priority schemes. On the other hand, while the improvements where

not signi�cant in the �nal comparison, a�ecting the quality of code generated by URSA is easily

accomplished.

The combination of the second and third observations with the uni�ed representation used

by URSA is encouraging. There appears to be much potential for improvement by future algorithms

based on GURRR and/or URSA.

Finally, the precision of computing register excessive sets, with respect to both the NP-

Completeness of the problem and to the current performance of interference graph based techniques

is practical. These experiments show that computation of register excessive sets are quite bene�cial.

As a result, other needs for estimates of register pressure, such as parallelizing transformations and

software pipelining, should consider using register excessive sets as a part of their analysis.



Chapter 13

Concluding Remarks

13.1 Summary

Architectures for Instruction Level Parallelism(ILP) present several new challenges to traditional

compiler implementations. The goal of this work was to address important code generation problems

for ILP involving register allocation and instruction scheduling. In particular, there are two signi-

�cant problems: 1) ILP highlights negative interactions between register allocation and instruction

scheduling, 2) existing techniques for register allocation either are not designed to handle ILP or do

not fully exploit ILP when performing spilling.

This work addresses both problems simultaneously by designing new techniques for both

register allocation and instruction scheduling. The design of the techniques is motivated by two

observations. First, register allocation and instruction scheduling both carry out the allocation of

necessary resources and then assign speci�c instances of the resources to the instructions that need

them. A part of the allocation process is determining when to allocate a resource to an instruction.

Second, allocation is only a problem in sections of the program where the demand for resource exceeds

the number of resources available. The introduction of temporal dependences by a compiler a�ects

allocation by imposing constraints on scheduling decisions. These observations form the basis for

proposing the Measure and Reduce paradigm.

The enabling technology developed in this work is the measurement of worst case resource

demands for both types of resource and their incorporation into a single representation usable by

all allocation and assignment tasks. URSA's measurement information was designed to be easily

incorporated into existing intermediate representation. The measurement information is of use to a

wide variety of compiler tasks concerned with architectural features including register allocation, in-

struction scheduler, resource constrained global code motion, and transformations and optimizations.

The result is a framework 
exible enough to address most of the recent features of ILP architectures.

117
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The main contributions of this work are as follows:

� Development of techniques for measuring the maximum number of resources needed to exploit

all inherent ILP in a segment of a program. The techniques are general enough to incorporate

both functional unit and register types of resources. The availability of such information enables

the resource allocation phases to concentrate precisely on the problem areas.

� Development of a DAG based intermediate representation which incorporates resource require-

ments information. Basing the representation of the requirements information on a structure as


exible as a DAG demonstrates that it can be used by commonly used intermediate represent-

ations. Using existing representations as a base provides a convenient medium to communicate

the needed information to the resource allocation phases.

� Development of a resource allocation framework that speci�es how allocation of resources to

instructions can be performed using the resource requirements information computed. The

framework provides a method to directly assess and compare the impact of all allocation options

under consideration.

� The development of a powerful framework for describing and comparing approaches to resource

allocation, whether they are integrated or not. This framework consists of the Measure and

Reduce Paradigm and the theory of resource spackling, which identi�es the necessary conditions

for achieving reductions in resource requirements.

� Development of high level heuristics that drive a uni�ed allocation of all resources. These

heuristics demonstrate how the allocation framework can be applied to resource allocation

and assignment for several common tasks, including global register allocation, local scheduling

and resource constrained global code motion designed for multiple issue architectures. These

heuristics incorporate live range splitting in an ILP environment, an improvement over previous

techniques that perform either no or limited live range splitting.

� Experimental results that demonstrate the bene�ts of the techniques developed. Important

results from the experiments conclude the following. Live range splitting is critical to achieving

good performance. Even when compared to other fully capable live range splitting techniques,

the resource allocation based techniques generally perform better due to the uni�cation of

resource allocation. Although in theory maximum register requirements is an NP-complete

problem, in practice they can be computed e�ciently with a high degree of precise (completely
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precise in the experiments). Finally, the experiments show that the resource requirements

information improves traditional coloring based approaches to register allocation.

13.2 Future Work

There are a number of problems open for future research.

� The heuristics for selecting both instructions and reduction transformations in the URSA ex-

periments were simple in concept and served their purpose as a proof of concept. There are

no doubt better, although possibly more complex, heuristics for these problems.

� The uni�cation of register allocation and instruction scheduling is only a �rst step in reorgan-

izing the back end of the compiler. Higher degrees of integration are possible by combining

transformations and optimizations with resource management. A central concept of this work is

to perform transformations on demand, that is, to expose additional instruction level parallel-

ism only in places where the level of inherent ILP is insu�cient. Furthermore when additional

ILP is desired, only as much as is needed to �ll the idle resources should be exposed. In this

manner extra work is not generated for register allocation and instruction scheduling.

Several areas must be addressed to support this integration, including prediction of the changes

that would be a�ected by the transformations, and methods to use URSA's information to

\throttle" the transformations. In addition, the use of URSA to guide optimizations performed

early in the back end, such as loop unrolling, will require URSA to operate on a high level

intermediate representation. URSA as a framework is su�ciently 
exible to accommodate such

uses. However, for the measurements to be bene�cial, the approximations must reasonably

account for the eventual results of lowering the representation.

� Fast accurate estimations of resource requirements may have other uses, such as guiding global

code motion (GCM) and heuristic selection. Resource pro�les may be used to determine which

blocks should be used as targets for GCM and which ones should be evaporated to eliminate

branches. It has been observed before that particular transformations and resource heuristics

perform better on some programs than others [Whi91]. Indeed, their e�ectiveness may vary with

in a single program. The availability of resource requirements pro�les provides new information

that may be guide the selection of which heuristic that is most likely to obtain the best result

for the section of the program in question.
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� The simple use of excessive sets as clique candidates in interference graphs in register allocation

shows the bene�t of incorporating URSA's information in traditional coloring based register

allocation techniques. Further work needs to be done in communicating the allocation chain

information to the register assignment phase. Further, there may be ways to use URSA's

information in the selection of a live value for spilling and the placement of spill code. In

addition to sequentializing or spilling the selected value, the information in GURRR may be

able to be used to �nd ways to split the live range even though the instructions have not been

fully ordered yet.

Despite the lack of bene�t in the register sensitive scheduler experiments, there may still be ways

to incorporate resource requirements information into instruction scheduling as well. Further

examination of sample cases may suggest other methods for both determining the proper look

ahead scope and how to incorporate the information into the selection priority function. An

alternative approach to the look ahead problem would be to preprocess the DAG. That is, to

compute the resource requirements information for the DAG and annotate the instructions with

scheduling hints prior to actual scheduling. These hints could then be incorporated into the

priority function.
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Appendix A

NP-Completeness and a Heuristic for
Computing Kill()

This appendix addresses the problem of computing the functionKill(). Kill(a) is a function

that returns the node that kills the value computed by node a, and is used to build the ReuseReg

DAG. Section A.1 shows that computingKill() to maximize register requirements is an NP-Complete

problem. Section A.2 presents a practical heuristic for computing Kill().

A.1 NP-Completeness

The ReuseReg DAG is used to determine the maximumnumber of registers that the program can use

under any schedule. Therefore, for a node a, Kill(a) should be computed so that a is alive with as

many other values at the same time as possible. Given a collection of nodes, the maximum number

of instructions requiring registers is the maximum number of independent values plus the maximum

number of their children that can be executed without killing any of them. Thus, Kill(a) must be in

a minimum set of children that kills all of the of values from the maximum live set containing a. As

an example, consider the DAG in Figure A.1. If node E is the last to execute then the values from all

other nodes are alive at once, requiring six registers. If node E is the �rst child to execute then each

other child kills a parent and can reuse its register. In this case only four registers are required.

Formally, the problem of computing Kill() is treated as a decision problem of �nding K or

fewer children that kill a set of parents' values:

Minimum Killing Set

Instance: A DAG (N , E), positive K <= jN j.

Question: Does there exist a minimum killing set, i.e., N 0 � N such that jN 0j <= K,

and 8
n2N

9c 3 (n; c) 2 E and c 2 N 0?
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A B C

D E F G

Figure A.1: A complex case for de�ning Kill()

The complex subcase of computing Kill() can be described as a subDAG that is bipartite

and has at least one parent node with an out-degree of at least two and at least one child node

with an in-degree of at least two. Such cases can be shown to be NP-Complete by reduction to the

Minimum Cover problem. The statement of the Minimum Cover problem, taken from Garey and

Johnson [GJ79], is as follows:

Minimum Cover

Instance: Collection C of subsets of a �nite set S, positive J <= jCj.

Question: Does C contain a cover for S of size J or less, i.e., a subset C0 � C with

jC 0j <= J such that every element of S belongs to at least one member of C0?

Reference: [Kar72] Transformation from Exact Cover by 3-Sets.

Theorem A.1 Computing Kill() for all nodes in the DAG to maximize the register requirements,

i.e., Minimum Killing Set, is NP-Complete.

Proof: by reduction to the Minimum Cover problem.

Minimum Killing Set is in NP since a nondeterministic algorithm can guess a solution and

check in polynomial time that there are K or less nodes in N 0 and that all parent nodes are killed.

Let (N, E) be a DAG with N = S [ C and E = f(s; c)js 2 S; c 2 C, and s 2 cg. Then

(N, E) is a bipartite graph, constructed in O(jSj + jCj + Q
c2C

jcj) time. Let K = J . If there is a

solution to the Minimum Cover problem, then N 0 = C0 is a solution for the Minimum Killing Set

problem. Conversely, if there is a solution to the Minimum Killing Set problem, then C0 = N 0 is

a solution to the Minimum Cover problem. Thus, Minimum Killing Set is NP-Complete since it

is in NP, Minimum Cover can be transformed to it in polynomial time, and there is a solution to

Minimum Killing Set if and only if there is a solution to Minimum Cover. �

In practice, a simple greedy method based on selecting the child that kills the most parents

can be used and is quite e�ective [CLR90, pp. 974{978]. Furthermore, if no child has in-degree of

greater than 2, a specialized matching algorithm can be used []. In this matching algorithm the

parents and the child form the two partitions of the bipartite graph. Any child node incident on a

matching edge is in the minimum cover set. It can be shown that if there a parent node that is not
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incident on a matching edge, it still will be covered by a child that is incident on a matching edge.

If this were not the case, then the matching would not be maximum because the edge connecting the

parent to the child could be added to the set of matching edges. Thus, all parents will be covered.

A.2 Computing Kill()

For many NP-Complete problems only certain cases or portions of the problem cause the NP-

Completeness. This section identi�es the characteristics of the portions of a programwhere computing

Kill() is NP-Complete. An algorithm is presented that both identi�es the portions of the program

where computing Kill() is NP-Complete, and computes Kill() precisely for all of the portions of a

program that are not NP-Complete problems.

Partitioning of the portions of the program into NP-Complete and polynomial parts for

computing Kill() is based on the out-degree of the nodes to be killed and the in-degree of the

potential killing nodes. A Multiple Out (MO) node is a node with an out-degree greater than one.

A Single Out (SO) node is a node with an out-degree of one. Multiple In (MI) and Single In (SI)

nodes are similarly de�ned based on the in-degree of a node. A set of nodes is called Multiple Out

if all nodes in the set are Multiple Out. A set of nodes is called Single Out if all nodes in the set

are Single Out. A set of nodes is called Both Out if it contains both Multiple Out and Single Out

nodes. Multiple In, Single In, and Both In are similarly de�ned based on the in-degree of the nodes

in the set.

The heuristic �rst partitions the DAG into bipartite subDAGs. The killing nodes are then

found for each bipartite subDAG. The covering is found by performing a variation of the algorithm for

�nding connected components. In this variation a node is connected to other nodes in the component

either by only its incoming edges or only its outgoing edges. Thus all nodes except the root and leaf

of the DAG will exist in two components, one where the node is a parent and one where the node is

a child.

Certain edges in the DAG must be ignored for the bipartite components algorithm to work.

Consider the example in Figure A.2. Node B is a parent to C, which is one of B's parent's other

children. The edge (A, B) must be removed so that B does not appear as a child in more than one

bipartite subDAG. This is allowable since B can never kill A's value.

Computing Kill() can be broken into cases, based on the combinations of the types of

the parent and child sets. Figure A.3 shows all nine combinations of types of the parent and child

sets. The �rst letter of the combination name indicates the type of the parent set, the second letter
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A

B

C

Figure A.2: A special case for partitioning into bipartite subDAGs

A

B

(a) SS - Single Out, Single In

A B

C

(b) SM - Single Out, Multiple In

A

B C

(c) MS - Multiple Out, Single In

A B C D

E F G H

(d) MM - Multiple Out, Multiple In

A B

C D E

(e) MB - Multiple Out, Both In

A B C

D E

(f) BM - Both Out, Multiple In

A B

C D

(g) BB - Both Out, Both In

A B C

D E

(h) SB - Single Out, Both In

A B

C D E

(i) BS - Both Out, Single In

Figure A.3: All combinations of Out and In nodes
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indicates the type of the child set. Note that cases SB (Figure A.3(h)) and BS (Figure A.3(i)) are

each actually two disjoint subDAGS, represented by previous cases.

There are three rules used to compute Kill(), depending on the combination of node types

in the bipartite subDAG.

1. SS, SM

If all parents are Single Out, they each have only one child that can kill them. This child is

de�ned as the Kill(p) for each parent p.

2. MS

In this case there can only be one parent. The parent's value will be alive with all but one of

its children. The child that kills the parent p, Kill(p), can be randomly selected.

3. MM, MB, BM, BB

These are the complex cases that may be NP-Complete. The order of execution of the children

e�ects the number of registers required. The greedy heuristic mentioned in Section A.1 is used

to compute the minimum killing set. For each parent p, de�ning Kill(p) by select any child of

p from the killing set.

The computation of Kill() is summarized in Figure A.4.
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function computeKill( DAG (N, E) ) returns function Kill()

f
/* mark edges to ignore during bipartite coverage */

foreach n 2 N

foreach p 2 Parents(n)

if ( Children(n)
T

Children(p) <> � )

mark edge (p,n) as ignore;

/* �nd the bipartite components */
components = �ndBipartiteConnectedComponents( (N, E) );

/* compute Kill() */
foreach component B 2 components

/* rule 1 */
if ( 8

parents p inset c

p.outDegree = 1 )

foreach parent p 2 B

define Kill(p) = Child(p);

else

/* rule 2 */
if ( 8

children c inset B

c.inDegree = 1 )

foreach parent p 2 B

f select c from Children(p);

define Kill(p) = c;

g
else

/* rule 3 */
while ( 9 p 2 B 3 p.alive = True )

f select c from the children that kill the most parents;

foreach p 2 Parents(c)

if ( p.alive )

f p.alive = False;

define Kill(p) = c;

g
g

g

Figure A.4: Function computeKill()
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Speedup Tables

benchmark ips uls La1uls La2uls La4uls La3uls La5uls
bubble 1.28 3.92 3.92 3.92 3.10 3.10 3.10
hanoi 0.00 2.70 2.70 2.70 2.45 2.70 2.70
heapsort 1.01 1.71 1.95 1.95 0.00 1.94 1.94
intmm 1.20 3.53 3.51 3.53 3.07 3.53 3.53
nsieve 0.91 2.62 2.62 2.62 2.62 2.62 2.62
perm 1.17 4.38 4.38 4.38 3.91 4.38 4.38
puzzle 0.00 0.98 0.97 0.98 0.98 0.98 0.98
queens 0.62 1.37 1.18 1.47 1.33 1.37 1.29
quick 1.02 2.35 2.17 2.35 2.37 2.35 2.35
loop1 0.78 2.74 2.74 2.74 3.63 2.74 2.74
loop2 0.86 2.95 2.95 2.95 2.72 2.92 2.99
loop3 0.76 4.11 4.11 4.11 3.36 4.11 4.11
loop4 0.85 3.30 3.29 3.30 2.41 3.43 3.43
loop5 0.95 3.34 3.34 3.34 2.60 3.34 0.00
loop6 0.98 2.47 2.47 2.47 2.33 2.47 0.00
loop7 0.79 2.70 2.70 2.70 2.22 2.77 2.28
loop9 0.95 3.15 3.15 3.15 0.00 0.00 2.77
loop10 1.33 4.79 4.79 4.79 4.72 4.72 4.38
loop11 0.83 3.06 3.06 3.06 3.50 3.06 3.06
loop12 0.85 4.70 4.70 4.70 3.91 4.70 4.70
loop13 1.10 3.32 3.22 3.22 0.00 0.00 3.02
loop14 1.14 3.16 3.16 3.16 3.66 3.66 0.00

Table B.1: Individual speedups for the rss heuristics on architecture 2-4
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benchmark ips uls La1uls La2uls La4uls La3uls La5uls
bubble 1.45 1.79 1.79 1.79 1.79 1.79 1.79
hanoi 0.00 1.40 1.40 1.40 1.27 1.40 1.40
heapsort 1.16 1.92 2.04 2.04 2.13 2.06 2.06
intmm 1.41 8.54 8.54 8.54 8.54 8.54 8.54
nsieve 1.20 1.60 1.60 1.60 1.60 1.60 1.60
perm 1.92 3.00 3.00 3.00 2.77 3.00 3.00
puzzle 0.98 1.53 1.53 1.53 1.53 1.53 1.53
queens 1.50 2.71 2.12 2.91 1.81 2.12 2.01
quick 1.97 5.08 5.08 5.08 5.08 5.08 5.08
loop1 1.19 3.73 3.73 3.73 3.05 3.73 3.73
loop2 1.17 5.87 5.87 5.87 4.08 5.87 5.87
loop3 1.40 1.56 1.56 1.56 1.27 1.56 1.56
loop4 1.17 5.42 5.42 5.42 4.06 5.42 5.42
loop5 6.45 6.45 6.45 6.45 4.27 6.45 3.62
loop6 1.22 6.34 6.34 6.34 4.23 6.34 3.10
loop7 1.16 4.28 4.28 4.28 3.43 4.28 4.28
loop9 1.06 2.55 2.56 2.56 2.78 2.78 2.15
loop10 1.21 3.71 3.71 3.71 3.71 3.71 2.48
loop11 1.55 1.55 1.55 1.55 1.21 1.55 1.55
loop12 1.60 1.60 1.60 1.60 1.33 1.60 1.60
loop13 1.06 2.75 2.75 2.75 2.75 2.75 2.68
loop14 1.24 7.88 7.88 7.88 7.88 7.88 7.88

Table B.2: Individual speedups for the rss heuristics on architecture 2-8

benchmark ips uls La1uls La2uls La4uls La3uls La5uls
bubble 1.78 1.78 1.78 1.78 1.78 1.78 1.78
hanoi 1.40 1.40 1.40 1.40 1.27 1.40 1.40
heapsort 1.38 2.20 2.19 2.19 2.45 2.19 2.19
intmm 1.69 1.69 1.69 1.69 1.69 1.69 1.69
nsieve 1.58 3.12 3.12 3.12 3.12 3.12 3.12
perm 1.78 1.78 1.78 1.78 1.65 1.78 1.78
puzzle 0.00 1.14 1.14 1.14 1.14 1.14 1.14
queens 1.70 1.70 1.33 1.82 1.14 1.33 1.26
quick 1.30 1.68 1.68 1.68 1.68 1.68 1.68
loop1 1.64 1.64 1.64 1.64 1.35 1.64 1.64
loop2 0.85 4.14 4.14 4.14 2.88 4.14 4.14
loop3 1.56 1.56 1.56 1.56 1.27 1.56 1.56
loop4 1.67 1.67 1.67 1.67 1.25 1.67 1.67
loop5 1.78 1.78 1.78 1.78 1.18 1.78 1.61
loop6 5.99 5.99 5.99 5.99 4.00 5.99 5.58
loop7 1.65 1.65 1.65 1.65 1.32 1.65 1.65
loop9 1.31 4.25 4.25 4.25 4.25 4.25 3.00
loop10 1.46 4.54 4.54 4.54 4.54 4.54 4.54
loop11 1.55 1.55 1.55 1.55 1.21 1.55 1.55
loop12 1.60 1.60 1.60 1.60 1.33 1.60 1.60
loop13 1.33 3.70 3.70 3.70 3.70 3.70 3.70
loop14 5.50 5.50 5.50 5.50 5.50 5.50 5.19

Table B.3: Individual speedups for the rss heuristics on architecture 2-16
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benchmark ips uls La1uls La2uls La4uls La3uls La5uls
bubble 1.56 1.56 1.56 1.56 1.56 1.56 1.56
hanoi 1.40 1.40 1.40 1.40 1.27 1.40 1.40
heapsort 1.11 1.93 1.93 1.93 1.92 1.93 1.93
intmm 1.69 1.69 1.69 1.69 1.69 1.69 1.69
nsieve 1.39 1.65 1.65 1.65 1.65 1.65 1.65
perm 1.78 1.78 1.78 1.78 1.65 1.78 1.78
puzzle 0.00 1.13 1.13 1.13 1.13 1.13 1.13
queens 1.39 1.39 1.09 1.49 0.93 1.09 1.03
quick 1.33 1.46 1.46 1.46 1.46 1.46 1.46
loop1 1.64 1.64 1.64 1.64 1.35 1.64 1.64
loop2 1.71 1.71 1.71 1.71 1.19 1.71 1.71
loop3 1.56 1.56 1.56 1.56 1.27 1.56 1.56
loop4 1.67 1.67 1.67 1.67 1.25 1.67 1.67
loop5 1.78 1.78 1.78 1.78 1.18 1.78 1.61
loop6 1.67 1.67 1.67 1.67 1.12 1.67 1.56
loop7 1.65 1.65 1.65 1.65 1.32 1.65 1.65
loop9 1.46 1.46 1.46 1.46 1.46 1.46 1.46
loop10 1.72 1.72 1.72 1.72 1.72 1.72 1.72
loop11 1.55 1.55 1.55 1.55 1.21 1.55 1.55
loop12 1.60 1.60 1.60 1.60 1.33 1.60 1.60
loop13 3.28 3.78 3.78 3.78 3.78 3.78 3.78
loop14 1.80 1.80 1.80 1.80 1.80 1.80 1.70

Table B.4: Individual speedups for the rss heuristics on architecture 2-32

benchmark ips uls La1uls La2uls La4uls La3uls La5uls
bubble 1.21 2.75 2.75 2.75 2.66 2.65 2.65
hanoi 0.00 3.18 3.18 3.18 2.84 3.18 3.18
heapsort 0.99 1.94 2.08 2.08 0.00 1.88 1.88
intmm 1.18 3.36 3.35 3.36 3.73 3.07 3.07
nsieve 1.98 2.62 2.62 2.62 2.62 2.62 2.62
perm 1.22 4.57 4.57 4.57 3.91 4.57 4.57
puzzle 1.11 0.98 0.98 0.98 0.98 0.98 0.98
queens 0.65 1.44 1.11 1.44 1.18 1.24 1.08
quick 1.12 1.76 1.76 1.76 1.57 1.56 1.56
loop1 0.80 2.41 2.41 2.41 4.44 2.60 2.82
loop2 0.90 2.72 2.72 2.72 2.95 3.14 2.85
loop3 0.97 4.62 4.62 4.62 3.70 4.62 4.62
loop4 0.83 3.71 3.70 3.71 2.54 3.71 3.71
loop5 1.01 2.29 2.29 2.29 2.91 3.05 0.00
loop6 0.98 2.49 2.49 2.49 2.27 2.49 0.00
loop7 0.66 2.57 2.57 2.57 2.59 2.19 0.00
loop9 0.95 2.66 2.88 2.88 3.37 3.37 2.86
loop10 1.35 4.20 0.00 0.00 0.00 4.24 4.60
loop11 0.94 2.23 2.23 2.23 3.77 2.04 2.23
loop12 1.24 5.22 5.22 5.22 4.27 5.22 5.22
loop13 1.06 3.07 0.00 0.00 0.00 0.00 3.10
loop14 1.09 2.27 2.11 2.11 0.00 0.00 0.00

Table B.5: Individual speedups for the rss heuristics on architecture 4-4
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benchmark ips uls La1uls La2uls La4uls La3uls La5uls
bubble 0.43 2.02 2.02 2.02 2.02 2.02 2.02
hanoi 0.00 1.65 1.65 1.65 1.47 1.65 1.65
heapsort 1.36 2.16 2.38 2.38 2.30 2.38 2.38
intmm 1.75 8.57 8.57 8.57 8.57 8.57 8.57
nsieve 1.66 1.60 1.60 1.60 1.60 1.60 1.60
perm 1.97 3.12 3.12 3.12 2.67 3.12 3.12
puzzle 1.08 1.54 1.54 1.54 1.54 1.54 1.54
queens 1.66 2.78 2.17 2.99 1.85 2.43 2.29
quick 1.31 5.87 5.87 5.87 5.87 5.87 5.87
loop1 1.41 5.09 5.09 5.09 3.73 5.09 5.09
loop2 1.17 8.30 8.30 8.30 4.46 8.30 8.30
loop3 0.70 1.75 1.75 1.75 1.40 1.75 1.75
loop4 1.33 5.79 5.79 5.79 4.50 5.79 5.79
loop5 1.33 4.19 4.19 4.19 4.78 4.19 4.12
loop6 1.22 6.86 6.86 6.86 4.45 6.86 3.21
loop7 1.28 6.41 6.41 6.41 4.15 6.41 6.41
loop9 1.02 2.19 2.15 2.15 2.49 2.49 2.74
loop10 1.22 4.25 4.25 4.25 4.02 4.02 3.79
loop11 0.74 1.70 1.70 1.70 1.31 1.70 1.70
loop12 1.78 1.78 1.78 1.78 1.45 1.78 1.78
loop13 1.04 3.15 3.03 3.03 3.32 3.32 3.01
loop14 1.29 4.07 4.07 4.07 3.90 3.90 4.01

Table B.6: Individual speedups for the rss heuristics on architecture 4-8

benchmark ips uls La1uls La2uls La4uls La3uls La5uls
bubble 2.01 2.01 2.01 2.01 2.01 2.01 2.01
hanoi 1.65 1.65 1.65 1.65 1.47 1.65 1.65
heapsort 1.50 2.30 2.29 2.29 2.57 2.29 2.29
intmm 1.69 1.69 1.69 1.69 1.69 1.69 1.69
nsieve 1.91 3.12 3.12 3.12 3.12 3.12 3.12
perm 1.85 1.85 1.85 1.85 1.59 1.85 1.85
puzzle 0.00 1.14 1.14 1.14 1.14 1.14 1.14
queens 1.74 1.74 1.36 1.88 1.16 1.53 1.44
quick 1.31 2.02 2.02 2.02 2.02 2.02 2.02
loop1 2.24 2.24 2.24 2.24 1.64 2.24 2.24
loop2 0.92 6.06 6.06 6.06 3.15 6.06 6.06
loop3 1.75 1.75 1.75 1.75 1.40 1.75 1.75
loop4 1.78 1.78 1.78 1.78 1.39 1.78 1.78
loop5 2.54 2.54 2.54 2.54 1.32 2.54 2.36
loop6 6.48 6.48 6.48 6.48 4.21 6.48 6.00
loop7 2.47 2.47 2.47 2.47 1.60 2.47 2.47
loop9 1.31 4.26 4.26 4.26 4.26 4.26 3.08
loop10 1.49 6.40 6.40 6.40 6.40 6.40 6.40
loop11 1.70 1.70 1.70 1.70 1.31 1.70 1.70
loop12 1.78 1.78 1.78 1.78 1.45 1.78 1.78
loop13 1.44 4.39 4.39 4.39 4.42 4.42 4.55
loop14 1.42 6.20 6.20 6.20 6.20 6.20 6.20

Table B.7: Individual speedups for the rss heuristics on architecture 4-16
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benchmark ips uls La1uls La2uls La4uls La3uls La5uls
bubble 1.76 1.76 1.76 1.76 1.76 1.76 1.76
hanoi 1.65 1.65 1.65 1.65 1.47 1.65 1.65
heapsort 1.25 2.04 2.04 2.04 2.02 2.04 2.04
intmm 1.69 1.69 1.69 1.69 1.69 1.69 1.69
nsieve 1.39 1.65 1.65 1.65 1.65 1.65 1.65
perm 1.85 1.85 1.85 1.85 1.59 1.85 1.85
puzzle 0.00 1.13 1.13 1.13 1.13 1.13 1.13
queens 1.43 1.43 1.11 1.54 0.95 1.25 1.18
quick 1.56 1.75 1.75 1.75 1.75 1.75 1.75
loop1 2.24 2.24 2.24 2.24 1.64 2.24 2.24
loop2 2.50 2.50 2.50 2.50 1.30 2.50 2.50
loop3 1.75 1.75 1.75 1.75 1.40 1.75 1.75
loop4 1.78 1.78 1.78 1.78 1.39 1.78 1.78
loop5 2.54 2.54 2.54 2.54 1.32 2.54 2.36
loop6 1.81 1.81 1.81 1.81 1.18 1.81 1.67
loop7 2.47 2.47 2.47 2.47 1.60 2.47 2.47
loop9 1.68 1.68 1.68 1.68 1.68 1.68 1.68
loop10 2.43 2.43 2.43 2.43 2.43 2.43 2.43
loop11 1.70 1.70 1.70 1.70 1.31 1.70 1.70
loop12 1.78 1.78 1.78 1.78 1.45 1.78 1.78
loop13 3.87 3.87 3.87 3.87 3.87 3.87 3.87
loop14 2.03 2.03 2.03 2.03 2.03 2.03 2.03

Table B.8: Individual speedups for the rss heuristics on architecture 4-32

benchmark ips uls La1uls La2uls La4uls La3uls La5uls
bubble 0.43 2.02 2.02 2.02 2.02 2.02 2.02
hanoi 0.00 1.65 1.65 1.65 1.47 1.65 1.65
heapsort 1.32 2.16 2.38 2.38 2.29 2.38 2.38
intmm 1.80 8.57 8.57 8.57 8.57 8.57 8.57
nsieve 1.66 1.60 1.60 1.60 1.60 1.60 1.60
perm 1.97 3.12 3.12 3.12 2.67 3.12 3.12
puzzle 1.04 1.54 1.54 1.54 1.54 1.54 1.54
queens 1.67 2.78 2.17 2.99 1.85 2.43 2.29
quick 1.31 5.87 5.87 5.87 5.87 5.87 5.87
loop1 1.39 5.09 5.09 5.09 3.73 5.09 5.09
loop2 1.26 6.69 6.69 6.69 4.46 6.69 6.69
loop3 0.70 1.75 1.75 1.75 1.40 1.75 1.75
loop4 1.33 5.79 5.79 5.79 4.50 5.79 5.79
loop5 1.23 4.27 4.27 4.27 4.78 4.42 3.73
loop6 1.22 6.86 6.86 6.86 4.45 6.86 3.34
loop7 1.19 4.00 4.00 4.00 4.15 3.95 4.05
loop9 1.24 2.16 2.14 2.14 2.46 2.46 2.94
loop10 1.24 4.02 4.19 4.19 4.55 4.55 4.25
loop11 0.74 1.70 1.70 1.70 1.31 1.70 1.70
loop12 1.78 1.78 1.78 1.78 1.45 1.78 1.78
loop13 0.88 2.87 2.73 2.73 2.96 2.96 3.07
loop14 1.29 4.14 4.14 4.14 4.01 4.01 3.95

Table B.9: Individual speedups for the rss heuristics on architecture 6-8
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benchmark ips uls La1uls La2uls La4uls La3uls La5uls
bubble 2.01 2.01 2.01 2.01 2.01 2.01 2.01
hanoi 1.65 1.65 1.65 1.65 1.47 1.65 1.65
heapsort 1.64 2.27 2.25 2.25 2.57 2.25 2.25
intmm 1.69 1.69 1.69 1.69 1.69 1.69 1.69
nsieve 1.91 3.12 3.12 3.12 3.12 3.12 3.12
perm 1.85 1.85 1.85 1.85 1.59 1.85 1.85
puzzle 0.00 1.14 1.14 1.14 1.14 1.14 1.14
queens 1.74 1.74 1.36 1.88 1.16 1.53 1.44
quick 1.36 2.02 2.02 2.02 2.02 2.02 2.02
loop1 2.24 2.24 2.24 2.24 1.64 2.24 2.24
loop2 0.94 6.79 6.79 6.79 3.15 6.79 6.79
loop3 1.75 1.75 1.75 1.75 1.40 1.75 1.75
loop4 1.78 1.78 1.78 1.78 1.39 1.78 1.78
loop5 0.36 2.54 2.54 2.54 1.32 2.54 2.54
loop6 6.48 6.48 6.48 6.48 4.21 6.48 6.00
loop7 0.51 2.52 2.52 2.52 1.60 2.52 2.52
loop9 1.43 3.08 3.16 3.16 3.08 3.08 2.91
loop10 1.55 6.83 6.83 6.83 6.83 6.83 6.83
loop11 1.70 1.70 1.70 1.70 1.31 1.70 1.70
loop12 1.78 1.78 1.78 1.78 1.45 1.78 1.78
loop13 1.42 4.66 4.66 4.66 4.66 4.66 4.69
loop14 1.31 6.20 6.20 6.20 6.20 6.20 6.20

Table B.10: Individual speedups for the rss heuristics on architecture 6-16

benchmark ips uls La1uls La2uls La4uls La3uls La5uls
bubble 1.76 1.76 1.76 1.76 1.76 1.76 1.76
hanoi 1.65 1.65 1.65 1.65 1.47 1.65 1.65
heapsort 1.31 2.05 2.03 2.03 2.02 2.03 2.03
intmm 1.69 1.69 1.69 1.69 1.69 1.69 1.69
nsieve 1.39 1.65 1.65 1.65 1.65 1.65 1.65
perm 1.85 1.85 1.85 1.85 1.59 1.85 1.85
puzzle 0.00 1.13 1.13 1.13 1.13 1.13 1.13
queens 1.43 1.43 1.11 1.54 0.95 1.25 1.18
quick 1.56 1.75 1.75 1.75 1.75 1.75 1.75
loop1 2.24 2.24 2.24 2.24 1.64 2.24 2.24
loop2 2.80 2.80 2.80 2.80 1.30 2.80 2.80
loop3 1.75 1.75 1.75 1.75 1.40 1.75 1.75
loop4 1.78 1.78 1.78 1.78 1.39 1.78 1.78
loop5 2.54 2.54 2.54 2.54 1.32 2.54 2.54
loop6 1.81 1.81 1.81 1.81 1.18 1.81 1.67
loop7 2.52 2.52 2.52 2.52 1.60 2.52 2.52
loop9 1.72 1.72 1.72 1.72 1.72 1.72 1.72
loop10 2.59 2.59 2.59 2.59 2.59 2.59 2.59
loop11 1.70 1.70 1.70 1.70 1.31 1.70 1.70
loop12 1.78 1.78 1.78 1.78 1.45 1.78 1.78
loop13 4.05 5.15 5.15 5.15 5.15 5.15 4.03
loop14 2.03 2.03 2.03 2.03 2.03 2.03 2.03

Table B.11: Individual speedups for the rss heuristics on architecture 6-32
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benchmark es-ssra Ses-ssra p-rig Sp-rig
bubble 1.16 1.26 1.16 1.27
hanoi 1.50 1.50 1.50 1.50
heapsort 1.21 1.09 1.14 1.06
intmm 1.30 1.29 1.26 1.17
nsieve 1.42 1.00 1.42 1.01
perm 1.77 1.56 1.20 1.18
puzzle 1.26 1.36 1.17 1.20
queens 1.29 0.81 1.17 0.66
quick 1.16 1.07 1.16 1.06
loop1 1.21 1.21 1.11 0.99
loop2 1.06 1.08 1.03 1.02
loop3 4.11 4.11 1.09 0.95
loop4 1.07 1.14 1.10 1.04
loop5 1.06 1.06 1.11 1.01
loop6 1.03 1.00 0.99 0.98
loop7 1.15 1.15 1.04 1.02
loop9 1.94 1.95 1.06 1.09
loop10 1.98 2.30 1.16 1.29
loop11 3.50 1.20 1.09 1.09
loop12 4.70 4.70 1.04 1.02
loop13 1.89 1.84 1.12 1.25
loop14 1.29 1.24 1.16 1.20

Table B.12: Individual speedups for the ssra heuristics on architecture 2-4

benchmark es-ssra Ses-ssra p-rig Sp-rig
bubble 1.79 1.79 1.15 0.35
hanoi 1.40 1.40 1.40 1.40
heapsort 1.30 0.99 1.63 1.07
intmm 2.38 5.59 1.47 1.90
nsieve 1.34 0.81 1.44 0.89
perm 3.00 3.00 1.41 2.60
puzzle 1.53 1.54 1.01 0.95
queens 1.63 1.80 1.24 0.78
quick 1.75 1.53 1.26 1.20
loop1 3.73 3.73 1.21 1.16
loop2 1.90 1.13 1.08 1.13
loop3 1.56 1.56 1.27 1.27
loop4 3.86 1.80 1.19 1.29
loop5 1.23 1.13 1.07 1.09
loop6 1.22 1.05 1.10 1.05
loop7 2.24 1.21 1.25 1.27
loop9 1.36 1.36 1.12 1.32
loop10 1.44 1.47 1.28 1.29
loop11 1.55 1.55 1.21 0.46
loop12 1.60 1.60 1.60 1.60
loop13 1.30 1.36 1.22 1.23
loop14 1.47 1.62 1.26 1.40

Table B.13: Individual speedups for the ssra heuristics on architecture 2-8
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benchmark es-ssra Ses-ssra p-rig Sp-rig
bubble 1.78 1.78 1.46 1.07
hanoi 1.40 1.40 1.40 1.40
heapsort 1.76 1.92 1.26 0.80
intmm 1.69 1.69 1.69 1.69
nsieve 1.80 1.00 1.34 0.83
perm 1.78 1.78 1.78 1.78
puzzle 1.14 1.14 1.12 1.13
queens 1.70 1.70 1.20 1.29
quick 1.57 1.57 1.29 1.03
loop1 1.64 1.64 1.64 1.64
loop2 4.14 4.14 1.09 0.85
loop3 1.56 1.56 1.56 1.56
loop4 1.67 1.67 1.25 1.25
loop5 1.78 1.78 1.27 0.33
loop6 5.85 5.85 1.16 1.02
loop7 1.65 1.65 1.41 0.59
loop9 3.52 3.42 1.21 1.34
loop10 1.42 1.47 1.42 1.43
loop11 1.55 1.55 1.55 1.55
loop12 1.60 1.60 1.60 1.60
loop13 1.48 1.44 1.34 1.31
loop14 5.50 5.50 1.38 1.20

Table B.14: Individual speedups for the ssra heuristics on architecture 2-16

benchmark es-ssra Ses-ssra p-rig Sp-rig
bubble 1.56 1.56 1.56 1.56
hanoi 1.40 1.40 1.40 1.40
heapsort 1.91 1.91 1.30 0.81
intmm 1.69 1.69 1.69 1.69
nsieve 1.65 1.65 1.37 1.62
perm 1.78 1.78 1.78 1.78
puzzle 1.13 1.13 1.13 1.13
queens 1.39 1.39 1.39 1.39
quick 1.36 1.36 1.33 1.33
loop1 1.64 1.64 1.64 1.64
loop2 1.71 1.71 1.67 1.67
loop3 1.56 1.56 1.56 1.56
loop4 1.67 1.67 1.67 1.67
loop5 1.78 1.78 1.78 1.78
loop6 1.63 1.63 1.63 1.63
loop7 1.65 1.65 1.59 1.59
loop9 1.46 1.46 1.25 1.21
loop10 1.72 1.72 1.66 0.58
loop11 1.55 1.55 1.55 1.55
loop12 1.60 1.60 1.60 1.60
loop13 3.28 3.28 1.45 1.47
loop14 1.80 1.80 1.80 1.80

Table B.15: Individual speedups for the ssra heuristics on architecture 2-32
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benchmark es-ssra Ses-ssra p-rig Sp-rig
bubble 1.16 1.26 1.16 1.64
hanoi 2.00 2.00 2.00 2.00
heapsort 1.22 1.10 1.15 1.08
intmm 1.30 1.29 1.26 1.18
nsieve 1.49 1.00 1.49 1.08
perm 1.83 1.60 1.23 1.22
puzzle 1.29 1.34 1.16 1.21
queens 1.30 0.83 1.17 0.67
quick 1.16 1.08 1.17 1.07
loop1 1.29 1.29 1.11 0.99
loop2 1.08 1.10 1.03 1.02
loop3 4.62 4.62 1.09 0.97
loop4 1.10 1.17 1.10 1.04
loop5 1.09 1.09 1.11 1.01
loop6 1.05 1.01 0.99 0.98
loop7 1.15 1.22 1.04 1.02
loop9 1.94 1.96 1.06 1.09
loop10 1.99 2.31 1.16 1.29
loop11 3.77 1.23 1.09 1.09
loop12 5.22 5.22 1.04 1.04
loop13 1.89 1.84 1.12 1.25
loop14 1.29 1.24 1.16 1.20

Table B.16: Individual speedups for the ssra heuristics on architecture 4-4

benchmark es-ssra Ses-ssra p-rig Sp-rig
bubble 2.02 2.02 1.15 0.35
hanoi 1.65 1.65 1.65 1.65
heapsort 1.49 1.02 1.72 1.11
intmm 2.79 6.74 1.70 1.54
nsieve 2.10 0.89 1.88 1.11
perm 3.12 3.12 1.65 2.79
puzzle 1.54 1.54 1.02 0.96
queens 1.74 1.80 1.43 0.87
quick 1.77 1.55 1.28 1.20
loop1 5.09 5.09 1.30 1.26
loop2 1.85 1.16 1.11 1.16
loop3 1.75 1.75 1.40 1.40
loop4 4.26 1.88 1.23 1.33
loop5 1.27 1.16 1.10 1.12
loop6 1.23 1.07 1.12 1.08
loop7 2.59 1.29 1.34 1.36
loop9 1.36 1.36 1.12 1.32
loop10 1.45 1.48 1.29 1.30
loop11 1.70 1.70 1.42 0.47
loop12 1.78 1.78 1.78 1.78
loop13 1.34 1.39 1.25 1.26
loop14 1.49 1.65 1.29 1.44

Table B.17: Individual speedups for the ssra heuristics on architecture 4-8
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benchmark es-ssra Ses-ssra p-rig Sp-rig
bubble 2.01 2.01 1.78 1.07
hanoi 1.65 1.65 1.65 1.65
heapsort 1.92 1.98 1.41 0.82
intmm 1.69 1.69 1.69 1.69
nsieve 2.24 1.00 2.10 0.91
perm 1.85 1.85 1.85 1.85
puzzle 1.14 1.14 1.13 1.14
queens 1.74 1.74 1.20 1.30
quick 1.86 1.86 1.07 1.15
loop1 2.24 2.24 2.24 2.24
loop2 6.06 6.06 1.13 0.89
loop3 1.75 1.75 1.75 1.75
loop4 1.78 1.78 1.39 1.39
loop5 2.54 2.54 1.50 0.35
loop6 7.27 7.27 1.17 1.04
loop7 2.47 2.47 1.73 0.64
loop9 3.52 3.42 1.22 1.41
loop10 1.45 1.52 1.44 1.44
loop11 1.70 1.70 1.70 1.70
loop12 1.78 1.78 1.78 1.78
loop13 1.60 1.66 1.42 1.38
loop14 6.20 6.20 1.50 1.31

Table B.18: Individual speedups for the ssra heuristics on architecture 4-16

benchmark es-ssra Ses-ssra p-rig Sp-rig
bubble 1.76 1.76 1.76 1.76
hanoi 1.65 1.65 1.65 1.65
heapsort 2.01 2.01 1.38 0.84
intmm 1.69 1.69 1.69 1.69
nsieve 1.65 1.65 1.37 1.62
perm 1.85 1.85 1.85 1.85
puzzle 1.13 1.13 1.13 1.13
queens 1.43 1.43 1.43 1.43
quick 1.61 1.61 1.61 1.61
loop1 2.24 2.24 2.24 2.24
loop2 2.50 2.50 2.41 2.41
loop3 1.75 1.75 1.75 1.75
loop4 1.78 1.78 1.78 1.78
loop5 2.54 2.54 2.54 2.54
loop6 2.03 2.03 2.03 2.03
loop7 2.47 2.47 2.00 2.00
loop9 1.68 1.68 1.25 1.21
loop10 2.43 2.43 1.92 0.62
loop11 1.70 1.70 1.70 1.70
loop12 1.78 1.78 1.78 1.78
loop13 3.88 3.88 1.62 1.71
loop14 2.03 2.03 2.03 2.03

Table B.19: Individual speedups for the ssra heuristics on architecture 4-32
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benchmark es-ssra Ses-ssra p-rig Sp-rig
bubble 2.02 2.02 1.15 0.35
hanoi 1.65 1.65 1.65 1.65
heapsort 1.49 1.02 1.72 1.11
intmm 2.79 6.74 1.70 1.54
nsieve 2.10 0.89 1.88 1.11
perm 3.12 3.12 1.65 2.79
puzzle 1.54 1.54 1.02 0.96
queens 1.74 1.80 1.43 0.87
quick 1.77 1.55 1.28 1.25
loop1 5.09 5.09 1.30 1.26
loop2 1.85 1.16 1.11 1.16
loop3 1.75 1.75 1.40 1.40
loop4 4.26 1.88 1.23 1.33
loop5 1.27 1.16 1.10 1.12
loop6 1.23 1.07 1.12 1.08
loop7 2.59 1.29 1.34 1.36
loop9 1.36 1.36 1.12 1.32
loop10 1.45 1.48 1.29 1.30
loop11 1.70 1.70 1.42 0.47
loop12 1.78 1.78 1.78 1.78
loop13 1.34 1.39 1.25 1.26
loop14 1.49 1.65 1.29 1.44

Table B.20: Individual speedups for the ssra heuristics on architecture 6-8

benchmark es-ssra Ses-ssra p-rig Sp-rig
bubble 2.01 2.01 1.78 1.07
hanoi 1.65 1.65 1.65 1.65
heapsort 1.93 1.98 1.46 0.83
intmm 1.69 1.69 1.69 1.69
nsieve 2.24 1.00 2.10 0.91
perm 1.85 1.85 1.85 1.85
puzzle 1.14 1.14 1.13 1.14
queens 1.74 1.74 1.20 1.30
quick 2.02 1.86 1.07 1.15
loop1 2.24 2.24 2.24 2.24
loop2 6.79 6.79 1.13 0.89
loop3 1.75 1.75 1.75 1.75
loop4 1.78 1.78 1.39 1.39
loop5 2.54 2.54 1.53 0.36
loop6 7.27 7.27 1.18 1.05
loop7 2.52 2.52 1.73 0.64
loop9 3.52 3.42 1.22 1.41
loop10 1.45 1.53 1.44 1.44
loop11 1.70 1.70 1.70 1.70
loop12 1.78 1.78 1.78 1.78
loop13 1.61 1.68 1.42 1.39
loop14 6.20 6.20 1.53 1.32

Table B.21: Individual speedups for the ssra heuristics on architecture 6-16
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benchmark es-ssra Ses-ssra p-rig Sp-rig
bubble 1.76 1.76 1.76 1.76
hanoi 1.65 1.65 1.65 1.65
heapsort 2.02 2.02 1.38 0.84
intmm 1.69 1.69 1.69 1.69
nsieve 1.65 1.65 1.37 1.62
perm 1.85 1.85 1.85 1.85
puzzle 1.13 1.13 1.13 1.13
queens 1.43 1.43 1.43 1.43
quick 1.75 1.61 1.61 1.61
loop1 2.24 2.24 2.24 2.24
loop2 2.80 2.80 2.41 2.41
loop3 1.75 1.75 1.75 1.75
loop4 1.78 1.78 1.78 1.78
loop5 2.54 2.54 2.54 2.54
loop6 2.03 2.03 2.03 2.03
loop7 2.52 2.52 2.00 2.00
loop9 1.72 1.72 1.25 1.21
loop10 2.59 2.59 1.92 0.62
loop11 1.70 1.70 1.70 1.70
loop12 1.78 1.78 1.78 1.78
loop13 4.05 4.05 1.62 1.74
loop14 2.03 2.03 2.03 2.03

Table B.22: Individual speedups for the ssra heuristics on architecture 6-32
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benchmark Gursa GDursa Eursa Nursa Dursa ursa
bubble 3.52 3.52 3.53 3.53 3.53 3.53
hanoi 2.35 2.35 2.35 2.35 2.35 2.35
heapsort 2.01 2.01 1.90 1.90 1.90 1.90
intmm 3.19 3.19 3.91 3.91 3.91 3.91
nsieve 4.56 4.56 4.56 4.56 4.56 4.56
perm 3.82 3.82 3.69 3.69 3.69 3.69
puzzle 1.90 1.90 1.89 1.90 1.89 1.89
queens 1.70 1.70 1.08 1.08 1.08 1.08
quick 2.39 2.39 2.12 2.11 2.12 2.12
loop1 3.08 3.08 2.82 2.82 2.82 2.82
loop2 3.50 3.50 1.86 1.96 2.11 2.23
loop3 5.28 5.28 5.28 5.28 5.28 5.28
loop4 2.69 2.69 2.28 2.28 2.28 2.28
loop5 2.81 2.91 2.66 2.66 2.66 2.55
loop6 3.02 3.02 2.42 2.49 2.42 2.42
loop7 2.54 2.38 2.22 2.24 2.32 2.45
loop9 3.33 3.15 2.85 2.85 2.85 2.93
loop10 3.56 3.34 3.36 3.41 3.36 3.81
loop11 2.72 2.72 2.72 2.72 2.72 2.72
loop12 5.87 5.87 5.22 5.22 5.22 5.22
loop13 3.65 3.57 3.68 3.76 3.61 3.30
loop14 2.90 2.82 2.74 2.74 2.74 2.74

Table B.23: Individual speedups for the ursa heuristics on architecture 2-4

benchmark Gursa GDursa Eursa Nursa Dursa ursa
bubble 2.00 2.00 2.00 2.00 2.00 2.00
hanoi 1.22 1.22 1.22 1.22 1.22 1.22
heapsort 2.42 2.42 2.52 2.52 2.52 2.52
intmm 9.73 9.73 8.49 8.49 8.49 8.49
nsieve 3.10 3.10 3.10 3.10 3.10 3.10
perm 2.81 2.81 2.81 2.81 2.81 2.81
puzzle 1.81 1.81 1.81 1.81 1.81 1.81
queens 1.77 1.77 1.76 1.76 1.76 1.76
quick 4.18 4.18 4.18 4.18 4.18 4.18
loop1 3.90 3.90 3.57 3.57 3.57 3.57
loop2 4.23 4.63 3.44 3.44 3.44 3.44
loop3 2.00 2.00 2.00 2.00 2.00 2.00
loop4 5.05 5.05 5.06 5.06 5.06 5.06
loop5 3.51 3.51 4.05 4.05 3.41 3.41
loop6 4.62 4.62 3.58 3.58 3.79 3.79
loop7 3.17 3.17 3.33 3.33 3.33 3.33
loop9 3.21 2.74 2.41 2.41 2.26 2.48
loop10 3.02 3.02 2.54 2.65 2.54 2.49
loop11 1.89 1.89 1.70 1.70 1.70 1.70
loop12 2.00 2.00 1.78 1.78 1.78 1.78
loop13 2.78 2.73 2.75 2.48 2.76 2.73
loop14 5.32 5.32 4.68 4.68 4.60 4.60

Table B.24: Individual speedups for the ursa heuristics on architecture 2-8
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benchmark Gursa GDursa Eursa Nursa Dursa ursa
bubble 1.99 1.99 1.99 1.99 1.99 1.99
hanoi 1.22 1.22 1.22 1.22 1.22 1.22
heapsort 2.26 2.26 2.34 2.34 2.34 2.34
intmm 1.93 1.93 1.68 1.68 1.68 1.68
nsieve 4.75 4.75 4.76 4.76 4.76 4.76
perm 1.67 1.67 1.67 1.67 1.67 1.67
puzzle 1.33 1.33 1.33 1.33 1.33 1.33
queens 1.35 1.35 1.22 1.22 1.22 1.22
quick 1.18 1.18 1.18 1.18 1.18 1.18
loop1 1.72 1.72 1.57 1.57 1.57 1.57
loop2 3.33 3.33 3.54 3.54 3.54 3.54
loop3 2.00 2.00 2.00 2.00 2.00 2.00
loop4 1.56 1.56 1.56 1.56 1.56 1.56
loop5 1.27 1.27 1.32 1.32 1.32 1.32
loop6 4.80 4.80 4.80 4.80 4.80 4.80
loop7 1.50 1.50 1.45 1.45 1.45 1.45
loop9 3.52 3.59 3.39 3.39 3.39 3.39
loop10 3.17 3.17 3.55 3.55 3.55 3.55
loop11 1.89 1.89 1.70 1.70 1.70 1.70
loop12 2.00 2.00 1.78 1.78 1.78 1.78
loop13 3.18 2.99 2.71 2.71 2.71 3.03
loop14 4.30 4.30 3.71 3.71 3.71 3.71

Table B.25: Individual speedups for the ursa heuristics on architecture 2-16

benchmark Gursa GDursa Eursa Nursa Dursa ursa
bubble 1.74 1.74 1.74 1.74 1.74 1.74
hanoi 1.22 1.22 1.22 1.22 1.22 1.22
heapsort 1.67 1.67 1.73 1.73 1.73 1.73
intmm 1.93 1.93 1.68 1.68 1.68 1.68
nsieve 2.52 2.52 2.52 2.52 2.52 2.52
perm 1.67 1.67 1.67 1.67 1.67 1.67
puzzle 1.32 1.32 1.32 1.32 1.32 1.32
queens 1.10 1.10 1.00 1.00 1.00 1.00
quick 1.02 1.02 1.02 1.02 1.02 1.02
loop1 1.72 1.72 1.57 1.57 1.57 1.57
loop2 1.37 1.37 1.46 1.46 1.46 1.46
loop3 2.00 2.00 2.00 2.00 2.00 2.00
loop4 1.56 1.56 1.56 1.56 1.56 1.56
loop5 1.27 1.27 1.32 1.32 1.32 1.32
loop6 1.34 1.34 1.34 1.34 1.34 1.34
loop7 1.50 1.50 1.45 1.45 1.45 1.45
loop9 1.39 1.39 1.47 1.47 1.47 1.47
loop10 1.67 1.67 1.68 1.68 1.68 1.68
loop11 1.89 1.89 1.70 1.70 1.70 1.70
loop12 2.00 2.00 1.78 1.78 1.78 1.78
loop13 3.71 3.71 3.51 3.51 3.51 3.51
loop14 1.40 1.40 1.21 1.21 1.21 1.21

Table B.26: Individual speedups for the ursa heuristics on architecture 2-32
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benchmark Gursa GDursa Eursa Nursa Dursa ursa
bubble 3.90 3.90 3.90 3.90 3.90 3.90
hanoi 3.18 3.18 3.18 3.18 3.18 3.18
heapsort 2.06 2.06 2.35 2.35 2.35 2.35
intmm 3.36 3.36 3.53 3.53 3.53 3.53
nsieve 4.56 4.56 4.56 4.56 4.56 4.56
perm 4.64 4.64 4.45 4.45 4.45 4.45
puzzle 0.00 0.00 1.93 1.93 1.93 1.93
queens 1.92 1.92 1.53 1.53 1.53 1.53
quick 2.41 2.41 2.01 2.01 2.01 2.01
loop1 3.57 3.57 3.03 3.03 3.03 3.03
loop2 4.30 4.30 2.13 2.13 2.29 2.50
loop3 6.16 6.16 6.16 6.16 6.16 6.16
loop4 2.87 2.87 2.96 2.96 2.96 2.96
loop5 2.84 3.29 2.66 2.66 3.09 2.91
loop6 3.10 3.10 2.54 2.89 2.54 2.54
loop7 3.05 3.32 3.02 2.94 3.28 3.02
loop9 3.29 3.29 3.16 3.16 3.08 3.16
loop10 4.37 3.81 4.08 3.43 3.48 4.41
loop11 4.08 4.08 4.08 4.08 4.08 4.08
loop12 6.71 6.71 6.71 6.71 6.71 6.71
loop13 4.18 3.82 4.18 4.25 3.90 3.63
loop14 3.37 3.49 2.91 2.97 2.73 2.91

Table B.27: Individual speedups for the ursa heuristics on architecture 4-4

benchmark Gursa GDursa Eursa Nursa Dursa ursa
bubble 2.67 2.67 2.67 2.67 2.67 2.67
hanoi 1.65 1.65 1.65 1.65 1.65 1.65
heapsort 3.27 3.27 3.60 3.60 3.60 3.60
intmm 9.73 9.73 9.73 9.73 9.73 9.73
nsieve 3.10 3.10 3.10 3.10 3.10 3.10
perm 3.65 3.65 3.65 3.65 3.65 3.65
puzzle 1.81 1.81 1.81 1.81 1.81 1.81
queens 1.78 1.78 1.63 1.63 1.63 1.63
quick 5.79 5.79 4.97 4.97 4.97 4.97
loop1 6.45 6.45 6.45 6.45 6.45 6.45
loop2 5.35 6.34 4.30 4.30 4.30 4.30
loop3 2.33 2.33 2.33 2.33 2.33 2.33
loop4 8.08 8.08 8.08 8.08 8.08 8.08
loop5 4.59 4.59 4.78 4.78 4.78 4.78
loop6 5.18 5.18 4.62 4.70 4.62 4.62
loop7 4.78 4.78 4.85 4.85 4.85 4.85
loop9 3.05 3.33 2.41 2.41 2.79 2.46
loop10 3.85 3.85 3.20 3.13 3.20 3.13
loop11 2.12 2.12 2.12 2.12 2.12 2.12
loop12 2.28 2.28 2.28 2.28 2.28 2.28
loop13 3.15 3.30 3.23 3.30 3.34 3.23
loop14 7.13 7.13 6.60 6.60 6.02 6.02

Table B.28: Individual speedups for the ursa heuristics on architecture 4-8
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benchmark Gursa GDursa Eursa Nursa Dursa ursa
bubble 2.66 2.66 2.66 2.66 2.66 2.66
hanoi 1.65 1.65 1.65 1.65 1.65 1.65
heapsort 2.70 2.70 2.81 2.81 2.81 2.81
intmm 1.94 1.94 1.94 1.94 1.94 1.94
nsieve 4.76 4.76 4.76 4.76 4.76 4.76
perm 2.17 2.17 2.17 2.17 2.17 2.17
puzzle 1.35 1.35 1.35 1.35 1.35 1.35
queens 1.86 1.86 1.86 1.86 1.86 1.86
quick 1.98 1.98 1.98 1.98 1.98 1.98
loop1 2.84 2.84 2.84 2.84 2.84 2.84
loop2 4.47 4.47 5.15 5.15 5.15 5.15
loop3 2.33 2.33 2.33 2.33 2.33 2.33
loop4 2.49 2.49 2.49 2.49 2.49 2.49
loop5 2.06 2.06 1.74 1.74 1.74 1.74
loop6 6.31 6.31 5.85 5.85 5.85 5.85
loop7 2.54 2.54 2.19 2.19 2.19 2.19
loop9 3.74 3.98 3.63 3.63 3.63 3.63
loop10 4.14 4.14 4.14 4.14 4.14 4.14
loop11 2.12 2.12 2.12 2.12 2.12 2.12
loop12 2.28 2.28 2.28 2.28 2.28 2.28
loop13 4.17 3.89 3.75 3.75 3.75 4.20
loop14 6.29 6.29 6.29 6.29 6.29 6.29

Table B.29: Individual speedups for the ursa heuristics on architecture 4-16

benchmark Gursa GDursa Eursa Nursa Dursa ursa
bubble 2.32 2.32 2.32 2.32 2.32 2.32
hanoi 1.65 1.65 1.65 1.65 1.65 1.65
heapsort 2.22 2.22 2.21 2.21 2.21 2.21
intmm 1.94 1.94 1.94 1.94 1.94 1.94
nsieve 2.52 2.52 2.52 2.52 2.52 2.52
perm 2.17 2.17 2.17 2.17 2.17 2.17
puzzle 1.33 1.33 1.33 1.33 1.33 1.33
queens 1.53 1.53 1.53 1.53 1.53 1.53
quick 1.71 1.71 1.71 1.71 1.71 1.71
loop1 2.84 2.84 2.84 2.84 2.84 2.84
loop2 1.84 1.84 2.12 2.12 2.12 2.12
loop3 2.33 2.33 2.33 2.33 2.33 2.33
loop4 2.49 2.49 2.49 2.49 2.49 2.49
loop5 2.06 2.06 1.74 1.74 1.74 1.74
loop6 1.76 1.76 1.63 1.63 1.63 1.63
loop7 2.54 2.54 2.19 2.19 2.19 2.19
loop9 1.56 1.56 1.56 1.56 1.56 1.56
loop10 2.09 2.09 2.13 2.13 2.13 2.13
loop11 2.12 2.12 2.12 2.12 2.12 2.12
loop12 2.28 2.28 2.28 2.28 2.28 2.28
loop13 4.94 4.94 4.94 4.94 4.94 4.94
loop14 2.06 2.06 2.06 2.06 2.06 2.06

Table B.30: Individual speedups for the ursa heuristics on architecture 4-32
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benchmark Gursa GDursa Eursa Nursa Dursa ursa
bubble 2.67 2.67 2.67 2.67 2.67 2.67
hanoi 1.65 1.65 1.65 1.65 1.65 1.65
heapsort 3.29 3.29 3.61 3.61 3.61 3.61
intmm 9.73 9.73 9.73 9.73 9.73 9.73
nsieve 3.10 3.10 3.10 3.10 3.10 3.10
perm 4.05 4.05 4.05 4.05 4.05 4.05
puzzle 1.82 1.82 1.82 1.82 1.82 1.82
queens 1.78 1.78 1.63 1.63 1.63 1.63
quick 6.05 6.05 5.36 5.36 5.36 5.36
loop1 6.45 6.45 6.45 6.45 6.45 6.45
loop2 6.17 6.34 5.60 5.60 5.60 5.60
loop3 2.33 2.33 2.33 2.33 2.33 2.33
loop4 8.09 8.09 8.10 8.10 8.10 8.10
loop5 4.59 4.59 4.68 4.68 4.68 4.68
loop6 5.40 5.40 6.34 6.34 6.34 6.34
loop7 5.24 5.24 5.69 5.69 5.69 5.69
loop9 3.19 3.16 2.43 2.53 2.29 2.61
loop10 3.63 3.35 3.44 4.06 3.44 3.35
loop11 2.12 2.12 2.12 2.12 2.12 2.12
loop12 2.28 2.28 2.28 2.28 2.28 2.28
loop13 3.07 3.12 3.45 3.49 3.02 3.37
loop14 7.74 7.74 6.77 6.77 6.15 6.15

Table B.31: Individual speedups for the ursa heuristics on architecture 6-8

benchmark Gursa GDursa Eursa Nursa Dursa ursa
bubble 2.66 2.66 2.66 2.66 2.66 2.66
hanoi 1.65 1.65 1.65 1.65 1.65 1.65
heapsort 2.91 2.91 2.91 2.91 2.91 2.91
intmm 1.94 1.94 1.94 1.94 1.94 1.94
nsieve 4.76 4.76 4.76 4.76 4.76 4.76
perm 2.40 2.40 2.40 2.40 2.40 2.40
puzzle 1.35 1.35 1.35 1.35 1.35 1.35
queens 1.88 1.88 1.88 1.88 1.88 1.88
quick 2.02 2.02 2.02 2.02 2.02 2.02
loop1 2.84 2.84 2.84 2.84 2.84 2.84
loop2 5.66 5.66 6.29 6.29 6.29 6.29
loop3 2.33 2.33 2.33 2.33 2.33 2.33
loop4 2.49 2.49 2.49 2.49 2.49 2.49
loop5 2.13 2.13 2.06 2.06 2.06 2.06
loop6 7.05 7.05 7.05 7.05 7.05 7.05
loop7 2.77 2.77 2.89 2.89 2.89 2.89
loop9 3.94 4.52 3.70 3.70 3.70 3.70
loop10 4.55 4.55 4.47 4.47 4.47 4.47
loop11 2.12 2.12 2.12 2.12 2.12 2.12
loop12 2.28 2.28 2.28 2.28 2.28 2.28
loop13 4.32 4.42 4.05 3.82 3.87 3.72
loop14 6.29 6.29 6.09 6.09 6.09 6.09

Table B.32: Individual speedups for the ursa heuristics on architecture 6-16
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benchmark Gursa GDursa Eursa Nursa Dursa ursa
bubble 2.32 2.32 2.32 2.32 2.32 2.32
hanoi 1.65 1.65 1.65 1.65 1.65 1.65
heapsort 2.29 2.29 2.29 2.29 2.29 2.29
intmm 1.94 1.94 1.94 1.94 1.94 1.94
nsieve 2.52 2.52 2.52 2.52 2.52 2.52
perm 2.40 2.40 2.40 2.40 2.40 2.40
puzzle 1.33 1.33 1.33 1.33 1.33 1.33
queens 1.54 1.54 1.54 1.54 1.54 1.54
quick 1.75 1.75 1.75 1.75 1.75 1.75
loop1 2.84 2.84 2.84 2.84 2.84 2.84
loop2 2.33 2.33 2.59 2.59 2.59 2.59
loop3 2.33 2.33 2.33 2.33 2.33 2.33
loop4 2.49 2.49 2.49 2.49 2.49 2.49
loop5 2.13 2.13 2.06 2.06 2.06 2.06
loop6 1.97 1.97 1.97 1.97 1.97 1.97
loop7 2.77 2.77 2.89 2.89 2.89 2.89
loop9 1.77 1.77 1.77 1.77 1.77 1.77
loop10 2.46 2.46 2.40 2.40 2.40 2.40
loop11 2.12 2.12 2.12 2.12 2.12 2.12
loop12 2.28 2.28 2.28 2.28 2.28 2.28
loop13 5.29 5.29 4.86 4.86 4.86 4.86
loop14 2.06 2.06 1.99 1.99 1.99 1.99

Table B.33: Individual speedups for the ursa heuristics on architecture 6-32
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