
FSTPA-I: A Formal Approach to Hazard Identification via
System Theoretic Process Analysis

Philip Asare
Charles L. Brown Department

of Electrical and Computer
Engineering

Department of Computer
Science

University of Virginia,
Charlottesville, VA USA 22904

pka6qz@virginia.edu

John Lach
Charles L. Brown Department

of Electrical and Computer
Engineering

University of Virginia,
Charlottesville, VA USA 22904

jlach@virginia.edu

John A. Stankovic
Department of Computer

Science
University of Virginia,

Charlottesville, VA USA 22904
stankovic@virginia.edu

ABSTRACT
Cyber-physical systems (CPS) are usually safety critical,
making systems safety a CPS issue. Many efforts have been
made in safety verification of CPS and some effort has been
made in safety-guided design of specific CPS, but fewer ef-
forts have been made in a formal science to aid in safety-
guided design. One domain crucial to safety-guided design
is hazard analysis, which can be challenging for complex dy-
namic systems like CPS. Recently, systems theoretic process
analysis (STPA) has emerged as a promising hazard analysis
technique applicable to CPS; however despite its improve-
ment over traditional techniques, it lacks a solid formal (rig-
orous) approach making much of its application ad-hoc and
open to a lot of the issues with non-rigorous methods. This
paper presents a formal framework for the hazard identifi-
cation step in STPA (STPA Step One). We show that the
formal framework handles many of the issues that arise in
a non-rigorous approach and makes the results from anal-
ysis less ambiguous and more complete. We also find that
an explicit notion of system components is not necessary for
undertaking hazard analysis on the system level much in line
with the way systems are analyzed in other systems theory
fields.

Categories and Subject Descriptors
J.2 [Physical Sciences and Engineering]: Engineering

General Terms
Theory

Keywords
System Safety, Hazard Identification

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICCPS April 8–11, 2013, Philadelphia, PA, USA.
Copyright 2013 ACM 978-1-4503-1996-6/13/04 ...$15.00.

1. INTRODUCTION
Many cyber-physical systems (CPS) are safety-critical.

Well-known examples include automotive vehicles, chemical
processing plants, and medical devices, with many exam-
ples on the devastating effects of these systems have when
they exhibit unsafe behaviors. Systems safety is therefore a
cyber-physical systems issue. Addressing systems safety in-
cludes designing systems to be safe (what has recently been
called safety-guided design) and verifying that designed sys-
tems meet certain safety constraints.

Many efforts have been made by the CPS software com-
munity [11, 2] and hybrid systems and controls communities
[12, 13] in safety verification of CPS. Though verification
is an important part of the systems safety design process
and presents many challenges, verification techniques require
complete designs, and redesigning systems after safety issues
have been identified at the later verification stages can be
costly. Safety-guided design is therefore at least as equally
important as verification. Some work has been done in this
space for specific CPS (see for example [5]).

Addressing safety-guided design in general requires iden-
tifying system safety requirements and the potential ways
they can be violated early in the design process, and design-
ing safety controls to eliminate or mitigate these potential
violations. Although safety requirements can be identified
early in the design phase, the ways in which such constraints
can be violated by the system design is not always obvious
since such violations typically arise from complex interac-
tions between system components. Understanding how such
violations arise is the domain of hazard analysis, which is the
focus of this paper.

Recently, a new hazard analysis technique based on sys-
tems theory called systems theoretic process analysis (STPA)
[6] has emerged as a promising technique for analyzing large,
complex sociotechnical systems (see [4, 10, 9]). A growing
body of work shows it to be more effective than traditional
hazard analysis techniques [14, 4, 3, 8], which typically focus
more on components than systems. Its applicability to the
earlier stages of safety-guided design has also been demon-
strated [3]. The principles of this technique, which empha-
size component interactions and systems dynamics, are ap-
plicable to CPS because STPA seeks to address the hazard
analysis problem in systems where components cross cyber,
physical, and social boundaries. One can argue that CPS is

a subset of the kinds of systems that STPA considers.
Despite the promise of STPA, it has a minimal formal

framework associated with it, and still requires a significant
amount of manual effort from engineers. In addition to spec-
ifying the system and its constraints, engineers must manu-
ally anticipate system evolution and check, for every possible
system command and every possible context in which that
command can be given, whether certain conditions on the
command results in a hazard (we give a brief description
of the STPA process in Section 2). Fortunately, much of
the crucial parts of STPA can be formalized1, reducing the
need for manual input beyond specifying the system and its
constraints, and creating an opportunity for automating the
hazard analysis process by building tools around this formal
framework.

The aim of this paper is to present a formal framework
(called FSTPA-I), which addresses the hazard identification
aspect of STPA (usually called STPA Step One) since this
aspect is most crucial to the rest of the analysis. Our frame-
work captures the essence of STPA, and only requires the
engineer to specify the system state variables (and the values
they can take), the timing properties of control actions, and
the system safety constraints. Also, we concentrate on sys-
tems whose state variables only take on a finite discrete set
of values since this is usually the case at the earlier stages
in design. Even though we assume systems have discrete
states, our model assumes that systems evolve in continu-
ous time, which is an important assumption for CPS.

There are some differences between our framework and
STPA as it is described in the literature. One important
difference is that we have no notion of a controller, though
one can easily be added to map hazards to components that
produce them. Our framework focuses on system states and
commands that change those states, and we have found that
the notion of a controller is not necessary for undertaking
STPA Step One.

We are only aware of one attempt to formalize STPA Step
One [14], though the approach only enumerates a set of po-
tentially hazardous conditions, leaving the decision on what
constitutes a hazard to the engineer. Our framework arrives
at these conclusions on its own by checking such conditions
against the system constraints, reducing input from the engi-
neer to only specifying the system as mentioned previously2.
This eliminates the ambiguity associated with leaving the
interpretation of potentially hazardous conditions to the en-
gineer. We have validated our framework by applying it to
many of the examples in the STPA literature (to have a
good baseline) and found that it identifies clearly the same
hazards as those identified by manual and semi-formal ap-
plication of STPA. In the interest of space, we only provide
results from one example (though we use another simpler
example to explain parts of our framework).

The main contributions of this paper are:

• Precise definitions of the constructs necessary for spec-
ifying a system (including timing properties of its com-
mands) and its constraints for the purposes of hazard
analysis.

1Formalizing STPA is not a trivial task as we experienced
by undertaking the effort ourselves.
2Unfortunately, deciding on system safety constraints is still
largely a manual effort, though many practical guidelines in
many industries are available for doing so.

• Precise definitions of system behavior constructs nec-
essary for STPA analysis.

• Theory on when system behavior is correct and safe
with respect to its specification, and when system be-
haviors represent hazards.

• Precise semantics for STPA hazard analysis concepts.

• General insights about hazard analysis on the system
level from formalizing STPA.

• Results from applying our formal framework on a sys-
tem previously analyzed using a manual approach to
STPA, highlighting the advantages of our framework
over the manual approach.

2. STPA
We briefly describe the steps involved in the first part

of the STPA methodology in order to provide the necessary
background for following the rest of the paper and to put our
work in perspective. The details provided here are slightly
different from what is presented in the STPA literature, but
captures the same ideas.

STPA is based on the System Theoretic Accident Model
and Process (STAMP) accident model [7]. In this model
the system is considered as a control loop (what is termed
the safety control structure) and accidents are considered
the result of ineffective control. Figure 1 shows a typical
(simple) control loop. In complex systems there may be
multiple coordinating controllers (and possibly hierarchy in
control).

controller sensor

controlled
process

actuator

other inputs

message info

action

stateaction

Figure 1: A generic control loop.

According to STAMP, a system exhibits unsafe behavior
when the controlled process produces outputs or occupies
states that can lead to accidents (e.g. a chemical plant
begins to release toxic gases into the atmosphere). Hence
any behaviors in other components (sensor, controller, or
actuator) that cause the controlled process to exhibit unsafe
behavior are considered hazardous, and these components
must be designed to prevent or mitigate such hazards. The
goal of STPA (the hazard analysis technique associated with
STAMP) is to identify these potential hazards early in the
design stage (and throughout the design and operation of
the system) using this system theoretic view of the system.

STPA focuses on what are called control actions (the events
that force transitions in the overall system state). It ex-
amines each control action under different possible condi-
tions (e.g. providing a control action too late) and identifies

whether those conditions lead to hazards and in which sys-
tem context they lead to hazards. STPA can be broken
into two steps: identifying hazards which result from inad-
equate control (Step One); and determining causal factors
for the identified hazards (Step Two). Step One focuses only
on control actions and the resulting state changes without
special regard to how the control actions are generated. It
therefore conceptually focuses on the controlled process and
the inputs to it as shown in Figure 2.

controlled
process

commands
(control actions)

Figure 2: A generic controlled process.

With this view of the system, the hazard analysis essen-
tially proceeds as a ‘what-if’ analysis on each control action,
examining the kinds of behaviors that emerge from the con-
trolled process for each scenario (where the control action is
restricted or unconstrained in some way) and determining
whether each emergent behavior violates the system safety
constraints. The process of STPA Step One is summarized
by Figure 3.

expected
system behavior

generation

‘what-if’
analysis on

control actions

system
specification

and constraints

expected
system behavior

hazardous
control action

scenarios

Figure 3: General Steps in STPA One.

3. EXAMPLE SYSTEMS
We describe two example systems which we will use to

explain our framework: a simple safety interlock for a high
energy power source used by Leveson in [8] to illustrate some
aspects of STPA, and the safety of the capture phase for
the NASA-JAXA H-II Transport Vehicle (HTV)[1] on which
Ishimatsu et al. applied STPA [4]. We compare the results
from applying our framework on the HTV example later in
the Section 5.

3.1 High Energy Power Source
This is a hypothetical high energy power source with a

door that opens and closes to allow access to the power
source. An operator is responsible for opening and closing
the door, and the main hazard is exposure of the opera-
tor to the power source. The control components involved
are the operator and a computer-based power source control
(which turns the power source on and off as appropriate).
The safety constraint is that the power source must be off
whenever the door is not completely closed (which is the
precise definition used here for the door being open).

3.2 NASA H-II Transport Vehicle
The HTV[1] is an unmanned cargo transport vehicle de-

signed by the Japan Aerospace Exploration Agency (JAXA)
to transport cargo to the International Space Station (ISS).
The authors in [4] state that a principal concern for the
HTV is collision with the ISS, which can occur during the
berthing phase where the crew must capture the HTV with
a robotic arm (SSRMS). Collision could damage both the
ISS and HTV and possibly endanger the lives of the ISS
crew. Another stated concern is inability to complete the
mission resulting from an unintended abort.

The berthing phase of the HTV involves the following
steps:

1. HTV reaches berthing point, assumes a grappling po-
sition, and maintains distance from ISS (abort can be
issued here if any emergency occurs).

2. JAXA ground station enables Flight Releasable Grap-
ple Fixture (FRGF) so HTV can separate (respond
to the ‘FRGF Separation’ command) in case of emer-
gency.

3. ISS crew turns off HTV’s autonomous control by send-
ing a ‘Free Drift’ Command.

4. ISS crew manipulates the SSRMS to grapple (capture)
the HTV as quickly as possible (in order to prevent
HTV from drifting away).

5. JAXA ground station disables the FRGF so the HTV
cannot respond to the FRGF separate command (this
prevents unintended separation).

The setup for the system (the components and messages
between them) is shown in Figure 4. The ISS crew can
control the HTV using a hardware command panel (HCP).
JAXA commands are relayed through the ISS. At any point,
the ISS crew can send an ‘Abort/ Retreat/Hold’ command
which will cause the HTV to resume autonomous control and
execute the required abort sequence. This command is only
necessary before capture. An unintended abort is an abort
before the HTV can be captured, and this is considered a
mission hazard especially if the mission cannot complete be-
cause of it.

A collision hazard can occur if the HTV becomes a free-
flying object and drifts in the direction of the ISS (or is
knocked in the direction of the ISS by the crew making a
mistake in grappling the HTV). Also, the FRGF can be
separated from the HTV before capture causing it to also
become a free-flying object with the potential for collision
with the HTV. In addition, whenever the HTV is in an au-
tonomous mode, outside forces on it can be interpreted as
disturbances causing it to respond using attitude control. If
this occurs when the HTV is captured, it could damage the
ISS. All these events should not occur.

4. FSTPA-I
STPA is essentially concerned with system behaviors and

how they can result in hazards. Most system behaviors can
be described using finite-automata like constructs, and our
model of a system behavior follows in this light, but with a
few extensions and modifications. Also, our focus is more
on the static properties of such a construct as opposed to its
output from execution.

TDRS
(Backup)

ISS HTV

NASA GS JAXA GSVoice Loop

CA

ACK,
HTV

Status

Voice
Loop

CA

ACK,
HTV

Status

Acknowledgements
HTV Status

CA

Figure 4: HTV system setup, reproduced accord-
ing to Figure 6 in [4]. HTV is is the H-II Trans-
port Vehicle. ISS is the Internation Space Station.
NASA GS is the NASA Ground Station. JAXA
GS is the JAXA Ground Station. TDRS is the
Tracking and Data Relay Satellite, which is used as
a communication backup. CA is the set of com-
mands that can be sent. The commands sent on
all three CA channels are FRGF Sep ENA/INH,
Abort/Retreat/Hold, FRGF Separation. The CA
channel from the ISS to HTV also includes Free
Drift. ACK stands for Acknowledgment.

4.1 Model and Specification Semantics
Our framework is based upon the concept of what we call a

system behavior specification, a finite-automaton-like struc-
ture that describes the states and kinds of transitions that
the system can exhibit given certain constraints. This struc-
ture can also be viewed as a directed graph, and we usually
take this view in our analysis. Here we describe our concept
of state and system state transitions (as well as how they
are initiated).

System State
Our concept of state is the same as the concept of state
used in state space representations of systems: a system has
a number of state variables each of which can take on a set
of values (in our case a finite set) and the system state at
any point is given by the the collection of values of its state
variables. We represent a state as x = (x1, . . . , xn), where xi
is a system variable. The set of values that a system variable
can take is Xi. In the power source example, a state can be
that the door is closed and the power is on since the state
of the door and power source are the two state variables
relevant to hazards. If we use the symbol d to represent the
door is open, !d to represent the door is closed, p to represent
the power is on, and !p to present the power is off, then the
example state would be (!d, p) (we use these symbols in the
rest of the paper for the power source example).

Control Actions
Each system variable can be caused to take on a particular
value from its set of possible values through a control action
(causing a change in the system state). In our framework,
control actions are specific to system variables and for each
value that a system variable can take, there is a control
action that causes it to take on that value. Control actions
can be discrete, meaning they take effect the moment they
are issued, or timed which means they take some time before
they take effect.

Timed control actions have the potential not to complete
(i.e. they can be stopped before they take effect). This is be-
cause timed control actions have a start and stopping point
(where they are considered to take effect). Once started,
there is no guarantee that the stopping point will be reached.
In the power source example, the operator can begin clos-
ing the door and stop half-way through before the door is
completely closed.

Formally, a control action as a 3-tuple u = (xi, vxi , ρt)
where xi is the system variable it affects, vxi ∈ Xi is the
value that it causes the system variable to take, and ρt ∈
{D,T} is the timing property of the control action (D is
discrete, T is timed). In a less abstract view of a system,
control actions are issued by internal system components or
external inputs and disturbances from the environment. We
make no distinction between these sources of control actions.

Events
State transitions occur through events. An event in our
framework is essentially a finite automaton transition with
the added property of an issue window which is a time inter-
val within which a control action can be issued and complete.
We write an event as a 4-tuple (x, u, tmin, tmax), where x is
the state or conditions at the beginning of the event (initial
state), u is the control action issued to intiate the event, tmin

is the minimum time after entering x that elapses before u is
issued, and tmax is the maximum time by which u the event
completes after entering x with tmin < tmax, tmin ≥ 0, and
tmax > 0.

One can interpret the event structure as, u can be issued
and complete anytime between tmin and tmax after entering
x. Having this time property associated with events allows
us to deal with time constraints imposed by safety concerns
or by the physical nature of the system. In the power source
example, the choice of a computer-based controller makes it
impossible for the power to be turned off immediately the
door is open because the controller must first sense that the
door is open. This imposes a time constraint on how fast the
controller must respond and a possible event representing
this constrained behavior would be ((d, p), !p, 0+, ts) which
means the power must be turned off by ts after entering the
state (d, p), where the door is open and the power source is
turned on.

The final (resulting) state entered after the control action
completes is the state formed by changing the variable in
x affected by the control action u to the value specified by
the control action. The resulting state therefore need not
explicitly be specified in the event structure. However, one
can say that an event δ produces a state x′, which we write
as δ → x′.

We restrict our system model to allow one transition at a
time. However, we do allow a concept of concurrent events
with the final state determined by applying the control ac-

tions in the system in the temporal order in which the con-
current events are expected to complete. This is because
we assume that as long as an event has not completed, it is
still in the initial state. However, if another event is initi-
ated from this initial state and completes before the on-going
event does, then the new initial state for the on-going event
is the final state of the completed event. For example, if δ1 is
currently taking place with initial state x(δ1), and two other
events (δ2 and δ3) are initiated, and if the completion order
is δ1,δ2,δ3, then the final state is given by applying u1 from
δ1 to x(δ1) to get x(δ1)′ (the resulting state), then applying
u2 from δ2 to the resulting state to get the next state, and
finally applying u3 from δ3.

System Specification
Most system designs start with a specification of the system
and not necessarily a complete description of its behavior.
Usually, from this specification, the expected behavior of the
system can be generated and proposed designs can be com-
pared against this expected behavior during analysis. In our
case, the goal is not to compare proposed system realizations
to the expected behavior, but rather to check whether devi-
ations from the expected behavior result in hazards. Never-
theless, the specification must provide enough information to
allow the expected behavior to be ‘generated’ from it. Such
information includes the system constraints (safety, logical,
or physical), the properties of control actions (whether they
are timed or discrete), and initial and final states. A sys-
tem specification is a 8-tuple S = (X , U, CsPL, CePL, Hs, He,
X0, Xf).

X is the set of state variable descriptions Xi showing the
values that each state variable can take.

X0 is the set of possible initial states with |X0| ≥ 1 since
some systems may have multiple initialization points.

Xf is the set of possible final states with |Xf | ≥ 0 since
some systems may have no final state and continuously
evolve (like the power source example) and some sys-
tems may have goal states or fail-safe states (like the
HTV example which has one goal state and a number
of fail-safe states)

U is the set of possible control actions. Although these
can be inferred from X one must still specify the timing
properties of control actions.

CsPL is the set of physically or logically impossible states.

CePL is the set of physically or logically impossible events.

Hs is the set of state safety constraints (i.e a set of states
that should not occur because they are hazardous).

He is the set of event safety constraints (i.e a set of events
that should not occur because they are hazardous).
These are useful for specifying timing constraints on
conditionally hazardous states (states that should be
occupied for a minimum or maximum period of time).

Even though the engineer must specify eight different pieces
of information, at the initial stages of design (and at the
highest levels of abstraction), the system state space is usu-
ally small, making such specifications reasonable to expect.

(!d, p) (d, p) (d, !p)

(!d, !p)

d

!p

!p: [0, tsafe]

!d: [0, tsafe]

!d

d

p

Figure 5: Power source example behavior diagram.
Transitions without an explicitly specified issue win-
dow have an issue window of [0,∞]

System Behavior Specification
In order to analyze the system, we need a description of
its potential behavior given certain constraints. We call
this description the system behavior specification. This de-
scription must tell us what are the possible states, events,
starting states and end states for the particular behavior
we wish to examine. A behavior specification as a 4-tuple
βs = (X,X0, Xf ,∆) where X is the set of possible states, X0

is the set of possible initial states (|X0| ≥ 1), Xf is the set of
possible final states (|Xf | ≥ 0), and ∆ is the set of possible
events. This description can be visualized as state diagram.
Figure 5 shows such a diagram for the power source example.

We must note here that this behavior specification bears
similarity to many of the hybrid systems formalisms typi-
cally used in system verification. In fact, our behavior spec-
ification can have equivalent representations in these for-
malisms. Our specification is, however, more compact and
more amenable to the kind of analysis that STPA One re-
quires (though, again such analysis, with some work, could
be converted to analysis using these formalisms).

System Behavior Specification Generation
Since our analysis is on the behavior specification, but our
initial input is the system specification, we must derive the
the behavior specification from this input. The general steps
for this process are as follows:

1. Set X0 and Xf in βs to X0 and Xf from S respectively.

2. Set X initially to all possible states. Remove all states
x : x ∈ CsPL or x ∈ Hs.

3. Add all possible events given current states in X to ∆.
This can be done because states differ by a change in
one variable.

4. For all events that match an event in CePL or He (i.e
the initial states and control actions are the same and
the issue windows overlap) set the issue window to an
interval outside the interval specified by the constraint.
For example if the constraint is (x, u, tmin,∞) then set
the event to (x, u, 0, t−min).

The resulting behavior specification is correct with respect
to the system specification because step 2 ensures that none

of the impossible or hazardous states exist in the behavior
specification, and step 4 ensures that timing constraints are
not violated. If the system is specified correctly, the result-
ing behavior specification should be complete (i.e. one that
has no isolated or unreachable states). Incomplete behavior
specifications point to problems in the system specification.

A behavior specification generated from the system speci-
fication corresponds to the expected system behavior. Other
behavior specifications are possible, and can be obtained by
transforming the behavior specification for the expected sys-
tem behavior. These transformations are what are applied
during the hazard analysis stage to identify hazards.

Figure 6 shows a visualization of the generated system
behavior for the HTV (in compact form). We do not give
the system or behavior specification here (in the interest
of space), but we explain the state variables and control
actions and the system behavior to show that it is correct
and safe (with respect to the specification given in prose
when describing the example in Section 3.2):

• Abort
a indicates that the system is in abort state.
!a means it is not in an abort state. We consider the
start state to be an abort state since this is where the
mission begins and will reset to if it is aborted and
needs to be restarted.

• Ready
r indicates that the HTV is in a position ready for
capture (i.e. has completed approach towards the ISS).
!r indicates that the HTV is not ready.

• FRGF Enable
f indicates the FRGF separation is enabled.
!f indicates that it is disabled.

• Free Drift
d indicates that the HTV is in ‘free drift’ mode.
!d indicates that it is in autonomous mode.

• FRGF Separation
s indicates that the FRGF has been separated from
the HTV.
!s indicates it is still connected to the HTV.

• Capture
c indicates that the HTV has been correctly captured.
ic indicates that the HTV has been incorrectly cap-
tured (grappled improperly by the robotic arm).
!c indicates that it has not been captured.

• Emergency
e indicates an emergency which happens while the HTV
is in autonomous mode.
!e indicates no emergency.

For each state variable value, there is a corresponding con-
trol action that causes the variable to take on that value.
The only timed control action is the capture action c since
the crew must manipulate the robotic arm to capture the
HTV which takes some time.

The intended goal state for the HTV is when it is cap-
tured and the FRGF separation is disabled given by (!a, r, !f,
d, !s, c, !e). The path to this state is the process described in
Section 3.2. The other goal states represent the fail safe be-
havior of the HTV. If an emergency occurs when the HTV is

a,!r,!f,!d
!s,!c,!e

!a,!r,!f,!d
!s,!c,!e

!a,r,!f,!d
!s,!c,!e

!a,r,f,!d
!s,!c,!e

!a,r,f,d
!s,!c,!e

!a,r,f,d
!s,c,!e

!a,r,!f,d
!s,c,!e

!a,r,f,!d
!s,!c,e

a,r,f,!d
!s,!c,e

!a,r,f,d
!s,ic,!e

!a,r,f,d
s,ic,!e

!a,r,f,d
s,!c,!e

!a,r,!f,d
s,!c,!e

a,r,f,d
!s,c,!e

a,r,f,d
s,!c,!e

a,r,f,!d
s,c,!e

!a

r

f

a

de

a

a:[0,t1]

ic

a

c

s:[0,t2]

a

!f

s,!c

a

!d:[0,t3]

s:[0,t4],!c

!d:[0,t4]

Figure 6: HTV behavior diagram. Transitions with-
out a specified issue window have an issue window of
[0,∞]. The state with the dotted outline is the start
state and the states with the thicker outlines are the
goal states. Abort events without a resulting state
or directly connected to the start state indicate an
event sequence that eventual ends up in the start
state (i.e a safe abort of the mission). Transitions
with control actions (s, !c) mean !c is issued immedi-
ately after the event initiated by s completes.

in autonomous mode, it must abort. If incorrect capture oc-
curs, the HTV must separate from the the FRGF and abort.
If an unintended separation occurs post capture, the HTV
must resume autonomous mode to avoid collision. And if
an abort command is sent while the HTV is captured, it
must separate (to avoid starting abort sequence while cap-
tured) and resume autonomous mode to complete the abort
sequence. All other states and events not shown are a vio-
lation of the constraints.

4.2 Hazards Analysis Semantics
As mentioned previously, STPA proceeds as a ‘what-if’

analysis on the expected safe behavior of the system. For
each control action, four conditions must be examined:

1. The control action is not issued3 or not followed (i.e.
the action does not end up affecting system state).

3The word ‘provided’ is used in the STPA literature.

2. The control action is issued when it is unsafe to do so.

3. The control action is issued too early or too late (i.e
out of sequence).

4. The control action is applied too long or stopped too
soon.

To make these conditions more precise, we identified six
possible cases:

1. Omission: the control action is never issued (or de-
layed infinitely) in any safe state where it can be is-
sued.

2. Commission: the control action is always issued in all
safe states where it can be issued.

3. Premature Initiation: the control action is issued be-
fore it is actually safe to do so (i.e. it is issued and
completes out of sequence before another control ac-
tion).

4. Delayed Initiation: the control action under consider-
ation is issued too late (i.e. it is issued and completes
out of sequence after another control action).

5. Premature Termination: a timed control action does
not complete (i.e. the control action is ‘stopped’ before
it can take full effect).

6. Delayed Termination: a timed control action stopped
too late (i.e. it is continued to be applied long after it
is safe to do so before stopping).

In our framework, we check these cases by what we call
control action conditions (CACs). These are functions of
the form ζ(u, β, S)→ β′ whose inputs are the control action
u, original behavior specification β, and the system speci-
fication S and which produce a new behavior specification
β′ that represents the system behavior given that condition.
We have found that only omission and commission need to
be formally defined since the other four conditions can be
derived from these (as we explain below).

Omission
The omission function, ω, creates a CAC by transforming
all events δ ∈ ∆ in the original behavior specification β that
are initiated by the control action under consideration u to
events that never occur (by setting their issue windows to
[∞,∞], and allows all other physically and logically possible
events that can be initiated from the initial states of these
events to occur.

Commission
The commission function κ creates a CAC by adding events
that can be initiated from states x ∈ X in β by u, as well
as the resulting states from those events, to the β to get
β′. Commission essentially allows the control action under
consideration to be issued from any safe state where it can
be issued.

Premature Initiation
Premature initiation αε happens when a control action is
initiated and completes out of sequence, before some other
control action. This is equivalent to commission where the

action is allowed to be issued from any state where it can
be issued. Hence commission is equivalent to premature
initiation (κ⇒ αε).

Delayed Initiaion
Delayed initiation αδ happens when a control action is initi-
ated and completes out of sequence after some other control
action. This creates two possibilities: other control actions
are initiated before they should (making them unsafe); the
delayed control action is initiated when it should not be.
The first case is the condition caused by omission, and the
second case is the condition caused by commission. A sys-
tem behavior that represents delayed initiation can therefore
be obtained by first applying the omission control action
condition and then applying the commission control action
condition (i.e delayed initiation is ω(u, κ(u, β, S), S)).

Premature Termination
Premature termination Ωε causes events that are initiated
by a timed control action to not occur (i.e even though the
event is initiated, it does not take effect and hence the sys-
tem never enters the intended resulting state). The defini-
tion of omission captures this scenario (ω ⇒ Ωε).

Delayed Termination
Delayed termination Ωδ causes a timed control action to per-
sist longer than it should, creating two possible conditions:
it can allow other potentially hazardous actions to be initi-
ated and complete while still in progress; it completes after
a safe transition (event) causing it to take an effect on that
state that it should not have. This is equivalent to the de-
layed initiation condition (αδ ⇒ Ωδ).

Figure 7 shows a visualization of the power source behav-
ior with omission applied on the power on control action.

(!d, p) (d, p) (d, !p)

(!d, !p)

d

!p

!p: [0, tsafe]

!d: [0, tsafe]

!d

d

p → p: [∞,∞]

Figure 7: Power source behavior diagram with omis-
sion condition on the power on command (p). The
dotted line indicates a change to the original behav-
ior specification. Transitions without an explicitly
specified issue window have a time window of [0,∞]

With the transformed behavior specifications from the
CAC functions, hazard analysis proceeds easily. If any state
or event in the new (transformed) behavior specification
matches a hazardous state or event constraint in system
specification, then the CAC on that control action is haz-
ardous and hazards it produces are those that match the
constraints (i.e. matching a constraint implies a violation of
that constraint).

Table 1: Original STPA hazards analysis results reproduced according to Table 3 in [4]. Event/Command is
the event or command related to the hazard. Ineffective control action is either the condition under which the
event or command produces a hazard or the command that is provided instead of the one under consideration
that results in the hazard.

ID Event/Command Ineffective
Control Action

Description

1a
FRGF Sep ENA Not provided

Incorrect
Out of Sequence

The HTV might not be separated immediately in the
emergency situation of the HTV being grappled
incorrectly and rotating to collide with the robotic
arm.

FRGF Sep INH Out of Sequence

1b

FRGF Sep ENA Free Drift The HTV will drift out of the capture box. In
combination with no activation command or a late
one, the HTV will remain a free-flying object that
could collide with the ISS.

Free Drift Too Early

Capture Not Provided
Incorrect
Out of Sequence

2a
Free Drift Not provided

Incorrect
Out of Sequence

The capture will be regarded as a disturbance to the
HTV that could trigger an unintended attitude
control or even Abort.

Capture Out of Sequence

2b
Free Drift FRGF Sep FRGF will be separated from the HTV and become a

free-flying object, which is a threat of collision. The
HTV will be no longer captured and the mission will
end up incomplete.

Capture FRGF Sep

Ca Capture Incorrect The robotic arm could hit the HTV and make it rotate
and collide with the ISS.

Cb Capture Stopped Too Soon The HTV is not fixed to the SSRMS and could rotate
(windmill) to collide with the arm.

3a FRGF Sep INH Not Provided
Abort/Retreat/Hold
FRGF Sep

In combination with no or late activation command,
the HTV will remain a free-flying object that could
collide with the ISS.

3b FRGF Sep INH Abort/Retreat/Hold The HTV will make some thrust with remaining cap-
tured by the SSRMS. A tension from the arm could
be regarded as a disturbance to the hTV that could
trigger unintended attitude control.

5. EVALUATION
In this section, we compare the original HTV STPA re-

sults from [4] to the results for the same system from our
framework.

Table 1 shows the original HTV STPA results for the
berthing phase and is reproduced verbatim from the Ta-
ble 3 in [4]. Each hazard has a particular ID, followed by
the cause of the hazard and the description of the hazardous
situation for that particular ID. In general we can identify
the following hazards for the HTV based on the information
provided in [1, 4] (we have mapped the hazards from Table
3 in [4] to these in parenthesis):

H1 The HTV is unable to separate during an emergency
in while the crew is trying to capture it (1a).

H2 The HTV becomes a free flying object that can collide
with the ISS (1b, 3a, Ca, Cb).

H3 The FRGF becomes a free flying object that can collide
with the ISS (2b).

H4 The HTV is autonomous while in contact with the
robotic arm and initiates attitude control that dam-
ages the robotic arm (2a, 3b).

H5 The mission is unable to restart after an unintended
abort (2b).

Table 2 shows the hazards identified by our framework
which match the hazards from the original analysis. In the
interest of space, we do not present the detailed results of
the analysis using our framework; however, starting from the
behavior specification we provided in Figure 6 and following
the steps described for FSTPA-I, one should be able to pro-
duce the appropriate results and show that they match the
hazards as given below.

Our framework explicitly accounts for all the possible haz-
ards (H1 to H5) because it considers all possible relevant
scenarios. One can also see clearly that the same condition
on a control action can result in different hazards (in differ-
ent contexts). The original STPA also accounts for system
hazards H1 to H5, even though it leaves out some scenarios

Table 2: Comparison of Original Results to FSTPA-
I results. The meaning each control action sym-
bol is given in the formal description of the HTV
berthing process (in Section 4.1). Also, the mean-
ing of each control action condition symbol is given
in the section on FSTPA-I Hazard Analysis (Section
4.2). For conciseness, we grouped control actions
that have the same control action condition that
produces the same hazard as fCAC(c1, c2, . . .). Also,
if two or more control action conditions share the
same control action for the same hazard, we group
them as fCAC1 , . . . , fCACn(c1, c2, . . .).

ID FSTPA-I Control Action Condition

1a ω, αδ(f, s); αε, κ(d, c, e)

1b ω, αδ(c, !f); Ωδ(c)

2a ω, αδ(f); αε, κ(c)

2b αε, κ(s)

Ca αε, κ(ic); ω, αδ(f, s)

Cb Ωδ(c); ω, αδ(f, s)

3a αε(s); ω, αδ(!f, a, !d)

3b αε(a, !f)

that contribute to these hazards. For example, the original
analysis does not consider the possibility of the FRGF sepa-
ration command not being executed even though FRGF was
enabled. This could result in 1a (H1).

We found that some of the hazards were confused in the
original analysis. One stated cause of hazard 1b is that
the free drift command is provided instead of the FRGF
enable command. This should result in hazard 1a not 1b
because this only means that capture is started with the
FRGF being enabled (H4). The situation described only
occurs if capture is not completed quickly after the free drift
command is given and hence is not an issue necessarily with
the free drift command. The confusion here is created by
the fact that the engineers have switched contexts and not
explicitly defined the context. This scenario only results in
1b if the crew fails to capture the HTV after setting it to
free drift. Our framework captures this whereas the original
analysis confuses it.

We also believe that the concepts of “too early”“too late”
and “out of sequence” as used in the original analysis are
imprecise (and incorrect) and hence lead to confusion in the
manual analysis. Our framework defines “out of sequence”
using“too early”and“too late”: a command can only be“too
early” if it happens before it is supposed to and this should
therefore be in relation to another event or command; the
same goes for“too late”(if it happens after it is supposed to).
The relative event could be either a control action casing a
state change or time elapsing for events that have time con-
straints associated with them since are framework provides
a notion of time for events.

Without these precise definitions (semantics), these con-
cepts mislead the engineer in the analysis. For example, the
original analysis states “If [FRGF enable] is provided too
late, it will only delay the capture process”. This is not true

given the meaning of “too late”. This situation should re-
sult in no hazard only if it produces a scenario where the
command is given after (out of sequence with) the free drift
command but before capture begins. It however results in
hazard 1a if the command is given after capture has began
because it creates the potential for the HTV not to separate
in case of emergency during capture.

Another issue with the original analysis is that there are
quite a number of context-based judgements that are not
clear from looking at the original table (see Table 2 in [4]).
For example, the authors state that hazard 1b (H2)“If Deac-
tivation is provided too early and capture is not started im-
mediately enough”. Here the assumption is that the FRGF
has already been enabled. If the FRGF has already been
enabled, then deactivation (sending the HTV into free drift)
can technically not be too early. What is really the case is
that capture happens too late. If the free drift is indeed pro-
vided too early, then it creates the situation discussed above
where it is provided before the FRGF is enabled, which re-
sults in hazard 1a (H1) not 1b (H2).

6. DISCUSSION
From the comparison above, one can see that our frame-

work makes various factors crucial to the hazard analysis in
STPA explicit. Two such factors are timing and order. As
pointed out in the previous section, timing and order can be
considered incorrectly as is the case with assigning meaning
to “out of sequence” using “too early” and “too late”. Our
framework provides precise semantics for describing these
timing related conditions through the use of the two types
of control actions (timed and discrete) as well as the defini-
tion of control action conditions that capture both issues.

Our framework also provides two interesting insights into
hazards analysis on the system level. First, we have found
that it is not necessary to have an explicit notion of com-
ponents that generate the particular system behavior. The
extreme view of the system that we take forces an engineer
to think more carefully about the system (less about the
components) and its potential behaviors at the system level.
Of course, some knowledge about the meaning of the system
state variables is required, and some of this meaning comes
from having an idea of the components. However, our frame-
work focuses attention to the system level, and this can be
most useful in the earlier stages of design where component
choices may not necessarily have been made.

Second, we have found that context needs to be accounted
for more explicitly and completely, especially in the case of
conditionally hazardous states. Certain states are only safe
in a system if occupied for a particular period of time be-
fore transitioning. If this timing constraint is violated, then
the system can exhibit hazardous behaviors. Capturing and
presenting this precisely can be difficult in a non-rigorous
approach and can end up with too conservative constraints
being generated, or missing such issues altogether. Also, the
same condition on a control action can result in a hazard or
not depending on context.

Thomas captures the context issue as well in his work
[14]. The difference between Thomas’ approach and ours
is that his framework enumerates all the possible contexts
within which a command can be given and leaves the deci-
sion of what results in a hazard to the engineer. This can
be a daunting task. The HTV example has 192 possible
states and 14 possible transitions from each state accord-

ing to system specification. Even though not all states and
state-transition pairs are possible, the possible situations are
still large, and larger, more complex systems will have more
of such scenarios to evaluate. Our framework examines only
the relevant possibilities and identifies hazards using knowl-
edge of safety constraints specified for the system.

7. CONCLUSION
We presented a rigorous approach for identifying potential

hazards in CPS using principles from STPA One, the haz-
ard identification step in STPA, a promising hazard analysis
technique. We have shown that the formal framework elim-
inates the issues that arise with applying STPA One in a
non-rigorous manner. Our current work in-progress involves
applying this framework to more examples in order to refine
it if necessary. For the examples we have already considered,
the framework works well and helps with explaining scenar-
ios that lead to hazards. Future work includes building tools
around this formal framework to help automate the hazard
analysis process as well as extending our formal framework
to include the second step in STPA (causal factors analy-
sis) where components are considered in order to provide a
complete formal foundation for STPA.

8. ACKNOWLEDGMENTS
This work was funded, in part, by NSF Grants EECS-

0901686, EECS-1035303, and CNS-1240454.

9. REFERENCES
[1] HTV-1 mission press kit. Rev.A. Technical report,

Japan Aerospace Exploration Agency, 2009.

[2] A. Banerjee, K. Venkatasubramanian, T. Mukherjee,
and S. Gupta. Ensuring safety, security, and
sustainability of mission-critical cyber-physical
systems. Proceedings of the IEEE, 100(1):283 –299,
Jan. 2012.

[3] C. Fleming, M. Spencer, N. Leveson, , and
C. Wilkinson. Safety assurance in NextGen. Technical
Report NASA/CR-2012-217553, NASA, 2012.

[4] T. Ishimatsu, N. Leveson, J. Thomas, M. Katahira,
Y. Miyamoto, and H. Nakao. Modeling and hazard
analysis using STPA. In Conference of the
International Association for the Advancement of
Space Safety, 2010.

[5] B. Kim, A. Ayoub, O. Sokolsky, I. Lee, P. Jones,
Y. Zhang, and R. Jetley. Safety-assured development
of the gpca infusion pump software. In Embedded
Software (EMSOFT), 2011 Proceedings of the
International Conference on, pages 155 –164, Oct.
2011.

[6] N. Leveson. A new approach to hazard analysis for
complex systems. In Int. Conference of the System
Safety Society, August 2003.

[7] N. Leveson. A new accident model for engineering
safer systems. Safety Science, 42(4):237 – 270, Apr.
2004.

[8] N. Leveson. Engineering A Safer World: Systems
Thinking Applied to Safety. MIT Press, Cambridge,
2011.

[9] N. Leveson, M. Couturier, J. Thomas, M. Dierks,
D. Wierz, B. Psaty, and S. Finkelstein. Applying
system engineering to pharmaceutical safety. Journal
of Healthcare Engineering (to appear). [Online]
http://sunnyday.mit.edu/papers/healthcare-eng-
final.doc.

[10] B. D. Owens, M. S. Herring, N. Dulac, N. Leveson,
M. Ingham, , and K. A. Weiss. Application of a
safety-driven design methodology to an outer planet
exploration mission. In IEEE Aerospace Conference,
2008.

[11] M. Pajic, R. Mangharam, O. Sokolsky, J. M. G.
David Arney, and I. Lee. Model-driven safety analysis
of closed-loop medical systems. IEEE Transactions of
Industrial Informatics (TII) (to appear), 2013. [Online]
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?
arnumber=6341078.

[12] S. Prajna, A. Jadbabaie, and G. Pappas. A framework
for worst-case and stochastic safety verification using
barrier certificates. Automatic Control, IEEE
Transactions on, 52(8):1415 –1428, Aug 2007.

[13] S. Ratschan and Z. She. Safety verification of hybrid
systems by constraint propagation-based abstraction
refinement. ACM Trans. Embed. Comput. Syst., 6(1),
Feb. 2007.

[14] J. Thomas. Extending and automating a
systems-theoretic hazard analysis for requirements
generation and analysis. Technical Report
SAND2012-4080, Sandia National Laboratories, 2012.

