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Abstract

Emergency Medical Services (EMS) are critical to patient
survival in emergencies, but first responders often face in-
tense cognitive demands in high-stakes situations. Al cogni-
tive assistants, acting as virtual partners, have the potential
to ease this burden by supporting real-time data collection
and decision making. In pursuit of this vision, we introduce
EgoEMS, the first end-to-end, high-fidelity, multimodal, mul-
tiperson dataset capturing over 20 hours of realistic, procedu-
ral EMS activities from an egocentric view in 233 simulated
emergency scenarios performed by 62 participants, includ-
ing 46 EMS professionals. Developed in collaboration with
EMS experts and aligned with national standards, EgQoEMS
is captured using an open-source, low-cost, and replica-
ble data collection system and is annotated with keysteps,
timestamped audio transcripts with speaker diarization, ac-
tion quality metrics, and bounding boxes with segmentation
masks. Emphasizing realism, the dataset includes responder-
patient interactions reflecting real-world emergency dynam-
ics. We also present a suite of benchmarks for real-time mul-
timodal keystep recognition and action quality estimation, es-
sential for developing Al support tools for EMS. We hope
EgoEMS inspires the research community to push the bound-
aries of intelligent EMS systems and ultimately contribute to
improved patient outcomes.

Code & Dataset — https://uva-dsa.github.io/EgoEMS
Extended Version — https://arxiv.org/pdf/2506.15028

Introduction

Every year more than 28 million emergency medical inci-
dents are responded to in the U.S. (National Association of
State EMS Officials (NASEMSO) 2020). Upon arrival at an
incident scene, Emergency Medical Services (EMS) person-
nel must rapidly assess the situation, process complex in-
formation about victims and the environment, and provide
emergency care before transferring patients to the hospital.
In these safety-critical scenarios, patient survival hinges on
rapid and accurate decision making. However, EMS respon-
ders often face overwhelming physical, mental, and emo-
tional demands, resulting in cognitive overload, burnout, and
increased risk of errors (Sweller 2011; Crowe et al. 2018).
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With the recent rise of embedded Artificial Intelligence
(AI) and large language models (LLMs) along with the
rapid advancements of Augmented Reality (AR) technolo-
gies, there is tremendous potential to develop Intelligent
Cognitive Assistants (ICAs) that can act as virtual partners
to enhance situational awareness, guide critical procedures,
and support training (Preum et al. 2021). Yet, the medical
and EMS domains remain significantly underserved due to a
lack of large-scale, high-fidelity labeled datasets and major
privacy and security challenges.

Recent works have proposed innovative support systems
and technologies to aid first responders in high-stakes en-
vironments. One example is the development of ICAs for
real-time diagnosis and treatment decision support (Preum
et al. 2021; Jin et al. 2023; Weerasinghe et al. 2024a; Preum
etal. 2019, 2018; Shu et al. 2019; Ge et al. 2024). These sys-
tems can also serve as virtual coaches for training, helping
novice responders build expertise through real-time feed-
back. However, existing ICAs are typically developed using
datasets with limited fidelity and single modalities (primar-
ily speech), which fail to capture the procedural complexity
and unpredictability of real-world EMS settings. To provide
accurate predictions and effective support in practical sce-
narios, ICAs must perceive the environment through mul-
timodal sensing and interpret multiple responder activities
from a first-person perspective in real-time.

Advances in egocentric datasets (Yang et al. 2025; Liu
et al. 2022; Bansal, Arora, and Jawahar 2022; Wang et al.
2024) encourage the development of personal Al assistants
for daily life and procedural task automation. Unlike ex-
ocentric (third-person) recordings, egocentric perspectives
align more naturally with wearable Al systems and are par-
ticularly effective at capturing fine-grained hand-object in-
teractions that are often occluded or outside the field of
view in external camera setups (Bansal, Arora, and Jawa-
har 2022). However, existing datasets mostly focus on rou-
tine daily activities, lack multimodal integration, and are not
designed for high-stakes domains like emergency medicine,
where actions are complex, time-critical, and performed by
teams. Ego-Exo4D (Grauman et al. 2024) includes a limited
number of medical procedures, such as Cardiopulmonary
Resuscitation (CPR) and COVID-19 testing. Other datasets,
like EgoSurgery (Fujii et al. 2024) and Trauma Thomp-
son (Birch et al. 2023), although focused on health domains,
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Figure 1: EQOEMS dataset provides synchronized egocentric multiperson views, along with rich high-fidelity multimodal data
capturing EMS professionals in highly procedural tasks resulting in a total of 233 trials (20 hours) including 2694 keystep
instances from commonly executed EMS interventions. The dataset includes annotations of keysteps, timestamped audio tran-
scripts with speaker diarization, and semi-automatically generated bounding boxes and segmentation masks for key EMS ob-
jects, offering a comprehensive resource for understanding EMS workflows and developing Al solutions.

remain narrow in scope and limited to single views, specific
procedures, and single modalities. Synthetic datasets, such
as (Wang et al. 2023a), instead emphasize hand-tool pose
estimation in controlled surgical scenes, but lack realism,
procedural breadth, and real-world variability.

EMS incidents unfold in safety-critical environments
where a team of first responders performs coordinated
keysteps within standard procedures (EMS interventions)
as defined by established EMS protocol guidelines under
strict time constraints. These settings inherently generate
rich multimodal information (e.g., egocentric views of med-
ical interventions, conversational audio, and motion data)
that can be leveraged for real-time decision support. For in-
stance, Cardiac Arrest protocol requires maintaining correct
CPR compression rate and depth for patient survival (Old
Dominion EMS Alliance (ODEMSA) 2024; American Red
Cross 2022) and proper timing of ventilations (e.g., 30 com-
pressions to 2 breaths) for adequate oxygenation (see Ap-
pendix A in Extended Version for an overview of CPR
procedure). Similarly, in stroke emergencies, rapid diagno-
sis and hospital transfer within clinically recommended time
windows are required to minimize brain damage and im-
prove outcomes (Saver 2006; Old Dominion EMS Alliance
(ODEMSA) 2024). Although responders are trained on such
guidelines, stress and cognitive load can impact their perfor-

mance. ICAs can help track procedural keysteps and quality
metrics, providing real-time reminders or feedback to im-
prove adherence to protocols. However, the development of
such systems is hindered by the absence of suitable datasets.

To address the aforementioned gaps, we introduce
EgoEMS, the first high-fidelity egocentric dataset designed
specifically for cognitive assistance in EMS. EgoEMS cap-
tures 20 hours of synchronized and labeled multimodal data
of multiperson interactions in end-to-end EMS workflows
from initial patient assessment to intervention, involving 62
subjects with varying skill levels (including EMS profes-
sionals and members of the public) performing 233 trials.
Unlike prior datasets, EQOEMS is structured around nation-
ally standardized EMS protocols (in the U.S.), spanning
some of the most common EMS scenarios (cardiac arrest,
cardiac suspected and stroke) and 9 critical interventions
(including Airway-Breathing-Circulation (ABCs), 12-lead
Electrocardiogram (ECG), CPR, Ventilation, Defibrillation,
Stroke Assessment, Patient History, Vital Sign Assessment
and Transport) according to NEMSIS (National EMS Infor-
mation System 2024) database and expert feedback.

The dataset provides (i) egocentric views of the scene
captured from responders’ body-worn cameras, (ii) audio
recordings of conversations at the scene, (iii) smartwatch
IMU data capturing the responder’s hand movements, and



(iv) ground-truth quality metrics (compression rate and
depth during CPR procedures), synchronously collected us-
ing off-the-shelf components and custom open-source soft-
ware (see Figure 1). We also provide annotations for EMS
keysteps performed by responders, timestamped transcripts
of responders’ conversations with speaker diarization (i.e.,
automatic labeling of “who spoke when” in multi-speaker
audio), and object bounding boxes with segmentation masks
for the medical tools used by the responders in cardiac arrest
emergencies. These annotations are generated using manual
and semi-automatic approaches, based on the NREMT (Na-
tional Registry of Emergency Medical Technicians 2024)
guidelines and in collaboration with EMS experts (see Fig-
ure 2). Together, these elements enable end-to-end modeling
of emergency response scenarios, from high-level protocol
decisions to fine-grained action execution, with the hierar-
chical taxonomy providing structured representations of re-
alistic EMS workflows.

We also present three benchmark tasks (see Figure 5), that
reflect core real-time context inference capabilities essential
for ICAs to support EMS responders: Keystep Classification
for recognizing the specific keystep performed by a respon-
der, Keystep Segmentation for detecting the start and end
times of each keystep, and Quality Evaluation by contin-
uous estimation of activity quality metrics (e.g., CPR com-
pression rate and depth) utilizing multimodal data to provide
feedback to responders.

In summary, our contributions are the following:

* The first synchronized and labeled multimodal dataset of
multiperson EMS procedural activities, capturing collab-
orative dynamics of real-world scenarios with varied ex-
perience levels and certifications of EMS personnel.

* A taxonomy of EMS activities, keysteps, and objects/-
tools, developed in collaboration with EMS profession-
als and aligned with NREMT, which is used to gener-
ate ground-truth annotations for activity recognition, and
object detection and segmentation along with audio tran-
scription and speaker diarization.

* A suite of benchmarks for real-time activity recognition
and quality estimation, leveraging both single and com-
bined modalities, to explore the performance of state-of-
the-art (SOTA) supervised deep learning models com-
pared to zero-shot methods including LLMs.

* An open-source, low-cost, and easily replicable multi-
modal data collection system based on off-the-shelf de-
vices (e.g., GoPro Hero) and custom hardware integra-
tion (e.g., VL6180X ToF sensor) for synchronized cap-
ture of procedural activities through egocentric video and
conversational audio recordings from the scene, smart-
watch IMU data from hand movements, and ground-truth
quality metrics from patient simulators.

Background and Related Work

Egocentric datasets. Al assistants that support real-world
decision making require multimodal understanding of hu-
man activities from a first-person perspective (Preum
et al. 2021). Existing egocentric datasets such as Epic-
Kitchens (Damen et al. 2018), HOI4D (Liu et al. 2022),

HoloAssist (Wang et al. 2023b), EgoVid-5M (Wang et al.
2024), EgoProceL (Bansal, Arora, and Jawahar 2022),
and EgoLife (Yang et al. 2025) largely capture daily ac-
tivities, object interactions, or scripted behaviors. Ego-
Ex04D (Grauman et al. 2024) includes ego and exocentric
views of limited medical procedures (e.g., CPR, COVID
testing) performed by participants with basic training and
accredited nurses. Other egocentric datasets in the medical
domain include POV-Surgery (Wang et al. 2023a) and Ego-
Surgery (Fujii et al. 2024) for open surgery and Trauma
Thompson (Birch et al. 2023) for life-saving interventions
such as tube thoracostomy and tracheostomy.

Despite these advances, none of the existing datasets cap-
ture the procedural structure, high-stakes environment, and
coordinated multiperson nature of end-to-end EMS work-
flows (see Table 1). Curation of such datasets is particu-
larly challenging due to privacy concerns and high anno-
tation costs in medical settings, resulting in much smaller
datasets. No prior dataset offers multimodal, multiperson
egocentric recordings of simulated emergencies with certi-
fied responders and the ground truth necessary for modeling
decision-making and cognitive assistance in critical care.
Activity recognition. Action recognition spans both classi-
fication, which assigns labels to video segments, and seg-
mentation, which temporally localizes and labels actions
over time. Prior work on egocentric video has addressed
keystep or action classification by leveraging supervised
deep learning models (Plizzari et al. 2023; Dessalene et al.
2023; Plizzari et al. 2022; Escorcia et al. 2022; Bansal,
Arora, and Jawahar 2022; Grauman et al. 2024), with fewer
efforts leveraging multimodal fusion of video and audio
(Radevski et al. 2023; Gong et al. 2023). Segmentation has
also been widely studied (Zhang, Wu, and Li 2022; Yi, Wen,
and Jiang 2021; Li et al. 2020; Lea et al. 2017; Wang et al.
2016), though only a few works consider egocentric multi-
modal settings by combining video, audio, and IMU signals
(Grauman et al. 2024; Huang et al. 2024).

In this paper, we take the first step towards benchmarking
SOTA deep learning models for activity recognition using
multimodal data for the EMS domain. We select strong, rep-
resentative baselines that cover complementary approaches,
including supervised models based on transformer architec-
tures (Bertasius, Wang, and Torresani 2021; Weerasinghe
et al. 2024b) capable of modeling long temporal depen-
dencies and multimodal fusion, a convolutional TSN model
(Wang et al. 2016) as a widely used CNN baseline, few-shot
cross-domain models such as MM-CDFSL(Hatano et al.
2024) and zero-shot vision—language models such as Qwen-
2.5 (Bai et al. 2025) and VideoLLaMA-3.3 (Zhang et al.
2025) to assess the potential of large pretrained models. For
audio-only recognition, we also include a custom zero-shot
pipeline using WhisperTimestamped (Louradour 2023) and
GPT-40 (Achiam et al. 2023).

CPR quality estimation. CPR is one of the most safety-
critical interventions in emergency care, where proper com-
pression rate and depth are vital for patient survival (Ay-
ala et al. 2014; Eftestgl et al. 2020). Although these metrics
are central to effective feedback (Cheng et al. 2015b; Web-
ber, Moran, and Cumin 2019; Cheng et al. 2015¢), human



Activity Fine Tran- Obj. Dur.
Dataset Setting Synced MP |IMU Audio RGB | Act. scripts BB SKkill (hrs)
Epic-Kitchens (Damen et al. 2018) Daily Life X X X v v v v X X 100
HOI4D (Liu et al. 2022) Object Manipulation X X X X v v X v X 444
EgoProceL (Bansal, Arora, and Jawahar 2022) Daily Life X X X X v v X X X 62
HoloAssist (Wang et al. 2023b) Daily Life v |/ 4 4 4 4 X v/ 166
EgoVid-5M (Wang et al. 2024) Daily Life X X X X v v X X X 5550
EgoLife (Yang et al. 2025) Daily Life 4 X v 4 v 4 X X 300
Ego-Ex04D (Grauman et al. 2024) Skilled Activities v X v v v v v v v 1442
Trauma-Thompson (Birch et al. 2023) Medical Emergency X X | X X v v X X X ~16
EgoSurgery (Fujii et al. 2024) Surgery X | X X v v X X X 15
POV-Surgery (Wang et al. 2023a) Synthetic Surgery X X X X v X X v X ~1
EgoEMS (Ours) Medical Emergency v |V v oV v/ v /2

Table 1: Comparison of egocentric datasets by modality availability and annotation types. Synced: Synchronized modalities,
MP: Multiperson, Obj. BB: Object bounding boxes and segmentation masks, Fine Act: Fine-grained action annotations, Skill:
Ground-truth for skill estimation, Dur: Approximate dataset duration (~ estimated from reported frame counts at 30fps)

feedback is often biased (Jones et al. 2015). Recent work
has explored skill assessment from egocentric video for gen-
eral activities (Grauman et al. 2024; Huang et al. 2024), but
CPR quality has largely been measured with accelerome-
ter equipped CPRcards (Cheng et al. 2015a; Laerdal Medi-
cal 2024), defibrillator pads (Gonzélez-Otero et al. 2015), or
smartwatch IMU models sensitive to surface conditions (Lu
et al. 2018; Jeong et al. 2015). Vision based methods us-
ing depth cameras (Loconsole et al. 2016; Di Mitri et al.
2019) require costly sensors in controlled, single-responder
settings. In contrast, we introduce the first benchmark for
quantitative, online CPR quality estimation that fuses ego-
centric video and smartwatch IMU to robustly predict com-
pression rate and depth and enable real-time feedback in re-
alistic, emergency scenarios.

EgoEMS Dataset

This section outlines the development of the EgoEMS
dataset, including EMS taxonomy, simulation experiments,
participants, data collection system and annotations. We re-
fer the reader to Appendices A-C for more details.

EMS Taxonomy

To design a set of realistic EMS scenarios for data col-
lection and adapt activity recognition models to EMS do-
main, we constructed a taxonomy of hierarchical EMS pro-
cedures, capturing high-level EMS protocols and their asso-
ciated interventions and fine-grained keysteps (see Figure 2).
First, we analyzed the NEMSIS database in consultation
with EMS professionals to prioritize protocols that are high-
frequency, time-sensitive and critical to patient survival. We
focused on cardiac and stroke emergencies and further ex-
amined the distribution of interventions within those proto-
cols to isolate most frequently performed interventions.
Specifically, we focus on scenarios involving the “Car-
diac Arrest”, “Chest-Pain Cardiac Suspected”, “Stroke” pro-
tocols (Old Dominion EMS Alliance (ODEMSA) 2024) and
9 critical interventions associated with these protocols, in-
cluding ABCs, 12-lead ECG, CPR, Ventilation, Defibrilla-
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Figure 2: Methodology for creating the EgoEMS dataset in-
cluding the EMS taxonomy.

ion Scenario D

tion, Stroke Assessment, Patient History, Vital Signs Assess-
ment and Transport. In collaboration with EMS experts, we
define key procedural steps (keysteps) for selected interven-
tions based on psychomotor examination guidelines from
the NREMT, resulting in a total of 67 detailed keysteps rep-
resenting the interventions. These keysteps are essential for
detecting responders’ actions within a protocol and evaluat-
ing proper procedural execution to provide continuous feed-
back. Finally, we identify the key EMS objects/tools used in
Cardiac Arrest protocol as a part of the taxonomy, emphasiz-
ing the responder-equipment interactions that can improve
EMS activity recognition. More details are in Appendix A.

Simulation Experiments

We conducted 233 simulated EMS trials spanning approxi-
mately 20 hours, encompassing a range of cardiac and stroke
related emergency scenarios. The simulations were divided
into two primary types: high-fidelity scenarios, where pro-
cedures were performed on human actors portraying pa-
tients, and cardiac arrest scenarios, which used manikins
due to the nature of CPR intervention. High-fidelity simu-
lations featured patients with diverse medical histories and
demographics to promote data diversity and generalizabil-



Source Subjects Scenario Interventions Trials (Minutes) ‘ Man. Ann. ‘ Semi-auto Ann.
| Keysteps | BB SM TT RD
Cardiac Arrest CPR, Ventilation, Defibrillation 76 (183) % v v v v /
EMS Responders 46 Cardiac Suspected ABCs, 12-lead ECG 23 (173) v X X v 90
Stroke ABCs, Stroke Assessment 41 (735) v X X v O
General Public 16 Cardiac Arrest CPR 93 (116) % v O o O
Total 62 233 (1207) | 2694 |13.7k 12k 140 169

Table 2: Simulation scenarios, participants, and annotations in the dataset. ¢: Not applicable for the activity. X: Not provided
due to limited visibility of the objects of interest. BB: Bounding boxes, SM: Segmentation masks, TT: Timestamped audio
transcripts, RD: CPR compression rate and depth. % Trials that used manikins due to the nature of interventions and safety.

The rest were high-fidelity with human patient actors.

ity. Each simulation captured end-to-end EMS procedures
performed by a team of 2-3 responders, performing the crit-
ical interventions shown in Table 2. In addition, several sce-
narios were designed to reflect complex, realistic cases in
which the initial chief complaint and presenting neurolog-
ical symptoms mimicked a stroke but were ultimately at-
tributable to alternative causes (e.g., hypoglycemia). These
cases required responders to accurately assess, differenti-
ate, and respond using appropriate protocol guided decision
making. In cardiac arrest trials, EMS responders typically
operated in pairs designated as primary and secondary re-
sponders carrying out critical interventions such as CPR,
ventilation, and defibrillation on a manikin. In contrast, sub-
jects from the general public conducted the trials individu-
ally and performed only CPR intervention on a manikin due
to lack of medical training. To further enhance realism, ad-
ditional volunteers served as bystanders, particularly in sce-
narios where the patient was unresponsive, contributing in-
formation such as patient history and situational context.

Participants A total of 62 participants were recruited,
comprising 46 EMS professionals from 4 rescue squads
and 16 individuals from the general public affiliated with
an academic institution. EMS responders represented a
broad range of experience levels and certifications, includ-
ing members with basic CPR training, Emergency Medi-
cal Responders (EMRs), Emergency Medical Technicians
(EMTs), and Paramedics. Years of experience ranged from
under one year to over 30. The complexity of these sim-
ulations and the time required to perform them made
large-scale data collection logistically challenging, as partic-
ipating EMS agencies relied on volunteer personnel, many
of whom were often called away for real emergency dis-
patches. Despite these challenges, the resulting dataset cap-
tures a wide range of realistic responder behaviors and skill
levels. See Appendix B for more details.

Privacy and Ethics We obtained IRB approval prior to
data collection, adhering to human subjects ethics. Real-
world privacy and ethics considerations beyond simulation,
as well as IRB and de-identification details are in the Ethical
Statement and Appendix B.

Data Collection System

To capture EMS procedures, we used a remotely-controlled
chest-mounted GoPro HERO camera to record the respon-
der’s egocentric view along with audio. The responder’s
dominant hand motions were tracked using a Samsung
Galaxy Watch 5, recording 3-axis accelerometer data. Ad-
ditionally, in cardiac arrest scenarios, chest compression
ground truth metrics were measured using a VL6180X
Time-of-Flight (ToF) sensor mounted on the manikin (see
Figure 1). Synchronization was done based on Unix times-
tamps, with multiperson views synchronized along with all
modalities, downsampled to align with GoPro’s frame rate,
resulting in a fully synchronized multimodal dataset. All
data collection tools are available as open-source code, al-
lowing others to replicate the system with low-cost and read-
ily available hardware (see Appendix C).

Annotations

We employed manual and semi-automatic approaches, with
some annotations purely manual and others using zero-shot
models with manual verification. Table 2 shows a summary
of annotations in the dataset. See Appendix B for details.
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Figure 3: Top-10 keystep distribution with average duration.
See Appendix A for a complete distribution.

Fine-grained keystep annotation. EgQoEMS is manually
annotated for 67 keysteps belonging to 9 interventions (see
Appendix B and Figure 3). The dataset captures multiper-
son activity typical of real-world EMS procedures, where
responders perform concurrent actions during the same time
interval (e.g., AED activation during chest compressions;
see Appendix A). While the dataset includes multiperson
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Figure 4: Ground-truth CPR compression rates for partici-
pants with varying skill levels. Each subject’s reported rate
is averaged across all their trials.

annotations, our benchmarks focus on the primary respon-
der and their egocentric viewpoint. We do not leverage sec-
ondary responder annotations and multiview data for model
training or evaluation, but include them to support future re-
search on multiperson activity understanding.
Timestamped speaker diarization and transcription. We
designed an automated LLM based pipeline to generate
speaker-diarized timestamped transcripts for each trial’s au-
dio, which were then manually verified (see Appendix A).
The general public participants struggled to narrate while
performing CPR due to lack of advanced training, so they
were instructed to focus solely on performing the task.
Bounding box and segmentation mask annotations. We
generated bounding box and segmentation mask annotations
for medical objects involved in cardiac arrest interventions
(see Figure 1) using a semi-automatic pipeline. The nature
of these interventions involves frequent and sustained inter-
actions with critical medical equipment, making object lo-
calization particularly relevant in this context, serving as a
promising candidate for improving the activity recognition
capability of an ICA. This pipeline leverages a SOTA ob-
ject detection model fine-tuned based on our EMS taxon-
omy combined with a zero-shot segmentation method. Our
manual verification of 10% of the bounding box annotations
against human annotations shows this method saves over 60
hours of annotation time at a slight loss of precision. We re-
fer the reader to Appendix A.4.3 for more detailed analysis.
Compression depth and rate annotations. The ground-
truth CPR depth and rate metrics were automatically gen-
erated by recording the compression depth using a ToF
sensor integrated with a microcontroller embedded in the
manikin (see Figure 1). Figure 4 shows the CPR rate distri-
butions across skill levels where EMS professionals main-
tained steady CPR performance, while novice public partic-
ipants showed much greater variability.

EgoEMS Benchmarks

We present three benchmark tasks designed to evaluate the
core capabilities of an ICA for EMS: (1) Keystep Classifi-
cation and (2) Keystep Segmentation, which together form
the broader task of keystep recognition, a foundational ca-
pability for guiding responders through complex protocols
while monitoring their actions and (3) Action Quality Esti-

mation, which enables continuous feedback to improve exe-
cution quality. As illustrated in Figure 5, these tasks leverage
synchronized multimodal data including egocentric video,
audio, and smartwatch IMU to support real-time inference
of procedural context and responder performance. Below,
we provide an overview of each benchmark and results from
a representative set of SOTA benchmarks. More detailed re-
sults and discussions are in Appendix D.

Benchmark 1: Keystep Classification

Motivation. Real-time keystep classification is a core capa-
bility for ICAs to guide responders through complex EMS
protocols and monitor procedural adherence in real time.
The intricacies of EMS interventions including rapid inter-
actions with medical tools and parallel actions by multiple
responders pose significant challenges for fine-grained ac-
tion recognition. Egocentric video may suffer from occlu-
sions or a limited field-of-view, while audio cues such as
verbal requests for equipment can provide complementary
information. Thus, drawing on insights from prior work (Ya-
dav et al. 2021; Sun et al. 2023), leveraging multimodal data
is essential for accurate activity classification.

Problem setting. We frame this as a multimodal action clas-
sification problem that aims to associate a data segment
D,y with a specific keystep in the set of keysteps in our
EMS taxonomy. The trimmed data segments of a single
modality or synchronized segments of multiple modalities,
along with their associated keystep labels, are used during
both training and testing. Given the scarcity of multimodal
data in this domain, we also evaluate zero-shot methods, in-
cluding LLMs, as baselines.

Summary results. We observed the highest top-1 accuracy
of 62.3% using a supervised transformer model (Weeras-
inghe et al. 2024b) with egocentric video features extracted
from a ResNet50 backbone (He et al. 2016), closely fol-
lowed by 62.2% when smartwatch IMU and video data were
fused together. While the fusion of these complementary
modalities was expected to provide an improvement, the
early fusion strategy we used did not yield additional gains,
suggesting that more advanced fusion methods are needed
to fully leverage long-range temporal and modality-specific
cues. Notably, a zero-shot Qwen-2.5 (Bai et al. 2025) model
achieves 38.3%, highlighting the potential of recent LLMs
for activity recognition. See Appendix D.1 for detailed re-
sults and additional baselines.

Benchmark 2: Keystep Segmentation

Motivation. While classification assigns keysteps to fixed
segments, ICA systems must also operate in online settings
where actions unfold continuously. Keystep segmentation
enables real-time tracking of procedural progress and timely
intervention with a limited amount of context. However,
achieving fine-grained segmentation is particularly chal-
lenging due to frequent view changes, variable execution
speeds, and limited data per window. Multimodal sensing is
essential for reliable performance in these dynamic settings.
Problem setting. We approach this as an online action
segmentation task, aiming to identify and track specific
keysteps performed by the primary responder throughout an



[ Keystep Classification ] [

Keystep Segmentation ]

CPR Quality Estimation

LA

o

M ol

[ Modalities | [ Ego |[IMU || Audi§ J( Fusion| [ Ego ][lMU][ Audio |{ Fusion |

(Ego |[ IMU |[ ToF |( Fusion |

(Settings| | Fully Supervised || Zero-shot | | Fully Supervised || Zero-shot | | Fully Supervised || Signal Processing |
Models TimeSformer || Qwen || V-LLama TimeSformer | Qwen || V-LLama CNN MiDaS Mediapipe
mm approach_patient m chest_compressions Chest Administer Administer
Output B check_responsiveness MBI request_assistance Compressions Shock =*=* Shock
B check_pulse B request_aed -- -I-
Ego Supervised Ego VLM Ego, IMU Fusion Ego VLM Fusion Fusion
Top-1 Acc 56% Top-1 Acc 38% Top-1 Acc 61% Top-1 Acc 55% RMSE 15.6 com  RMSE 11.8 mm

Figure 5: Overview of benchmark tasks for keystep classification, segmentation, and CPR quality estimation using multimodal
data from EgoEMS. Example baseline models and representative results are shown to highlight the diverse evaluation scenarios

enabled by the dataset.

EMS trial. Each trial is divided into 5-second streaming data
segments, and each frame or sample within these windows
is analyzed to classify the keystep occurring at that moment.
Similar to keystep classification, zero-shot methods, includ-
ing LLMs, are used as baselines.

Summary results. We achieved the best segmentation accu-
racy of 61% using a supervised transformer model (Weeras-
inghe et al. 2024b) with the fusion of egocentric video
features and smartwatch IMU data. Unlike classification,
this multimodal fusion provides a notable 6% improvement,
likely attributable to the short temporal windows where
complementary modalities help disambiguate subtle, fine-
grained activities by better leveraging temporal cues. Inter-
estingly, the zero-shot Qwen-2.5 (Bai et al. 2025) model
achieved 55.5% accuracy, highlighting the potential of mod-
ern LLMs. WhisperTimestamped combined with GPT-40
(Achiam et al. 2023; Louradour 2023), using only audio, re-
sulted in a lower accuracy of 38%, likely due to responders
not consistently verbalizing their actions during critical in-
terventions. See Appendix D.2 for a more detailed analysis.

Benchmark 3: CPR Quality Estimation

Motivation. An effective EMS ICA must be able to assess
intervention quality to provide timely feedback. In CPR,
compression rate and depth are critical quality metrics. The
American Red Cross recommends 100-120 compressions
per minute and a depth of at least 50 mm for adults (Amer-
ican Red Cross 2022). Deviations from these guidelines can
compromise patient safety and reduce resuscitation success.
We address this task by estimating compression rate and
depth using egocentric video and smartwatch IMU data. The
egocentric view captures close-up procedural context, while
the repetitive hand motions in chest compressions make
wrist IMU signals well-suited for dynamic estimation. By
combining visual and inertial cues, an ICA can robustly in-
fer CPR quality metrics in real time. We also propose a rule-
based feedback generation framework that produces contin-
uous, actionable insights to guide responder performance.

Problem setting. We formulate this task as an online recog-
nition problem, where the model processes a 5-second slid-

ing window of data, from either the chest-mounted GoPro
or smartwatch IMU to estimate CPR quality metrics in real
time. For each window, the model outputs the compression
rate r (compressions per minute) and compression depth d
(mm). The depth d is first computed for each individual com-
pression within the window and then averaged to generate
stable and actionable feedback. Ground-truth values from
the ToF sensor are used for model supervision. Addition-
ally, the rule-based feedback framework provides continu-
ous feedback per window, which is also used to evaluate the
model’s performance (see Appendix D.3).

Summary results. Fusion of video and smartwatch IMU
achieves the best overall CPR feedback performance, with
an F1 score of 0.52 for compression rate and 0.83 for com-
pression depth. While smartwatch IMU alone yields the low-
est RMSE for compression rate, outperforming video and fu-
sion, multimodal fusion provides the lowest RMSE for com-
pression depth. See Appendix D.3 for more details.

Conclusion

EgoEMS is the first egocentric, multimodal, multiperson
dataset dedicated to EMS, created to drive the development
of Al systems that can function as virtual partners to first
responders in the field. Developed in close collaboration
with EMS professionals and aligned with national standards,
it captures high-fidelity simulations of critical EMS pro-
cedures. EgQoOEMS provides over 20 hours of synchronized
multimodal data, including 9 interventions and 67 keysteps
across 233 trials, performed by 62 participants from multiple
EMS agencies and the general public. The dataset’s compre-
hensive taxonomy and fine-grained annotations are comple-
mented by benchmark tasks that showcase the potential of
cognitive assistants and support exploration of multimodal
fusion. Furthermore, we provide open-source resources that
enable reproducibility and future extensions. EQOEMS es-
tablishes a new benchmark for multimodal AI research and
lays a robust foundation for next-generation EMS technolo-
gies that enhance responder performance, reduce cognitive
burden, and improve patient outcomes.
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lease forms. Only data from participants who provided ex-
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the dataset. In accordance with the approved IRB protocol,
all identifying information was removed prior to release:
each participant was assigned a unique identifier, faces were
blurred semi-automatically in egocentric video, and sensi-
tive textual or audio identifiers such as names, license plates,
and ID cards were manually obscured. All data underwent
manual verification to ensure privacy preservation and com-
pliance with ethical standards.

EgoEMS was developed using simulated emergency sce-
narios with trained responders under IRB oversight, en-
abling high-fidelity modeling of real-world conditions while
maintaining participant safety and privacy. However, the ex-
tension of such systems to real-world EMS introduces sub-
stantial ethical and privacy challenges. Obtaining informed
consent during emergencies is often infeasible when patients
are unconscious or in critical conditions, and incidentally
captured bystanders or minors may not have provided con-
sent. Real scenes also encompass sensitive situations such
as domestic violence, substance use, or mental health crises,
which require enhanced safeguards, institutional oversight,
and alignment with frameworks like HIPAA. Furthermore,
ensuring robust de-identification and responsible data gover-
nance in unconstrained environments remains an open tech-
nical and ethical challenge.

Beyond data collection, the deployment of ICAs in EMS
contexts raises broader societal considerations regarding
surveillance, bias, and trust. Models trained on simulated
data may underperform in the field due to shifts in environ-
mental and behavioral distributions, necessitating rigorous
validation, transparency, and accountability measures before
clinical use. Our work therefore positions EgoEMS as a pri-
vacy conscious testbed to advance ICAs responsibly offer-
ing an open-source data collection framework, EMS-specific

ontology, annotation tools, and de-identification pipeline to
support gradual, ethically governed expansion to real-world
settings.

We advocate for future efforts to establish consent and
governance frameworks in collaboration with IRBs, EMS
agencies, and legal experts; to develop policy-level stan-
dards inspired by body-worn camera protocols; and to im-
plement on-device, HIPAA compliant data processing with
built-in de-identification. At the algorithmic level, we em-
phasize the importance of multimodal learning methods that
prioritize privacy-preserving modalities (e.g., IMU or depth
sensors) when visual data are restricted. Together, these
principles aim to ensure that cognitive assistance technolo-
gies for emergency response evolve safely, fairly, and in ser-
vice of public trust and societal benefit.
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