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How can the advantages of formal methods be 

brought to emerging smart cities? We discuss several 

core challenges and our recent efforts as the first 

step toward developing novel formal methods to 

ensure safety and performance in smart cities. 

The prevalence of the Internet of Things and 
cyberphysical systems (CPSs) has enabled the 
emergence of smart cities around the world, 
where a vast amount of sensing data and smart 

services are utilized to improve citizens’ safety, well-
ness, and quality of life.1,2 Various smart city opera-
tion control centers (for example, Microsoft’s CityNext, 
IBM’s Rio de Janeiro Operations Center, and Cisco’s 
Smart+Connected Operations Center) have been devel-
oped to support decision making in smart cities based 

on real-time sensing data about city states (such as traf-
fic and air pollution). 

While significant research efforts have been spent 
toward building smarter services, sensors, and infra-
structures in cities, the research challenge of how to 
ensure that a city’s real-time operations satisfy safety and 
performance requirements has received only scant atten-
tion. Failure to check such requirements can lead to con-
flicts among smart services or even catastrophic conse-
quences.3–5 This article discusses several core challenges 
in developing novel formal methods for ensuring safety 
and performance in smart cities. Specifically, we focus on 
addressing three key research questions.
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 › Service designers: Smart services 
are designed by different stake-
holders, including the govern-
ment, companies, and private 
parties, and often they are not 
aware of all of the other smart 
services. However, with the 
monitor, they can test the influ-
ence of their services and adjust 
them to better serve the city. 

 › Everyday citizens: The tool can 
also provide a service to every-
day citizens. People without any 
technical background are able to 
specify their own requirements 
and check them with the data 
to find out in which areas of the 
city and period of the day their 
requirements are satisfied so 
they can make daily plans. For 
example, a citizen can specify 
an environmental requirement 
with his/her preferred AQI and 

traffic conditions, check the 
city data with the requirements, 
and make up traveling agenda 
accordingly.

We are currently working with project 
partners to deploy the tool in the City 
of Newark, New Jersey, to demonstrate 
its impact via real-world applications.

PREDICTIVE MONITORING 
FOR SMART CITIES
Deep learning techniques have been 
increasingly applied to predict smart 
city states (for example, air quality 
forecasting). However, previous works 
mostly focus only on generating predic-
tions and rarely account for the uncer-
tainty inherent in smart cities (such 
as sensing and environmental noise, 
unexpected events, and accidents). 

We tackle this challenge by developing 
an STL with uncertainty (STL-U)-based 

predictive monitoring approach8 for 
CPSs, including smart cities. The pre-
dictive monitoring framework interacts 
with a smart city control center to contin-
uously predict future city states and moni-
tor if predictions satisfy city require-
ments. If it forecasts a potential city 
requirement violation in a future state, 
it would support the decision system in 
a control center to choose actions (for 
example, issuing alarms or controlling 
traffic signals) to prevent such a require-
ment violation. Specifically, our predic-
tive monitoring approach advances the 
state of the art from the following two 
aspects: monitoring and prediction.

Monitoring
STL and its extensions have been applied 
for monitoring smart city requirements. 
However, existing methods mostly focus 
on monitoring a single multivariable 
signal and cannot be directly applied 

FIGURE 2. The (a) steps and (b) user interface of the SaSTL monitoring tool for smart cities. (Source: Ma et al.7)
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multivariate RNN (STLnet).10 It guides 
the RNN learning process with aux-
iliary knowledge of model properties 
and produces a more robust model for 
improved future predictions.

Figure 5 shows an overview of the 
STLnet framework, which is built with 
a teacher and student network. The 
teacher network is equipped with an 
STL trace generator, which incorporates 
the formalized model properties into 
the learning process. The main idea is 
that whenever the student network fails 
to predict a trace (sequence) that fol-
lows the model properties, the teacher 
network generates a trace that is close 
to the trace returned by the student net-
work and satisfies the model properties 
simultaneously. The student network 
then updates its parameters by learning 
from both the target trace and outcome 
of the teacher network.

In the training phase, the goal is to 
teach STLnet to learn from the “correct” 
traces, which includes three major steps:

 › Step 1: The student network 
construction starts with the 
basic student network, that is, a 
general multivariate RNN. 

 › Step 2: The teacher network 
construction generates a 
trace that satisfies the model 
properties expressed in STL 
and has the shortest distance 
to the original prediction. 
Table 2 shows some example 
model properties for smart city 
applications. 

 › Step 3: Back propagation with a 
loss function is designed with 
two parts to guide the student 
network to balance between 
emulating the teacher’s output 
and predicting the target trace. 

The network is trained iteratively by rep-
eating Steps 2 and 3 until con vergence.

In the testing phase, we can use either 
the distilled student or teacher network 
after a final projection. Our results show 

that both models substantially improve 
over the base network that is trained 
without STL-specified properties. In 
practice, the teacher network can guar-
antee the satisfaction of model proper-
ties, while the student network is more 
lightweight and efficient.

We evaluated the performance of 
STLnet using large-scale, real-world city 
data that include 1.3 million instances 
of six pollutants (that is, PM2.5, PM10, 
CO, SO2, NO2, and O3) collected from 130 
locations in Beijing every hour between 
1 May 2014 and 30 April 2015. To build 
the LSTM network, we regard one pol-
lutant from one location as one variable 
and concatenate all variables from the 
same time unit. 

Next, we specify important model 
properties, including reasonable ran-
ges, consecutive changes, correlations 
among different pollutants and loca-
tions, and so on. Figure 6 shows the 
comparison results (with respect to the 
root-mean-square error and satisfaction 

FIGURE 5. The STLnet. (Source: Ma et al.10) 
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