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Abstract

Sensor networks have been used in many surveillance systems,
providing statistical information about monitored areas. Accurate
counting information (e.g., the distribution of the total number of
targets) is often important for decision making. As a comple-
mentary solution to double-counting in communication, this pa-
per presents the first work that deals with double-counting in sens-
ing for wireless sensor networks. The probability mass function
(pmf) of target counts is derived first. This, however, is shown to
be computationally prohibitive when a network becomes large. A
partitioning algorithm is then designed to significantly reduce com-
putation complexity with a certain loss in counting accuracy. Fi-
nally, two methods are proposed to compensate for the loss. To
evaluate the design, we compare the derived probability mass func-
tion with ground truth obtained through exhaustive enumeration in
small-scale networks. In large-scale networks, where pmf ground
truth is not available, we compare the expected count with true tar-
get counts. We demonstrate that accurate counting within 1 ~ 3%
relative error can be achieved with orders of magnitude reduction
in computation, compared with an exhaustive enumeration-based
approach.

1 Introduction

Wireless sensor networks have been widely used to monitor
many types of environments such as battlefields [1], buildings [16]
and habitats [19, 21]. One of the key design objectives of these
monitoring systems is to acquire and verify information about the
number of targets/events within the system at any given point of
time. For example, (i) in a battlefield, a commander needs to esti-
mate enemy capability by counting different types of targets in an
area to issue a counter-force attack strategically; (ii) in a building,
a manager might want to turn off some facilities if the number of
people in a certain area is less than a certain threshold; (iii) in gey-
sers fields monitoring, the number of eruptions indicates the activity
pattern underneath. In all these cases, although it is not necessary
to have precise counting information, it is important to obtain rea-
sonable total count values through a sensor network.

In general, there are two types of errors that would lead to
inaccurate counts: miss-detection and double-counting. Miss-
detection is normally addressed by using reliable sensing hard-
ware [4] and/or robust detection algorithms [13, 8, 22], while
double-counting is a more challenging problem, because it involves
duplicates in both communication and sensing. Several excellent
projects have investigated how to avoid the double-counting prob-
lem in communication. For example, synopsis diffusion [14] uses
energy-efficient multi-path routing schemes to transmit order-and
duplicate-insensitive (ODI) data aggregates. Recently, CountTor-

rent [10], uses Abstract Prefix Tree (APT) to ensure all values
are counted once through distributive queries. We observe that
these solutions work well by assuming original count values from
each sensor is not duplicated. However, sensor nodes are normally
densely deployed with a high-degree of redundancy (overlapping),
therefore double-counting by adjacent sensors could be significant
and should not be ignored. Although many researchers have studied
the double-counting problem in communication, to our knowledge,
this paper presents the first attempt to address the double-counting
problem in the context of sensing in sensor networks. By avoid-
ing double-counting in both communication and sensing, accurate
statistic counting can be achieved.

To address double-counting in sensing, one straightforward so-
lution is to use sophisticated identification sensors to differentiate
targets by analyzing their signatures such as acoustic emission or
thermal radiation. This approach requires high-cost sensor nodes
and possibly introduces excessive energy consumption. Naturally,
we raise the following question: how to avoid double-counting sta-
tistically, using low-cost sensors without identification capacity?

The main idea of our solution is to derive a probability mass
function (pmyf) of total target counts, using partition and compensa-
tion methods. With the pmf available, one can obtain the expected
total count that approaches ground truth, i.e., the actual number of
targets in the system. Specifically, the main contribution of this
work lies in following aspects:

e Given separate counts from overlapping sensor nodes, we de-
rive a probability mass function (pmf) of total target counts,
from which various types of statistical information (e.g., ex-
pected value, variance, range, min and max) can be inferred
accurately.

e We propose an accuracy-aware partitioning algorithm to re-
duce the computational complexity of calculating a system-
wide probability mass function.

e Two algorithms are proposed to compensate for the inaccuracy
introduced by the partitioning process. The first algorithm sac-
rifices certain accuracy in exchange of very fast computation,
while the second algorithm achieves high accuracy with ad-
justable computation overhead.

The rest of the paper is organized as follows. Section 2 discusses
related work. Section 3 presents the derivation of probability mass
function, followed by the complexity analysis in Section 4. Sec-
tion 5 describes how computation complexity can be significantly
reduced by partitioning. Section 6 introduces two compensation
algorithms for better accuracy. Simulation results are presented in
Section 7. We conclude this paper in Section 8 with our summary
and directions for future work.



2 Related Work

To obtain accurate target counts, a monitoring sensor system
shall prevent miss-detection as well as double-counting. Miss-
detection can be reduced by introducing reliable hardware design.
For example, XSM motes [4] incorporate a band-pass filter to en-
hance the detection of acoustic emission, a digital potentiometer to
detect a wide range of signals, and a polyethylene film to reduce the
effect of sunlight. Besides hardware enhancements, advanced de-
tection algorithms [13, 8, 22] have also been proposed to avoid mis-
detection with minimal energy consumption. VigilNet [8] utilizes
a multi-level detection algorithm with in-situ adaptive thresholds
to avoid both false positive and false negative detections in chang-
ing weather conditions. Feng et al. [22] propose a collaborative
tracking algorithm with distributed Bayesian estimation to improve
reliability based on current and previous estimation (beliefs) from
sets of sensors.

Even with reliable detection at individual nodes, accurate to-
tal counts would not be obtained if a target is counted multiple
times (double-counting). Double-counting problem has been in-
vestigated in the context of communication. The summarization
of total counts without duplicates could be achieved by building a
spanning tree rooted at the base. Individual counts are aggregated
along a tree from leaves to the root as suggested in TAG [12]. How-
ever, this spanning-tree-based approach could suffer loss of counts
severely, due to node or communication failures. For example,
a single node failure could lose the count of a whole subtree be-
neath it. To address this limitation, synopsis diffusion [14] utilizes
multi-path routing to deliver count information. The authors prove
that duplicate-insensitive (ODI) count aggregation can be achieved
by using Flajolet and Martin’s algorithm (FM) [6], which counts
distinct elements in a multiset. Recently, CountTorrent [10] al-
locates binary labels to individual nodes using an Abstract Prefix
Tree and disseminates the (label,count) pairs through multi-path
routing. Count values are aggregated only when two binary labels
differ only in their last bit. Labeled aggregates ensure all values are
counted only once during communication.

Although double-counting can be eliminated in communication,
the final aggregated count could still be incorrect, if the targets
within overlapping regions are counted more than once. Accord-
ing to [7], the percentage of overlapping region in sensor networks
under random deployment is indeed significant. For example, with
an average node density of 5, the overlapping percentage is 86%
and with an average node density of 14, the overlapping percentage
would be as high as 99.9%! Therefore, we argue double-counting is
common in sensing and hence needs to be addressed accordingly.

3 Problem Definition and Assumptions

We consider a network model where counting sensor nodes are
randomly deployed in a region (e.g., an open area or a room in a
building) with known locations [18, 11]. They are used to moni-
tor different types of targets, such as vehicles on the road, people
in the room, or any other objects of interests. Counting capabil-
ity is supported, using photoelectric-based sensors such as the one
in [17]. The count values at individual sensors are reported to a
base node, where the probability mass function (pmf) of the total
number of distinct targets is calculated. Since the system-wide total
count is the objective, a centralized solution at the base is a natural
approach for sensor networks, which is also compatible with count-
ing communication methods in TAG [12], Synopsis Diffusion [14],
and CountTorrent [10].

To simplify the description, the sensing range of these nodes are

treated as circles. It should be noted that the accuracy of our method
only depends on the size of the area, not the shape of the area. In
case of irregular sensing areas, methods proposed in [9] shall be
used to obtain the size of sensing areas.

This work assumes spatial distribution of targets within the area
is known (e.g., complete spatial randomness, spatial aggregation or
spatial inhibition). Without loss of generality, we use Poisson dis-
tribution [20, 15, 2] as a concrete exemplary distribution to present
our methodology through the paper. We expect our high-level idea
can be applied to non-Poisson distributions, although mathematical
derivation would be quite different.

Under the Poisson distribution, targets are uniformly distributed
in the area of interest with intensity of A. The A value can be ei-
ther known a prior or estimated online (as we explain later). The
probability that there are k targets in the region s of size S can be
computed as follows:

—AS k
P(N(s) = k) = # (1

Suppose there are in total N sensor nodes. The i;;, sensor node v;
whose sensing area is circle C; has detected n; targets in its sensing
range, where 1 < i < N. Suppose the N sensing circles of these
nodes divide the whole area into M non-overlapping subareas. Each
subarea, My, where 1 < k < M, may belong to one or more circles.
As aresult, each circle is the union of a subset of all these subareas.
We say My C C; if M}, is within the subset of the i, circle C;. If
we further use N(M}) to denote the number of distinct targets in
subarea My, we will have the following equation:

ni=N(G)= Y N(M). )
M CC;

Since the subareas are non-overlapping, the total number of distinct
targets detected by the N sensor nodes (denoted as 7') will be equal
to the sum of the number of targets in each subarea, which can be
computed by the following equation:

N M
T=N(JC) =) NMy). 3)
i=1 k=1
The objective of this work is to find the probability mass func-
tion (pmf) of the total target count 7 in Equation (3), given
the individual counts »; from all nodes, with low computation
complexity. Particularly, the probability that the total number of
distinct targets equals to 7 given the count information can be ex-
pressed as

P(T =t|N(C1) =n;,N(C2) =na,--- ,N(Cy) = ny). 4)

C1 C1

C2 C2

a) Two-Target Case b) One-Target Case

Figure 1. A simple example:Two-Circle Case

We start with a simple example as shown in Figure (1). Two
sensor nodes v; and v, whose sensing circles are C; and C; divide
the whole region into three subareas: M, M, and M3. Suppose
both of sensor nodes detect one target, there are two possible sce-
narios as shown in Figure( 1a) and Figure( 1b). The objective is to



calculate the probability that there are in total two (or one) distinct
targets in this area, respectively. For simplicity, we define notation
< myp,mp,m3 > as the joint probability that M| has m targets, M>
has my targets and M3 has mj3 targets. An example is shown as
follows:

< 1,0,1 >=P(N(M,) = 1)P(N(M3) = 0)P(N(M3) = 1). %)

Using the definition of conditional probability, from (2), (3) and
(4), we get,

~ P(T=2,N(C1)=1,N()=1)
a P(N(C1 =1,N(C2) = 1)
_ P(N(My) = 1,N(M3) =0,N(M3) = 1)
YL POINM) = 1=k, N(Ma) = k,N(M3) = 1 —k)
B <1,0,1>
Y o<l—kk1—k>
<1,0,1>

<1,0,1>+<0,1,0>" ©®
The penultimate equality holds because M, M, and M3 are non-
overlapping subareas and the numbers of targets in these subareas
are independent random variables. Since each term in Equation (6)
can be computed using Equation (1), we can finally compute the
probability for any given ¢ and thus compute the conditional pmf of
the total number of distinct targets.

Noting that all the terms in the denominator of Equation (6)
(< 1,0,1 >and <0,1,0 >) are the probability of possible solutions
that satisfy the count condition of all circles (N(C;) = 1,N(C2) = 1)
while the numerator (< 1,0, 1 >) is the probability of the only so-
lution that satisfies both the count condition and the total number
of distinct targets condition (N(C;) = 1,N(C2) =1, T = 2). Sim-
ilarly, we can derive the equation for a more general case, i.e., for
a region that has been divided into M subareas by N sensor nodes,
Equation (4) can be computed as

P(T =t|N(C1) =n1,N(C2) =na,--- ,N(Cy) = nn)
P(T =t,N(C1) = n1,N(C2) = na,--- ,N(Cy) = ny)
P(N(C1) =n1,N(C2) = na,--- ,N(Cn) = ny)

Limyeans) <mymy, - my >

= @)
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where < mj,my,--- ,my > is defined similarly as before, but
extended to a more general case, {my} denotes the set of
{mi,ma,--- ,;my}, {m} € A means for each term in the denomi-
nator, the corresponding {my} satisfies the count condition of the
N circles so that it is a solution to a set of equations A defined as
follows:

Yacey Mic = ni
Yycc, M =n2
A: : : (8

Yoy Mk = Ny
N(Mk) =m>0,VI<k<M

Also, for each term in the numerator, the corresponding {n }
satisfies both the count condition and the total number condition.
As a result, each {m]} is a solution to both A and B where A is
defined in Equation (8) and B is defined as follows:

B:m+my+---+my=t )

Algorithm 1 Enumeration Algorithm

Input: G and C;
Output: pmf of total target counts T
: fork=1toMdo
UB(my) = max{n;} where My C C;
end for
D —0,N(t) < 0,V possible ¢
for every possible my,my,---,my do
if my,my,--- ,myy is a valid solution to A then
d ;L PON(My) = my)
D D+d, typ =Y my
8: N(tsum) = N(tsum) +d
9: endif
10: end for
11: P(T =1|C; = n;) = Y1)

A

4 Complexity Analysis

In order to determine the conditional pmf of the total number of
distinct targets T, we need to compute the probability in Equation
(7) for every possible value of 7. Several interesting observations
can be captured from Equation (7). First, the numerator is actually
a subset of the denominator for a particular value of ¢. All these
subsets are disjoint and sum to the denominator, which is consis-
tent with the fact that all the values of the probability mass function
sum up to 1. Second, in order to compute the denominator, we need
to solve the equations of A and try to find all the solutions. As a re-
sult, the complexity of computing the probability for a single value
of ¢t is exactly the same as computing the whole probability mass
function since we need to find all the solutions to A anyway. Third,
since all the variables in A are non-negative integers, we have to ex-
haustively list all the solutions of A. Based on these observations,
we develop an algorithm using an exhaustive enumeration-based
method to compute Equation (7) as shown in Algorithm (1).

The complexity of finding the conditional pmf using Algorithm
(1) can be computed as

M
fi=0(]JUB(m)) (10)
k=1

where UB(my) is defined as the maximum possible number of tar-
gets in subarea M}, and can be computed as

UB(my.) = max{n;} where M. C C;. (11)

Obviously, f is an exponential function of M. Remember M is
the number of non-overlapping subareas divided by the N circles.
As a result, M would be much greater than N. For example, even
in a linear network where sensor nodes are uniformly deployed, M
is almost twice of N. Exponential complexity makes it prohibitive
for Algorithm (1) to obtain an accurate count in large-scale sensor
networks, using a reasonable amount of time.

S Partitioning Design

In the previous section, we have concluded that a large M value
makes the computation time intolerable, which also indicates that
reducing M can significantly reduce computation complexity. Fig-
ure (2) shows that N circles belong to two disjoint groups G; and
G» at initial deployment time. We note this deployment rarely hap-
pens in a dense network, however, we use this example to show the
power of partitioning in reducing complexity. Suppose the numbers
of subareas in G| and G; are Mg, and Mg,, respectively. Since Gy



G1 G2

Figure 2. An Example of Natural Partitioning Case

and G, are disjoint, the total numbers of distinct targets in G| and
G (denoted by 77 and T3) are independent random variables. As
a result, we can compute the pmf of T and T, separately and then
combine the two functions to compute the pmf of T which is equal
to the sum of these two independent random variables: T = T + T>.
The method used to combine two independent distributions can be
found in textbooks [3] and will not be discussed. Here we are inter-
ested in how much complexity can be reduced by partitioning. It’s
clear that the complexity of the combination process is the prod-
uct of the sizes of the sample space of G; and G,. This value is
negligible compared to the complexity of the enumeration process.
Thus, the total complexity of this method can be computed in Equa-
tion (12).

M, M +M;
L=0(JWBm))+ [] UB(m)). (12)
k=1 k=M +1

If the values of M| and M; are similar in G and G», f> is much
less than f, especially when M is large. Let’s compare f> with fj
using the example shown in Figure (2). Suppose all sensors detect
n targets for simplicity. If we compute the conditional pmf using
Equation (7) directly, the cost is O(n??). If we compute the pmf for
G and G, separately and then combine them to get the total, the
complexity according to Equation (12) is O(n'!). Generically, if
multiple disjoint groups exist in the area and the maximum size of
each group G; is bounded, the computation complexity is:

MAX

f3 =0 [] UB(my))

k=1

13)

where MAX is the maximum number of subareas of each group.
It’s obvious that the f3 is a polynomial function of M.

5.1 Deleting Zero Count Circles

In the previous section, we have shown that disjoint groups re-
duce the complexity significantly. However, given a space covered
by sensor nodes, it’s not always the case that the circles are disjoint.
Therefore, it is necessary to partition the nodes into groups as well
as compensate for the loss of accuracy caused by partitioning.

Recall that < mj,my,m3 > is defined as the probability that
M has m targets, M, has my targets and M3 has mj3 targets.
Since N (M} )s are all independent due to the fact that Ms are non-
overlapping, the decomposability of < m,my,m3 > can be easily
derived from Equation (5) as follows:

<mp,my,m3 >
= <myp,mp,*x > %, k,m3 >
(14)

where the symbol “*” means the number within the corresponding
subarea can be any value. Based on this property, the effect of

= <mypykk >k Mo,k >k, ok, m3 >

Figure 3. Deleting a Zero Count Circle

eliminating a zero-count node can be studied.

Suppose node vy, whose sensing circle is C; as shown in Figure
(3), detects zero targets, which means n; = 0. It’s possible that
there still exist other zero-count circles besides v; but they would
not affect the discussion here. From Equation (2) we have

np = Z meO.
M CCy

5)

Suppose there are z subareas in C;. (z =5 in the example
shown in Figure (3)). For simplicity, these subareas are named as

my,my,--- ,m;. Equation (15) then becomes
Z
k=1

Note that Equation(16) is also an equation in A. Since all the mys
are nonnegative, all the solutions to A satisfy the condition that
my = 0,V1 < k < z, which can be easily interpreted as the num-
ber of targets in any subarea within circle Cy should be zero. Based
on this, Equation (7) can be further rewritten as

P(T =tIN(C) = n1, - ,N(Cy) = ny)

/ / /
Z{m}{}E(AﬂB) <my, My, My >
Yimyea <mi,my,--c my >
- ):{,”L)E(AHB)<m’],~»,m£,*,~»,*><*,»~,*,111£+1,»»»,m;w>
o Ympea <mpyce Mgk see o Sk e ko mg g iy >

<0,--- 30>Z{m;€}€(AﬂB) <ok, 7*7m;+1a"' am;v[>

<07 70>Z{mk}€A ke K Mg 1,00, My >
Z{ml’(}e(AﬂB) < m;+1a T 7m514 >
= . an
Z{mk}EA < Mgy, ,my >
The last equality holds because < 0,---,0 > is a constant value

which can be computed using Equation(1) and hence is canceled
out in the function.

From Equation(17) we can conclude that deleting a zero-count
node does not cause any loss of accuracy since the result in Equa-
tion (17) is the same as the computation in a similar network where
C) is excluded. As a result, given a number of sensor nodes, the
zero-count circles can be deleted first before computation. There
are two major benefits from doing this. Firstly, by deleting the
zero-count circles the number of subareas is reduced. Reducing M
further reduces the complexity as we have discussed before. Sec-
ondly, the whole graph can sometimes be partitioned into groups
by deleting these circles, especially when there are several zero-
count circles. If the circles can be divided into groups that are not
overlapping with each other as G; and G, shown in Figure (3), the
complexity can be significantly reduced.
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Figure 4. The Corresponding G(V, E) of Figure (3)

5.2 Partition with Balanced Minimal Cuts

In the previous section, we have shown that deleting a zero-count
node simplifies the computation without losing accuracy. In this
subsection we describe how to divide a sensor network into several
balanced groups, each with bounded number of subareas, while in-
curring minimal loss of accuracy. Our solution is based on observa-
tion that we have less uncertainty in number of counts, if 1) the size
of the overlapping area between different groups is small, and/or 2)
the number of targets in the overlapping area is small.

With the consideration of the complexity of cutting and future
compensation algorithm, our partition algorithm is recursive and
pairwise optimal. The network is firstly divided into two groups,
one of which has a bounded number of subareas. If the size of the
other group is still out of range, the partitioning algorithm is applied
again until all groups have bounded number of subareas and their
pmfs can be computed separately. The algorithm is described in
more detail in the next few subsections.

5.2.1 Optimization Objectives

Based on the layout of overlapping areas, a sensor network can
be modeled into a topology G(V,E), where V is the set of the N
sensor nodes vy, v2,---,vy and edge ¢;; exists between node v; and
v; if and only if the sensing areas of the two nodes v; and v; overlap
with each other. The weight of the edge e;; is decided by both the
size of overlapping area and the count values of nodes v; and v;.
Formally,

Eij_eji_{W(VSij,ni,nj) C,ﬂCj;A(Z) (18)

0 CiNC; =0

where rs;; is the percentage that the overlapping area between cir-
cles i and j out of the total area of circle i and circle j, W is an
increasing function of rs;;, n; and nj, respectively. A good exam-
ple of W is W(rs;j,ni,nj) = rs;j x (nj+n;j). Figure (4) shows the
corresponding G(V, E) of the sensor network in Figure (3).

If we partition G into two subgroups G; and G,, we can define
the objective function f,; as the sum of the weights of all the edges
cut by the partition. More precisely, f,5; can be expressed by the
following equation:

fobi="Y eij. (19)

vi€Gy
VjEGz

The objective is to find a partition that minimizes f,;.

5.2.2  Partition Algorithm

We develop a partition algorithm based on the Fiduccia-
Mattheyses (FM) Algorithm [5]. For a given graph, the goal is
to find a partition that divides the circles into two groups and mini-
mizes f,p; as described before. We bound the size of the first group
G so that the pmf of T1 can be computed directly. We apply the

BR: V4 Vs; Locked: V3
Cutting Size: 1; Gain: -2-2-10-1

BR: vV,
Cutting Size: 2; Gain: 001 -2 -1

Step 3

BR: vy V3; Locked: V; V3
Cutting Size: 3; Gain: 02 10-1

Step 4

BR: V3 Vs; Locked: V; V3 V4
Cutting Size: 3; Gain: 02 -101

Step 5

BR: V3 V4; Locked: V| V) V3 V4
Cutting Size: 3; Gain: 00 101

BR: V1 Vy; Locked: Vi V2 V3 V4 Vs
Cutting Size: 2

Bass®E s pass stops since all Solution

vertices are locked.

Choosing the one that has
the best cutting size and
start the next pass.

Partition in Step 2 is selected
as the initial partition of the
next pass

—)

Figure 5. An Example of Partition Algorithm

partitioning algorithm to G, recursively, until the size of G, is small
enough and we can compute the pmf of 7> directly as well.

We name the objective function f,; as the cutting size since it
denotes the total weight of cutting edges by a partition. The size
of G| should always be smaller than the maximum size such that
the pmf of T1 can be computed directly. The size of each group
should also be greater than a minimum size in order to maintain the
accuracy of counting. These requirements on the size of the two
groups are termed as the balance requirements (BR). The goal of
our algorithm is to find a partition that has the minimum cutting
size while satisfying the balance requirements.

As shown in Figure 5, the partition algorithm consists of several
iterations, called passes. Each pass has several steps. In each step,
a vertex that has the best gain is selected and moved to the other
group. The gain of a vertex represents how much the cutting size
can be reduced by moving this vertex to the other group. A vertex
can be only moved once in a single pass and BR should always
be satisfied. A single pass process stops when all vertices have
been moved once or moving any unmoved vertex violates BR. Then
the best partition (the one has the minimum cutting size) during
the whole pass is selected as the starting partition of the next pass
process.

An example of how the first pass works in a simple network is
shown in Figure (5).

e Step 1: Initially, the vertices are divided into two groups ran-
domly as shown in Figure (5) where vy, v» belongs to one
group and v3, v4 and vs belong to the other. This is the start-
ing partition. Before performing any moving, the gain of each
vertex is computed. Suppose all the edges in the figure have
an equal weight of 1. Then for vertex vs, the gain of moving
it to the other group is 1 since the cutting size changes from 2
to 1. The gain of all the other vertices can also be computed in
this way. We use (0, 0, 1, -2, -1) to denote the gain of the ver-
tices v, v2,Vv3,v4,vs. Suppose the BR in this example requires



Algorithm 2 Partitioning Algorithm

Input: G and C;

Output: Partition Py, : {G1,G2}
I: Pyy < {G1,G2}  %random initial partition
2: {V} « all vertices in G or G,

3: repeat
4:  index < 0; Pyjg = Prew
5:  repeat
6: Compute the gain for all the vertices in V
7: v < An unlocked vertex satisfies BR and has the maxi-
mum gain
8: if v € G| then
9: G +— G —v;Gy—Gy+v
10: else
11: GL—Gi+v;Gy—Gr—v
12: end if{record partition for each step}
13: Pyave[index+ +] — {G,Ga}

14: until no vertices in V can be moved

15:  Puew < A minimum cutting partition in Psgye
16:  Unlock all vertices

17: until P,j; == Py

the size of each group should be no less than 2. Due to this
requirement, v and v, can not be moved since it violates BR.
Based on these observations, v3 is selected to move to the other
group since it has the best gain. It is also marked as locked af-
ter it is moved. A locked vertex can not be moved any more in
the following steps during the current pass process.

e Step 2: In step 2, the gain of each vertex is updated. vy, vs
can not be moved in this step due to the balance requirement
although v4 has the best gain. v3 can not be moved either since
it has been locked. As a result, v; is selected to move to the
other group although its gain is negative, i.e., moving v, makes
the result worse.

e Other Steps: Similar process continues until Step 6 when all
vertices are locked.

e Selection and Unlock: The partition in Step 2 is selected as
the starting partition of next pass process since it has the small-
est cutting size. All vertices are unlocked, ready for next pass.

A pass, which includes the above steps, repeats itself until there
is no positive gain from moving any more, i.e., the partition se-
lected at the end of a pass is the same as its starting partition at the
beginning of this pass. Then this partition is the final partition of
the algorithm.

In the example shown in Figure (5), the output of the second pass
process is the same as its starting partition which is the partition in
Step 2 in the figure. This partition is the final result. The whole
process of the algorithm is shown in Algorithm (2). The complexity
of this algorithm is O(n?).

6 Accuracy Compensation

In Section 5, we described how we can partition using minimal
cutting. We can reduce the computational complexity to a certain
level by setting the maximal size of each subgraph to a threshold
MAX. However, partitioning leads to loss of accuracy. In this sec-
tion, we propose two methods to compensate for the loss of accu-
racy caused by partitioning.

We start with an example shown in Figure (6). In this figure,
there are 10 circles in total. Suppose there is no zero count circle

Figure 6. An Example of Partitioning

as in this example. Using the partitioning algorithm described in
Section 5, we can identify the best place of the first partitioning
should be between C; and C,, where there is only one overlapping
subarea denoted as M as shown in the figure. Then the whole
graph will be divided into two groups with the six circles on the left
belonging to G and the four circles on the right belonging to G».

We can compute the pmf of the total number of distinct targets
for G| and G, (denoted as 77 and 73) separately. If we estimate the
final pmf by simply combining the pmf of 71 and 7> assuming that
they are independent, there would be two main factors making the
result inaccurate.

1. Ty and 75 are actually dependent since the two groups have an
overlapping subarea M.

2. The targets in subarea M, are counted twice since they belong

to both G and G>.
We propose two methods to compensate for the errors caused by

these two factors. The first method compensates for errors by de-
ducting the pmf counts in the overlapping area, called Partitioning
Compensation Minus (P.C.Minus). The second method compen-
sates by adding the pmf counts in the overlapping area, called Par-
titioning Compensation Plus (P.C.Plus). P.C.Minus is simple and
efficient for complex topologies and extremely large-scale, while
P.C.Plus achieves high accuracy with more overhead.

6.1 Partition Compensation Minus

A major factor that will cause the result to be inaccurate is that
the targets in the overlapping area of the two groups have been
counted twice. In order to eliminate such an error, we need to esti-
mate the number of targets in the overlapping area and then subtract
them from the final result.

As discussed in Section (4), the cost of computing the true pmf
of the number of targets in the overlapping area (denoted as Tj,) is
no less than the cost of computing the pmf of the total number of
targets within the whole network. We only include a certain number
of circles in the computation of T;,; in P.C.Minus. As shown in
Figure (6), we can only include C; and C; in the computation of
the pmf of T,;. We can also include C3, Cg and other circles in the
computation. The more circles that are included, the more accurate
the result is and the more computation overhead. However, if we
include circles that are too far away from the overlapping area, the
computation cost increases much faster than the accuracy we gain.
This is because the further circles are away from each other, the
less correlated they are. The number of subareas included in the
computation of 7,; should also be no greater than MAX which is
defined as the group size. In a small-scale network, this requirement
can be satisfied since the size of overlapping subareas is usually
small. However, in a large-scale complex network, more circles are
clustered and more subareas will be included in a partition. The
number of circles that are included in the computation of 7;,; would
be large. In this case, future partitioning would be needed and the



Algorithm 3 Partitioning Compensation Minus (P.C.Minus)

Algorithm 4 Partition Compensation Plus (P.C. Plus)

Input: G, G2, My,

Output: pmf of total target counts T

: {C;} — minimum set of circles cover all overlapping subareas
of G and G,

2: M, < sizeof {C;}

3. if M,; < MAX then

4:  C, « the nearest circle from overlapping subareas

5: My — sizeof ({Ci} +Cy)

6.

7

8

—_

while M, < MAX do
{Gi} —{G}+C,
: end while
9: else
10:  compute 7T;; by future partitioning
11: end if
12: Compute the pmf of T| directly
13: Compute the pmf of T, directly or by future partitioning
14: Compute the final pmf of T
where T =T+ T, — Ty,

pmf of T, will be computed recursively as the pmf of T>. Based on
these analyses, we develop the algorithm of P.C.Minus as shown in
Algorithm (3). In essence, it first obtains the pmf of Ty, T>, T,; of
G1, G and M respectively. The pmf of total count T is calculated
asT=T1+1—-T,.

6.2 Partition Compensation Plus

The P.C.Minus algorithm reduces the duplicate count in the
overlapping area and gives a certain level of compensation to the
final result. However, it doesn’t solve the problem that 77 and 7>
are not independent. Moreover, T;; is also not independent with
Ty and T;. In order to improve accuracy further, we develop the
P.C.Plus method in this section.

We start with a simple assumption that both of C; and C;
have detected one target. The number of targets in the overlap-
ping subarea M; will have only two possibilities: N(M;) = 0 and
N(My) = 1.

We define C} = C; —M; and C;, = C; — M. C} and C} are both
partial circles excluding the overlapping subarea M;. For a fixed
N(M1) = my, the count information of C}] and C), can be derived
from the following equations:

N(C}) =N(Cr) = N(M1)

N(C3) =N(C2) = N(My). (20)

Figure 7. P.C.Plus Method

We further define G| = G| — M, and G = G> — M where G|
and G, are disjoint as shown in Figure (7) and the corresponding 7/
and T, are independent. We use 7} (m;) and 7, (m;) to denote the
counts in G’1 and G/z, respectively, under the condition that there are

Input: Gy, Gy, My
Output: pmf of total target counts 7

1: Gll =G —-M{—Mr,—---— My,
IZZGz—Ml—Mz—“'—Mk

2: Compute the pmf of {N(M;),--- \ N(My)}

3: for each {mj,--- ,m;} do

4: Update count information for the remainder of overlap-
ping circles

5: end for

6: Compute the pmf of T and T,

7: Compute the pmf of T (my,--- ,my)

where T'(my,--- ,mg) =T + Ty +mi +-- - +my
8: Compute the final pmf:

T =3 P(N(M) =my,-- N(My) =mg) < T(my,--- ,my)

m; targets within M. The pmf of T{ (m) and T (m; ) are computed
for each particular m,, using the count and size information of C’,
Ch. Similarly, T (m;) denotes the total count under the condition
that there are m targets within M. Finally, T can be expressed as
follows:

T = PN(M;)=0)(T{(0)+T3(0)+0)

+P(N(My) = 1)(T{ (1) + Ty (1) + 1)

where P(N(M;) = m;) denotes the probability that there are m;
targets in subarea M. From Equation (21) we could see that if we
find the pmf of N(M;) we can compute the final pmf of T by enu-
merating all the possible m; values, computing the pmf of T} (m;)
and T, (m;) for each m; and then combining them with different
weights P(N(M}) = my).

In the general case when there are k overlapping subar-
eas M|,M;,--- , M, the process is quite similar. The pmf of
{N(M;),N(M3),--- N(My)} is computed first. Then, for a
particular value {N(M;) = m,N(Mz) = my,--- , N(My) = my},
the count information of the overlapping circles are updated.
T(my,--- ,my) can then be computed by simply combining the two
independent random variables T} (my,--- ,m) and T, (my,--- ,my)
plus the sum of {my}. The pmf of T can be computed as the sum
of these T'(my,--- ,my) values with different weight. The algorithm
for the general case is shown as Algorithm (4);

It’s not difficult to find that the P.C.Plus method has eliminated
error caused by both of the two factors. The only inaccuracy comes
from the estimation of the pmf of overlapping subareas. If we com-
pute the pmf accurately, the complexity will be no less than the
complexity of computing the final distribution. Like in P.C.Minus,
only a subset of circles are included in the computation of the pmf
of {N(My), -+, N(M)}.

Since the only error comes from the estimation of the pmf of
the overlapping area, we can adjust the level of accuracy by in-
creasing the number of circles in the computation, regardless of the
maximum size of each group. The complexity also increases as the
required level of accuracy becomes higher and higher. In the ex-
treme case, when all circles are included to compute the pmf, there
would be no loss of accuracy, however also no savings of computa-
tion. In practice the maximum size is still fixed to MAX in any pmf
computation.

The P.C.Plus algorithm works well when the topology is simple
and the intensity A is small, i.e., there are not too many overlap-
ping subareas and the numbers of targets within most circles are
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small. Otherwise the complexity will be too high because we need
to compute 7} and 7, multiple times for every possible value of
my,my,--- ,mg. The times we repeat on computing the pmf of the
same block is exponential with respect to the number of overlap-
ping subareas. It is also exponential with respect to the average of
my. As a result, the complexity is too high when the topology is
complex and when A is large although we have already reduced the
complexity to a polynomial function of M. However, P.C.Plus is a
very good algorithm when used in a network with simple topology
and moderate intensity as shown in the evaluation.

7 Evaluation

In this section we compare the performance of each algorithm
in terms of both accuracy and computation overhead in different
scales of networks consisting of 10 to 1000 nodes. If not speci-
fied, the nodes are randomly generated into a 2D unlimited space.
Targets are also randomly generated with equal probability every-
where. In subsections (7.1), (7.2) and (7.3) we assume that the
intensity A is already given in order to compare the accuracy of
computation affected only by choosing a different algorithm. In
(7.4) we show simulation results using an estimated A instead of
the real one. In (7.5) we study the scenario when target distribution
is not uniform.

7.1 On Small-Scale Networks

In this experiment, we compare the performance of different al-
gorithms in small-scale networks, where ten sensor nodes are over-
lapped with each other with a total number of subareas M = 20.
The size of each sensing circle is set to 9 units and the total cov-
erage of these ten sensor nodes is 63 units. The true number of
distinct targets in the region is 12 which corresponds to A a2 0.2.
The reason that we study this small-scale scenario is to compare

Figure 12. Average Runtime vs. A

Figure 13. Runtime vs. Network Size

the pmf estimated by each algorithm with the true pmf directly,
which is impossible in large-scale networks since the true pmf of
Equation (7) is always too complex to compute.

Figure (8) shows a typical example of the pmf's with the ground-
truth count of 12, using four different methods: Direct Computation
(D.C.) which corresponds to (i) the True pmf in the figure, (ii) Par-
tition Method with P.C. Plus, (iii)Partition Method with P.C. Minus
and (iv) Partition Method without any compensation at all (P.O.).

Compared with the True pmf in Figure (8), P.C. Plus gives the
most accurate result that the pmf it computes is almost the same as
the True pmf. P.C. Minus is less accurate than P.C. Plus, but is still a
good estimation. The pmf computed by P.O. has a horizontal shift
of about 2 due to the fact that the targets within the overlapping
area have been counted twice. If we simply estimate the number of
targets by adding the numbers reported by each node, we will get
17, which is worse than any of these methods. .

We run similar simulations 200 times. In each simulation, A is
fixed to 0.2 and targets are randomly regenerated to make the count
information different. The expected values of T (denoted as E(T))
are calculated from the pmf computed by the four methods. The
average absolute error of E(T') is compared in Figure (9). Note that
the true expected value of T in each simulation is around 12, from
which we can see the accuracy of P.C.Minus with a relative error of
about 0.8% and P.C.Plus with a relative error of 0.3%.

Figure (10) shows the average runtime comparison (in log scale)
between P.C.Plus, P.C.Minus and direct computation for various As
from 0.07 to 0.21. We don’t include P.O. in the comparison here,
because the complexity of P.O. is almost the same as that of P.C.
Minus. From Figure (10), we can see when A &~ 0.2, the runtime
of P.C. Plus and P.C. Minus are less than 1% of the runtime of
direct computation. Compared with the results shown in Figure (8)
and Figure (9) we can conclude that P.C. Plus is the best choice in
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small-scale network.

7.2 On Large-Scale Linear Networks

We place 100 nodes linearly. We study linear networks in or-
der to compare the performance of both P.C.Plus and P.C.Minus,
which is similar to the reason we study small-scale networks. The
size of each sensing circle is still set to 9 and the total coverage is
around 600. We vary A from 0.01 to 0.2 (The expected number of
targets in the region varies from 10 to 130). Since this is a large-
scale network where M is around 200, the True pmf is no longer
available. As a result, the average expected value of T is compared
in the evaluation.

For each A, a fixed number of targets are generated randomly.
Three partition methods (P.C. Plus, P.C. Minus and P.O.) are used
to compute the pmf of T. Then E(T) is calculated and recorded.
We run similar simulations 200 times for each A and compare the
average of E(T) with the true number of targets generated in the
simulation.

Figure (11) shows the comparison of average E(T) computed by
each algorithm. It also shows the estimation by the naive method
of simply adding up all the count information which corresponds
to the “UB” in the figure. From the figure we can see that in terms
of average expected value of 7', both P.C. Plus and P.C. Minus give
a very good estimation while P.O. has a higher expected value as
expected. However, P.O. is still much better than the naive method.

Figure (12) shows the comparison of average runtime of P.C.
Plus and P.C. Minus. Again P.O. is not included in the figure since
it almost has the same runtime as P.C. Minus. From the figure we
can see that as the intensity A increases, P.C. Plus has a greater
increase in runtime since it suffers too much from repeatedly com-
puting the pmf of the same block. The runtime of P.C. Minus also
increases when A increases, but much slowly than P.C. Plus. From
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these observations we conclude that in large-scale linear networks,
P.C. Plus is a good choice when A is moderate while P.C. Minus is
the best choice when A is large.

Figure (13) shows the runtime of P.C. Minus for networks con-
sisting of different numbers of sensor nodes from 100 to 1000 when
Ais fixed to 0.1. From the figure we can see as the number of sensor
nodes increases, the runtime of P.C.Minus increases linearly.

7.3 On 2-Dimensional Large-Scale Networks

We place 100 nodes randomly in a 2-Dimensional area. Since
the topology this time is too complex, P.C. Plus is too complex to
use since it needs too many iterations. As a result, only the per-
formance of P.C. Minus and P.O. are compared here, using similar
simulations as described in (7.2). Figure (14) shows the compari-
son of average E(T) when A varies from 0.01 to 0.25. It also shows
the estimation of the naive method UB. From the figure we can see
that P.C. Minus gives a very good estimation in terms of expected
value of T. P.O. gives a higher expected value as expected, but the
estimation is still better than UB.

7.4 Impact of Estimated A

In (7.1), (7.2) and (7.3) we use a given intensity A in the simula-
tion in order to compare the performance of each algorithm. How-
ever, the intensity information is sometimes not available. As a
result, A should be estimated using just the count information. One
way to estimate A is to sum all the count information and then divide
by the total area of the sensing circles, assuming that they are not
overlapping. For example, in the small scale network, if the count
information is {1,1,1,3,5,2,1,2,1,0} and the size of each circle is 9,
A can be estimated as A = %.

We repeat the simulation in (7.1) using estimated A in P.C. Plus,
P.C. Minus and P.O. while keeping an actual A in the direct com-



putation to obtain the result of the True pmf. Figure (15) shows
the pmf computation result in the same scenario as in (7.1), where
the count information is {1,1,1,3,5,2,1,2,1,0} and the true number
of target is 12. Comparing Figure (15) with Figure (8) we can see
the pmf computed by the three algorithms are slightly changed, but
P.C.Plus and P.C.Minus are still good approximations.

Figure (16) shows the average absolute error of the expected
value of T in small-scale network. From the figure we can see the
average absolute error increases when estimated A is not so accu-
rate. However, the difference is negligible due to the fact that E(T)
is around 12 and the relative error is extremely small especially for
P.C. Plus and P.C. Minus.

Figure (17) shows the absolute error of E(T') computed using an
estimated A with E(7T') computed using true A in large-scale linear
network. From the figure we can see P.C.Plus is the most robust
when A is inaccurate. The absolute error caused by the inaccuracy
of A only causes a very small difference of E(7T') which is negligible
due to the fact that E(T) is large according to Figure (11) and the
relative error is extremely small.

Based on all comparisons we conclude that our algorithm can be
easily applied to the real scenarios when the intensity information
of A is not available.

7.5 Impact of Non-Uniform Distribution

In previous evaluation we have shown that the P.C. Plus and
P.C.Minus can approximate the pmf of T very well, under the as-
sumption that the targets are uniformly distributed. However, it’s
not always the case that the targets are uniformly distributed with
the same intensity A everywhere. In this subsection we study the
case that targets are non-uniformly distributed, i.e., A in each sub-
area can be different. Again an estimated A is used in the computa-
tion of each algorithm.

We study large-scale linear networks to compare the perfor-
mance of all three partition methods. We divide the 100-node linear
network into 10 different sub-networks each of which has a random
intensity A value when we distribute targets. In the simulation, A is
estimated using the same technique as in (7.4). Figure (18) shows
the simulation results of average E(7T') in this scenario. From the
figure we can see in terms of average expected value of T, P.C.Plus
and P.C.Minus are both robust to change of distribution models.

8 Conclusion

The double-counting problem has been sufficiently addressed in
the context of communication, however, to our knowledge, there is
no existing solution for double-counting problem in sensing. This
paper presents an efficient and accurate method to estimate the
number of targets within a monitored area with duplicate counts
among adjacent sensors.

Using a partition method, we significantly reduce the compu-
tation complexity of calculating the probability mass function of
total counts. Using several compensation methods, we improve
the accuracy with adjustable computational overhead. This work
is theoretical in nature, however, it can be practically applied since
most sensor systems do not require precise counts, but reasonable
accurate estimations. As a result, statistical counting is a viable ap-
proach. To inspect whether our solution is practical with respect
to several assumptions we make, we evaluate the design with esti-
mated A values as well as non-uniform distributions. Results reveal
the accuracy of statistical counting degrades slightly when the true
A is unknown and targets are non-uniformly distributed. Through
extensive simulation over various kinds of network settings, we
demonstrate that accurate statistical counting within 1 ~ 3% rel-
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ative error can be obtained with orders of magnitude reduction in
computation, compared with the exhaustive enumeration-based ap-
proach. Without loss of generality, we use Poisson distribution as
a concrete example, we believe the ideas of partition with balanced
minimal cuts and accuracy compensation are applicable to other
target distributions as well.
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