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ABSTRACT

Breadcrumb systems (BCS) have been proposed to aid fire-
fighters inside buildings by communicating their physiolog-
ical parameters to base stations outside the buildings. In
this paper, we describe the design, implementation and eval-
uation of an automatic and robust breadcrumb system for
firefighter applications. Our solution includes a breadcrumb
dispenser with an optimized link estimator that is used to de-
cide when to deploy breadcrumbs to maintain reliable wire-
less connectivity. The solution includes accounting for reali-
ties of buildings and dispensing such as the height difference
between where the dispenser is worn and the floor where the
dispensed nodes are found. We also include adaptive power
management to maintain link quality over time.

Experimental results from our study show that compared
to the state of the art solution [14], our breadcrumb system
achieves 200% link redundancy with only 23% additional de-
ployed nodes. Our deployed crumb-chain can achieve 90%
probability of end-to-end connectivity when one node fails
in the crumb-chain and over 50% probability of end-to-end
connectivity when up to 3 nodes fail in the crumb-chain. In
addition, by applying adaptive transmission power control
at each node after the crumb-chain deployment, we solve the
link quality variation problem by avoiding significant varia-
tions in packet reception ratio (PRR) and maintain PRR of
over 90% at the link level.
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1. INTRODUCTION

Firefighter safety is a critical issue especially when fight-
ing fires in large buildings. Monitoring physiological para-
meters such as heart rate and stress of these first responders
in real-time can save many lives [5]. However, reliably trans-
mitting this physiological data to a base station outside the
building is a challenging problem. Existing solutions nor-
mally use one-hop communications and suffer from limited
transmission range since it is sometimes difficult for wire-
less signals to travel through complex infrastructures. One
promising approach to support reliable wireless communica-
tion is the so-called breadcrumb-based method spearheaded
by the Science and Technology Directorate of the Depart-
ment of Homeland Security [6] which allows a firefighter to
carry a small dispenser filled with sensor nodes and deploy
them one-by-one in a manner that guarantees reliable com-
munication. This paper describes the complete implemen-
tation and evaluation of a breadcrumb solution that auto-
matically dispenses sensor nodes to achieve reliable commu-
nication and high packet reception ratio. While this paper
focuses on reliable communication, it is important to note
that breadcrumb based solutions, in general, have other po-



tential major advantages over one hop radios, including: (i)
by adding sensors to the dispensed nodes it is possible to
map the fire, detect poison gases and smoke and help plan
egress routes, and (ii) with additional algorithms it might
also be possible to localize where firefighters are or where
events occur.

In current breadcrumb systems, while the research focus is
on the feasibility of an automated dispensing process, to date
ALL prototypes built require manual deployment. This in-
terferes with the firefighters’ main tasks and also takes longer
to deploy than a completely automated solution. Since fire-
fighters will wear the dispensers on their hips, but once de-
ployed nodes will be on the ground, there is a necessity to
account for this height difference and its affect on resulting
communication quality. Current solutions to account for the
height effect adopt conservative approaches which lead to re-
quiring a significantly large number of breadcrumbs. In this
paper, we consider this problem from an optimization point
of view. Given a limited number of bread crumbs available,
we address the problem of finding an optimized deployment
scheme that minimizes the number of bread crumbs while
maintaining high system reliability. The main contributions
of this work are:

e We propose an automatic and robust breadcrumb sys-
tem design and build a prototype system using 2.4 GHz
based hardware (see Figure 1 for dispenser (1) and
breadcrumbs (2 and 3)). To our best knowledge, this
is the first prototype system that implements a real au-
tomated deployment process for breadcrumb systems.

e We investigate the optimal redundancy degree that should

be applied in the system in terms of tradeoffs between
reliability and efficiency. Results from theoretical analy-
sis show that when the probability of physical node
failure is less than 25%, maintaining two links at any
time is the best choice.

e We compare the performance of various kinds of link
quality estimators in order to make the most timely
decision of when to deploy a new breadcrumb. Exper-
imental results reveal that the exponentially weighted
moving average approach outperforms other candidates
in terms of avoiding dropping too late.

e We propose a novel adaptive height-effect solver and
compare it to existing solutions. It is shown that
our approach is more efficient in utilizing breadcrumbs
while maintaining high system reliability.

e To maintain reliable communication after deployment
we use an adaptive power control scheme where trans-
mission power is dynamically adjusted to track dy-
namic environmental changes.

The remainder of this paper is organized as follows. We
compare our work with state of the art in Section 2 and
present the system requirements in Section 3. The detailed
system description is presented in Section 4. The implemen-
tation and evaluation for our system are discussed in Sec-
tions 5 and 6, respectively. Finally, we conclude the paper
in Section 8.

Figure 1: Automatic breadcrumb system in action,
with a dispenser (1) and breadcrumbs (2 and 3)

2. STATE OF THE ART

Although firefighter sensor systems are an active area of
research, the challenges of designing such reliable, efficient,
and automated platforms have only been explored partially.
This type of system normally includes two parts [11]: Fire-
fighters automatically deploy sensor nodes along their paths,
effectively establishing an ad-hoc infrastructure for position-
ing, sensing and communication; and then firefighters inter-
act with this sensor network by way of wearable computing
equipment and receive navigational information on a head-
mounted display or over a headset.

Previous system design mostly focused on the second part,
by designing various kinds of wearable components that can
be conveniently carried by firefighters. For example, the
FIRE project [2] aims at designing new technologies such as
small head-mounted displays (HMDs) for firefighting, and
conducting experiments and exploratory research with fire-
fighters. It basically includes three sub-projects: SmokeNet
to design pre-deployed WSN for detecting fires; FireFEye to
equip firefighters with head mounted display units; and e/CS
to provide visual display showing resource allocation, per-
sonnel location and firefighter biometrics. Similarly, the
SIREN project [10] provides reliable communication among
firefighters using a WiFi-enabled PDA with a built in mote.
The mote collects data from motes which are pre-deployed in
the building to inform the firefighter of hazards and imme-
diate danger. Pre-deployed motes also serve as location bea-



cons that allow firefighters to navigate through the building.
Other similar systems include LIFENET [11] and MHMD
[18]. However, these first attempts of designing firefighter-
assisting sensor systems rely heavily on pre-existing net-
works in the on-fire building, which is an invalid assumption
at least in the near future. Thus, researchers have recently
become more interested in the first part of system design
we mentioned above, which is, how to deploy relaying nodes
automatically and rapidly to maintain reliable communica-
tion between firefighters inside the building and base stations
outside of the building.

There are now three categories of deployment approaches:
no deployment, static deployment, and dynamic deployment.
By no deployment, a firefighter usually carries a radio and
communicates with the outside world within a single hop.
One example system of this kind is the P25 system [4]. The
main drawback of this approach is that due to hardware lim-
itation, firefighters will inevitably lose their connections to
the base station as they climb to tops floors in a tall build-
ing. Static deployment adopts a simple rule such as distance
or time of the last deployment. However, simple static rules
do not capture the wide variety of radio implementations,
including different radio types, antenna types, and trans-
mission power levels, all of which affect transmission range.
More importantly, static deployment rules do not adapt to
different channel propagation environments. For example,
the range in an office corridor might be very different from
that on a factory floor [14].

Compared to the first two methods, dynamic deployment
is the most impressive as well as challenging. It monitors
the run-time link quality and automatically deploys a new
relay node whenever the communication metric (like PRR,
RSSI, LQI, etc) satisfies some predefined rules. [14] was the
first work to investigate the feasibility of dynamic bread-
crumb deployment to extend the range of wireless commu-
nications, based on a stable PRR-RSSI mapping they ob-
served in indoor environments. In this work, a mobile de-
vice on the firefighter probes the channel periodically and
measures link quality of measurement response. If filtered
measurements of link quality (based on a moving-average
approach) are less than a threshold, deployment of a new
node is triggered. The system is evaluated by experiments
with Mica2 motes and a PDA. Several following works from
NIST consider measuring link quality using a SN R based
approach [17], interference avoidance [13], and UWB indoor
localization techniques [9, 8].

However, there are several disadvantages of the NIST work.

First, it needs human involvement such as deploying new
breadcrumbs by hand and reading the PDA messages fre-
quently. These activities are undesirable in real applica-
tions. Second, the NIST system only evaluates the case
with no redundant breadcrumbs, which results in a fragile
crumb chain. Due to the harsh environment in an on-fire
building, physical failure of breadcrumbs is likely to occur
and the death of any one breadcrumb leads to the failure of
the whole system. Third, the link quality monitor they use
is not appropriate and we will explain it in detail in later
sections. Finally, they use an uniform threshold for all envi-
ronments and ignore the different characteristics in various
locations like hallways, corners, and stairways. This lack of
optimization makes it less efficient in using a limited number
of breadcrumbs.

The main differentiators of our proposed system over all
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Figure 2: Breadcrumb system architecture.

the related work is in the sense of viewing the bread crumb
based sensor system performance from an optimization point
of view while maintaining high reliability.

3. REQUIREMENTS

To provide reliable and efficient assistance to firefighters,
the breadcrumb sensor system must meet several require-
ments. First, it must provide a fast and automatic process
to deploy new sensor nodes when necessary without disturb-
ing the firefighters. This involves automatically monitoring
the real time link quality to ensure reliable data transfer, de-
signing a decision support system to identify when to drop
a node, and automatically deploying new crumbs physically
(e.g. using a dispenser with springs or rotation-enabled de-
vices).

Second, the system must support reliable end-to-end com-
munication in a consistent manner. Thus, each dropped
crumb in the existing chain must be able to connect to the
base station through more than one route to overcome the
high possibility of physical failure of relay nodes due to harsh
environments inside the building.

Finally, as firefighters only have a limited number of bread-
crumbs carried at any given time, the system should be op-
timized to extend the overall transmission range as much as
possible, to reduce the risk of disconnections as they move
further away from the base station.

4. SYSTEM DESIGN

We propose a new breadcrumb system that consists of:
(1) an optimized redundancy degree for breadcrumbs, (2)
a decision support system for wireless link estimation that
decides when to drop additional breadcrumbs, (3) a height
effect solver to handle the gap in link quality after bread-
crumbs drop from the dispenser, and (4) an adaptive trans-
mission power control to handle link quality variation prob-
lems in harsh environments. These components together
address the specific requirements outlined in Section 3, and
provide reliable and efficient means of automatic and robust
breadcrumb deployment for in-door firefighter applications.
Figure 2 illustrates the architecture of our proposed solu-
tion. We describe the overall system design and individual
components in the following subsections.

4.1 Solution Overview

We first describe the application scenario and how our
proposed system is used for firefighter applications. Our



goal is to establish a breadcrumb chain that can relay the
physiological data from the body sensors on firefighter to
base stations outside the building. Each firefighter carries
m breadcrumbs in his crumb dispenser and our system auto-
matically deploys a breadcrumb whenever connection to the
deployed breadcrumb trail is getting weak. As firefighters
run into the building, breadcrumbs are deployed automati-
cally on the fly. Our deployment policy requires that each
crumb keeps “good communication” with at least n+ 1 other
crumbs at any time in order to have redundancies to tolerate
crumb failures. Here, n represents the redundancy degree of
each crumb. Note that the selection of redundancy degree
requires a trade-off between the number of breadcrumbs de-
ployed and end-to-end reliability of the crumb-chain.

As the firefighter moves on for rescue work, the link qual-
ity between the dispenser on the firefighter and the bread-
crumbs becomes weaker. The decision support system is
used to monitor and estimate the link quality and make op-
timal decisions on when to deploy a new breadcrumb. Here
the meaning of “optimal” is two-fold. First, the decision
support system should be able to keep the packet reception
ratio (PRR) of breadcrumbs above a predefined threshold.
Second, it needs to avoid unnecessary breadcrumbs deploy-
ments, so as to efficiently use limited breadcrumbs to cover
maximum distances.

Another key factor that needs to be taken into account
while deciding when to deploy new breadcrumbs is the height
effect. Since the dispenser (and the link estimator inside the
dispenser) is normally placed at the waist of the firefighter,
thus there is a gap between the estimated link quality and
the actual link quality after the new breadcrumb is deployed
on ground. For example, our experiments reveal that a new
breadcrumb may fail to join the crumb chain even when
PRR is 90% at the dispenser at that moment a breadcrumb
is being dropped. Solutions must be proposed to eliminate
this height effect and we call our solution the height effect
solver.

After the new breadcrumb is deployed and joins the crumb
chain, the link quality between this new crumb and its n
neighbors may vary due to the dynamic impact from the
environment. We propose an approach tailored to this sit-
uation: adaptive power control. More concretely, the newly
deployed breadcrumb is able to adaptively increase its trans-
mission power according to real-time link quality estimation
so as to achieve more reliable link communication.

In summary, the combination of these four techniques pro-
vides a practical and optimized breadcrumb system to help
firefighters communicate with base stations outside an on-
fire building. Next, we introduce individual components of
the system.

4.2 Redundancy Degree Optimization

Redundancy degree(RD) n refers to the number of re-
dundant neighbors that each breadcrumb keeps in touch
with at any moment. For example, if the dispenser always
maintain “good” communications with at least three bread-
crumbs, then the RD is set to be two. Previous works, such
as [13, 14], only evaluated the situation in which the RD
is zero, however, we argue that the RD must be some pos-
itive value to make the breadcrumb system practical in a
harsh environment. Figure 3 describes the theoretical reli-
ability of a crumb-chain when the RD is one. It shows the
probability of end-to-end connection under various number
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Figure 3: Probability of maintaining end-to-end con-
nection when redundancy degree = 1, assuming in-
dependent and identically distributed node failures.
It can be observed that even when four breadcrumbs
are broken in a crumb chain of twenty nodes, there is
still approxzimately 50% probability of end-to-end con-
nection for the crumb chain.

of node failures in a breadcrumb chain of length 20, 30, and
50 nodes. When the number of node failures varies from
one to ten, we observe that even when four breadcrumbs
are broken in a crumb chain of twenty nodes, there is still
approximately 50% probability of end-to-end connection for
the crumb chain. This demonstrates the necessity of some
positive RD to make the whole system more robust and re-
liable.

On the other hand, over engineering the network by ap-
plying a very large RD is not desirable. Given a limited
number of breadcrumbs in total, the system must efficiently
use available resources to extend the transmission range as
much as possible. Moreover, end-to-end delay time may suf-
fer a lot due to continuous retransmission and received data
packets are more likely to be corrupted. Frequent retrans-
mission also leads to unnecessary energy consumption and
shorter lifetime for breadcrumbs.

To represent the tradeoff between reliability and efficiency,
we propose the following metric, «, to describe how system
reliability benefits/suffers as the RD various. Let n be the
RD and L be the length of the crumb chain, then « is defined
as:

L

> P(k) - Survive(k) (1)

k=1

1
n+1

in which P(k) indicates the probability that k& breadcrumbs
are dead in the breadcrumb chain, and Survive(k) is the
probability that the breadcrumb chain can still maintain
end-to-end connection when k breadcrumbs are dead. Thus
the left side of the equation, «, represents the tradeoff be-
tween reliability and efficiency; it is defined by the ratio
of system reliability gain to the efficiency degree, which is
the right side. The system reliability gain is represented
by the sum of probability to maintain communication links
when node failure occurs, and the efficiency is measured by



01 015 02 025 03 035 04 045 05
Probability of Node Failure (Pg)

Figure 4: Comparison of metric a with different RDs
when L = 10, as po varies from 0.1 to 0.5. It clearly
shows that when po is less than or equal to 25%, set-
ting the redundancy degree to one is the optimal trade-
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Figure 5: Double scout algorithm illustration.

the number of breadcrumbs that a dispenser communicates
with, which by definition is n + 1.

Let us assume that the event that each breadcrumb in
the crumb chain fails are independent and identically dis-
tributed, and satisfies the regular binomial distribution with
coefficient po. Then the function P(k) becomes:

P(k) = (i) w0 (1=po)"™" L)

Figure 4 shows the comparison of different redundancy de-
grees in an example situation where the length of the crumb
chain is ten. Metric « for different cases of pg are plotted.
We observe that for a fixed redundancy degree, the metric o
first goes up as po increases to some extent, and then begins
to drop asymptotically linear to po. In addition, the metric
a for the RD = 1 case is around 30% better than that for
the RD = 2 case when pg equals to 0.1. As pg increases,
the differences become smaller and finally a for the RD = 2
case is better. This makes sense since when breadcrumbs are
not vulnerable or fragile, it would be wasteful to use many
redundant breadcrumbs. It clearly shows that when pg is
less than or equal to 25%, setting the redundancy degree to
one is the optimal tradeoff. We argue that physical failure
of breadcrumbs can be controlled to a low percentage (still
positive though) by improving hardware design. Thus, in
most cases we should set the redundancy degree to be one.
We refer to this algorithm as the double-scout algorithm.

Figure 5 illustrates how the double scout algorithm works.
A firefighter always keeps “good” communication with two
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Figure 6: Double scout algorithm observation.

breadcrumbs. If there are more than two “good” commu-
nications available, two of the best link quality nodes are
selected. Whenever there only exists at most one “good”
breadcrumb connected to the firefighter, a new breadcrumb
is deployed. Again, whether the communication between a
breadcrumb and the firefighter is “good” or not is determined
by the decision support system which we will investigate in
detail in the next subsection.

To show how the double scout algorithm operates at the
dispenser side, we conduct some experiments on the double
scout algorithm by placing two breadcrumbs on the floor and
move the dispenser far away from them. Figure 6 shows the
real time RSSI values of packets that the dispenser receives
from the breadcrumbs. The threshold is set to —85 dBm and
it can be observed that the weaker link reached the threshold
after around 120. Then a new breadcrumb is deployed. We
observe that there is always a strong link and another weaker
link between a firefighter and the crumb chain.

The place of deployment for the second breadcrumb is
crucial to the overall pattern of the final crumb chain. To
further improve the link quality as well as packet reception
ratio, we apply the “Max-min” optimization on the double
scout algorithm by deploying the second breadcrumb in the
crumb chain carefully so as to make the breadcrumb chain
more even. Given the threshold, denoted by t1, used by the
decision support system, we move the third node in between
two end nodes with threshold ¢; to find the point of threshold
to with the best fairness. Imagine a breadcrumb chain with
deployed nodes numbered 1, 2, and 3, then ¢; means the
RSSI between 1 and 3 and t2 means the RSSI that is used as
an indicator of where we should place breadcrumb 2 between
1 and 3.

4.3 Decision Support System

As one of the most important components in the bread-
crumb system, the decision support system monitors the link
quality of all communications and determines when to de-
ploy a new breadcrumb based on some predefined rules. The
decisions it makes are extremely crucial to the system perfor-
mance, since false-positive deployments (dropping too early)
lead to decreased efficiency while false-negative deployments
(dropping too late) result in poor end-to-end communica-
tion or even disconnections. Additionally, decisions must be
made in time to represent dynamic change of link quality
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and to support a fast deployment process, so heavy-weight
and time-consuming algorithms are not desirable in this sit-
uation. There are four categories of candidates based on the
metric used to monitor link quality: Received signal strength
indicator(RSSI), link quality indicator (LQI), signal-to-noise
ratio (SNR), and packet reception ratio (PRR).

A RSSI-based link quality monitor collects run-time RSSI
values of received data packets and makes decisions using fil-
tering techniques. The validity of this approach is proved by
experimental results showing a stable RSSI-PRR mapping
in indoor environments in stationary cases [14, 15]. How-
ever, we claim that the filtering approach using mean RSSI
values in a sliding window used in previous works is inappro-
priate. The main reasons are that it considers all packets
in the sampling window to have the same weight regard-
less of their temporal order, thus cannot represent dynamic
link characteristics. Also it is tricky to set an appropriate
window size because of the accuracy-to-timeliness tradeoff.
Finally, the accuracy is further decreased since lost packets
are ignored. Instead, we observe that RSSI-related metadata
may help construct a more accurate and efficient filter. The
metadata includes max/min, median, deviation,and expo-
nentially weighted moving average. Figure 7 shows the ex-
perimental data of PRR and metadata in an example trace
in which the communication device is moved far away from
a breadcrumb on the floor until the connection is lost. The
RSSI value for lost packets are set to be —100 dBm. It can
be clearly seen that the metadata has some relations with
the PRR and may help in making decisions.

LQI is a characterization of the strength and/or quality of
a received packet [1]. The LQI value is limited to the range
0 through 255 and can be produced by the RSSI value [3].
In recent years researchers have been arguing about whether
RSSI or LQI is a better representation for link quality [16].
We argue that LQI is not desirable in off-the-shelf hardware
such as ¢c2420/2430 radio stack, since each RSSI value cor-
responds to a fixed LQI value and LQI equals to zero for each
RSSI that is below —80. This makes the decision support
system less accurate since it is possible that the PRR is still
around 90% while the LQI approaches very small numbers,
as shown in Figure 8.

SNR-based measurements takes advantage of physical layer
signal-to-noise ratio for estimating run time link qualities.
[17] shows that the SNR-based estimators are more effi-
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Figure 8: Relationship between LQI and PRR. The
results indicate that the PRR is still around 90% while
the LQI approaches very small numbers.

30 35
40t

45 2,
-50
55
60 -}
65 -

70
75
80 -
K

40
50 1.

N
60 .

RSS! Value

T,

RSS! Value (dBm)

. X "
0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400
Time (0.25) Time (0.25)

A
45 f 45 \lx
g %0 ERRTS
S S5 FE 3 55
@ ¥ @ 60
g W, g -
o o

85 L { 85 -
70 "f A ' ,{I",‘x\ | 70 - \‘\J“V/‘V\N
75 H ﬁh V.""‘\,,; 75 -
80 0

0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400
Time (0.25) Time (0.25)

Figure 9: Mean estimator. Window size is 1
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cient than PRR-based packet counting methods in terms
of the number of measurements needed, and are more ac-
curate when link quality variability increases. However, an
important requirement of the SNR-based estimators is hav-
ing a priori knowledge of the SNR-PDR relationship, which
is unavailable for almost all buildings. This mapping is also
both environment and hardware dependent. PRR-based ap-
proaches also suffer from problems like pattern recognition.
Different patterns of “received/lost” strings with the same
PRR value may reflect different real time situations and
those pattern recognition algorithms are too heavy-weight
to be applied in practice.

Based on the above analysis, we choose to exploit RSSI-
based metadata and propose four candidate link quality es-
timators for the decision support system:

e MEAN estimator — This is used in previous work [14].
A new breadcrumb is deployed if the mean RSSI value
of received packets in a sliding window with size N is
below a threshold Ty. Figure 9 shows the effect of win-
dow size on the smoothness of the MEAN estimator.

e FEXP estimator — Exponentially weighted moving av-

erage approach associates two parameters: current weighted

value for RSSI Exzp and weight coefficient 3. Ezp is
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Figure 10: Height effect (stationary) on the floor. It
can be observed that there is a 5 to 10 dBm degrada-
tion in most cases and the variance is around 10—20%.

updated when new data packets with RSSI value R
arrive using the formula below:

Exp=(1-p)-Exp+3-R (3)

Compared to the MEAN estimator, the EXP estima-
tor better reflects the dynamic characteristics of link
quality by assigning heavier weight to more recently
received packets. Additionally, it only requires record-
ing two variables for each source instead of an array of
RSSI values, so a lot of storage is saved.

o RANGE estimator — The last two estimators are based
on the following observation: Link quality variation
becomes very large in some complex environments such
as where consecutive building corners are close to each
other. In this case, the communication is likely to be
lost even when the average performance is not that
bad. Thus, we need to monitor the RSSI deviation as
well. RANGE estimator makes use of the Max/Min
value in the sliding window to detect false-positive or
false-negative cases caused by noisy points.

e Median estimator — Another way to deal with noisy
points is to use median value instead of mean, as used
in many other scientific fields. The median estimator
monitors the median RSSI value in a sliding window
as well as RSSI deviation and drops new breadcrumbs
in a similar way to other estimators.

4.4 Height Effect Solver

Height effect refers to the gap between the estimated link
quality at the dispenser’s height (usually at the waist of
the firefighter) and the actual link quality at the crumb’s
height (on ground) after deployment. This is an important
issue in practice in terms of reliability. For example, if the
threshold of the decision support system is set to —85 dBm
and there is a gap of 10 dBm due to the height effect, then
the newly deployed breadcrumb is unable to join the crumb
chain and the whole breadcrumb chain will be in trouble
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Figure 11: Comparison between locations of dis-
penser: Waist v.s. Ankle.

since the dispenser will then keep shooting out unhelpful
breadcrumbs while the reliability becomes worse and worse.
In this subsection, we investigate whether there is a consis-
tent and constant degradation in link quality between an ex-
isting breadcrumb and the dispenser or the newly deployed
breadcrumb.

To assess the height effect, we conducted a series of ex-
periments using several breadcrumbs and a communication
device we built. We first measure the degradation in link
quality in stationary cases. One receiver is placed on the
ground acting as the existing breadcrumb and one dispenser
is hooked on the waist of a firefighter. RSSI values between
them are recorded while their distance varies from 10 feet
to 90 feet. Experiments are repeated by placing the trans-
mitter and receiver at different places on the floor to protect
against the effects of fading. Then the transmitter is placed
on the ground and the same experiments are conducted.

Figure 10 shows the difference of RSSI with error bars for
cases in which the transmitter and receiver are at different
distances from one another. It can be observed that there is
a 5 to 10 dBm degradation in most cases and the variance is
around 10 — 20%. This indicates that applying a fixed offset
on the original threshold may be a reasonable solution.

An alternative solution is to put an extra relay node at
the ankle. This new node acts as link quality monitor and
reports all results to the dispenser which is still at the waist.
However, we argue that this approach is not desirable. First,
this increases the overall complexity of the breadcrumb sys-
tem and error propagation. Second, the communication be-
tween the new relay node and the dispenser becomes another
tricky problem and suffers from problems like shadowing.
Finally, our experimental results in Figure 11 show that the
RSSI values between the new node and an existing bread-
crumb have extremely large variations and are not reliable
when the link quality becomes weak.

Based on above analysis, we propose a novel technique
called adaptive threshold adjustment that solves the height
effect problem. The principle behind this new approach is
the temporal and spatial locality. The idea is to dynamically
configure the offset that is applied to the threshold used in
the decision support system, by recording the latest gap after
a new breadcrumb has been deployed. For example, when



the original threshold is set to —85 dBm and the current
gap is 5 dBm at some moment, the actual threshold for
deploying new breadcrumbs is then —80 dBm. A newly
deployed breadcrumb then records the RSSI value as —88
dBm after it joins the crumb chain and sends this result to
the dispenser. Finally, the dispenser updates the gap to be 8
dBm and the corresponding threshold for deploying the next
breadcrumb as —77 dBm (calculated as (—80) + ((—85) —
(—88)) = (—77) dBm). We evaluate the performance of
the adaptive threshold adjustment algorithm and compare
it with other possible solutions such as applying fixed offsets
in Section 6.

4.5 Adaptive Power Control

Adaptive power control (APC) is designed to handle link
quality variation problems in harsh environments. APC
further enhances the system reliability by enabling bread-
crumbs to increase radio transmission power in the crumb
chain when connection between two crumbs gets weak due to
link quality variations. This is motivated by the fact that af-
ter a new breadcrumb is deployed and joins the crumb chain,
the link quality between itself and the rest of the chain may
satisfy the normal distribution centered with the threshold
value determined by both the decision support system and
the height effect solver. It is likely that if using the default
transmission power, the new breadcrumb will be unable to
maintain high quality link because of link dynamics.

Adaptive Power Control is a lightweight algorithm to: 1)
make every node in a sensor network find the minimum
transmission power levels that can provide good link qual-
ities for its neighboring nodes, and 2) dynamically change
the pairwise transmission power level over time as observed
link quality varies. Through adaptive power control, we can
maintain good link qualities between pairs of nodes with
in-situ transmission power control. We evaluate how this
approach helps optimize the crumb chain in Section 6.

The adaptive power control scheme works as follows: When
a breadcrumb is deployed, it begins to estimate pairwise link
qualities between its neighbors by monitoring the RSSI value
of received packets. If the RSSI value is higher than a “high
set point”, which is a predefined threshold to maintain re-
liable communication, a negative feedback message is sent
to request its neighbor to decrease transmission power level
by one. On the other hand, if the RSSI value is lower than
a “low set point”, then a positive feedback message is sent
to request its neighbor to increase transmission power level
by two [12]. Note that currently the adaptive power control
is only at the breadcrumb side and it includes the idea of
topology control as breadcrumbs may increase their power
level when their link quality with neighbors becomes weak.

5. PROTOTYPE

We designed several custom hardware modules to accom-
modate the specific needs of the breadcrumb system. Fig-
ure 12 shows a family of hardware designed for evaluating
our breadcrumb system. The hardware components of the
system are as follows:

e Dispenser — The dispenser is designed to be light-
weight and able to be hooked on the waist of firefight-
ers. The current version can hold ten breadcrumbs
adequate for testing and evaluating the system in a
three-floor building. Figure 13 shows the dispenser

Figure 12: Breadcrumb system hardware prototype.

with one breadcrumb placed in a slot in a turntable.
When the decision support system determines to de-
ploy a new breadcrumb, the turntable starts to rotate
until one breadcrumb is dropped out from a hole at
the bottom of the dispenser, which allows for fast and
automated deployment in real time. Figure 13 shows
the microprocessor in the dispenser.

e Breadcrumbs — Each breadcrumb is a quarter-size
mote powered by a lithium battery. It is placed in
a covered box to be protected in the harsh environ-
ment. Current prototype of breadcrumbs are powered
with a standard 3-volt, 560 mAh lithium battery cell
from Panasonic. The battery is capable of running
each router communication node at full power for 3
hours.

e Base Station — The base station is a USB-ported
device connected to a laptop computer. This device
can also be programmed using the evaluation board
through a serial-port connector. The base station acts
as the end device to receive data packets sent by the
aggregation device on the firefighter’s side through the
breadcrumb chain, and stores the data to the database
on the laptop.

e Fwaluation Board — The SmartRF04EB evaluation
board from Texas Instruments Inc. is used to pro-
gram the hardware (breadcrumb, dispenser and base
station) using IAR programming environments.

Note that we do not use any PDA-like devices in our proto-
type systems as previous work did. According to the system
requirements described in Section 3, firefighters should not
be involved in dropping breadcrumbs since they are likely to
be distracted from their rescue work. Instead, the processing
unit embedded in the dispenser automatically drops bread-
crumbs based on the decision support system.

5.1 Zigbee Protocol

We choose to base our implementation on Zigbee [7] be-
cause Zigbee networks offer advantages over other network-
ing technologies such as Bluetooth and WiFi:

e Lowest power usage since the specification was de-
signed for low power and low data rate communica-
tions for battery powered devices;

e Lowest cost due to wide industry acceptance and adop-
tion;



Figure 13: The dispenser with a breadcrumb inside.

Figure 14: Microprocessor of the dispenser.

e Built using non-proprietary standardized hardware and
software;

e Allows built in encryption for secure communications.

Table 1 compares the advantages and disadvantages of
various networking technologies.

Table 1: Comparison of existing wireless technolo-

gies.
Name Standard || Cost Power Bandwidth
Zigbee | 802.15.4 Low Low Low
WiFi || 802.11 High High High
Btooth || 802.15.1 Medium || Medium || Medium

In real world applications, wireless communication sys-
tems must function in an environment containing interfer-
ence from other wireless devices, appliances, and machinery
as well as overcome losses due to construction materials and
building topologies. The calculation of typical path loss is
critical to determine the required transmitter power as well
as a measure of the number of routers needed to blanket
a building for reliable communications. Table 2 shows the
various path losses for an indoor office environment with
soft partitions at several distances across the same floor and
through one floor.

As shown in the previous table, using the 2.4 GHz frequency
would allow placing routers more than 50 meters apart on a
single floor in a building with soft partitions.

Figure 15: Breadcrumb prototype.

Table 2: Calculated path loss (dB) at various dis-

tances.
Distance (m) || on same floor || through one floor
10 65.6 91.8
20 73.4 99.6
30 78.0 104.2
40 81.3 107.5
50 83.8 109.9

6. EVALUATION

In this section we first describe the experimental evalua-
tion of three key system components: the decision support
system, the height effect solver, and the adaptive power con-
trol. Finally, we evaluate the overall system performance.
Overall, our main performance results are:

1. The Ezponentially weighted moving average (EXP) fil-
ter performs the best of the four candidate filters. Com-
pared to the MEAN filter, EXP achieves less than a
20% possibility of false-negative errors in both the re-
gression and prediction phases, which confirms our ob-
servations and analysis in Section 4.

2. The Adaptive height adjustment solution maintains an
average RSSI above the threshold in all trials and has
longer average distance than the conservative approach.

3. The Adaptive Power Control solution maintains a higher
link quality over time than using a fixed transmission
power and increases the likelihood of recovering unre-
liable links due to dynamic environmental changes.

4. Compared to the state of the art NIST work [14], our
proposed system achieves 200% link redundancy at the
expense of 23% additional deployed nodes. Our de-
ployed breadcrumb chain also achieves 90% probability
of end-to-end connectivity when one node fails in the
crumb-chain and over 50% probability of end-to-end
connectivity when up to 3 nodes fail.

6.1 Filter Evaluation

We first evaluate the performance of various filters we pro-
posed in Section 4.3: MEAN, EXP, RANGE, and MEDIAN.
The metric used for comparison is the packet reception ratio
(PRR).

The evaluation approach is as follows. Totally 30 data
sets are collected to evaluate these filters. The dispenser is
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Figure 16: Difference distribution in regression step for filters: MEAN, EXP, and MEDIAN.
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Figure 17: Difference distribution in prediction step for filters: MEAN, EXP, and MEDIAN.

hooked on the waist of one user, and the user begins to walk
at an approximately constant speed after one breadcrumb
is dropped. The runtime RSSI values between the dispenser
and breadcrumb are recorded until their connection is lost.
The sequence numbers of the packets are also recorded to
calculate the PRR at runtime and the window size is set
to 20. This experiment is conducted at six different starting
points to cover all environments including hallways, corners,
and stairways. The starting points are chosen to be the four
corners of the same floor as well as the top and bottom
of stairways. FEach experiment is repeated 5 times. Note
that the linkage between RSSI and distances is PRR. In
section 4 we studied the RSSI-PRR mapping and here we
convert it into optimizing the distances (determined by RSSI
threshold) while maintaining high PRR.

The data is then analyzed off-line using Matlab. The an-
alyzing process includes two parts: a Regression step and a
prediction step. In the regression step, the dropping point
(measured in distance) is calculated for each combination
of the coefficients used in each filter, and is compared with
the ground truth point (also in distance) which is defined as
the point where the PRR drops to 90%. Finally, the Least
Square Method is applied to find the best filter. The pre-
diction step divides the trials into 5 groups (one experiment
in each group), repeats the regression step for each 4 out of
5 groups, calculates the optimal coefficients for each filter,
and applies it to the last group and obtains the difference
between the estimated and ground truth dropping point.
Then the Least Square Method is applied again to compare
the performance of the filters.

6.1.1 Regression Step

Table 3 shows the results in the regression step. Results
for three metrics are displayed: Least Square Distance, Stan-
dard Deviation, and number of false-negative cases. Optimal
parameters in the results are as follows. In the MEAN filter,
window size is 30 and threshold is —89.8 dBm; in the EXP
filter, weight is 0.0313 and threshold is —81.8 dBm; and in
the MEDIAN filter, the window size is 35, the threshold is
—87.8 dBm, and the derivative is —22 dBm.

The first thing we observe is that the RANGE filter fails
during its execution. The reason is that the filter did not
decide to drop any new breadcrumb until the actual connec-
tion is lost in some traces. This fails to satisfy the reliability
requirements of breadcrumb systems.

We also see that the MEAN and MEDIAN filters have
similar performance in all three metrics. Both of them per-
form better than the EXP filter in terms of Least Square
Distance. However, we note that they suffer from a huge
problem of false negatives. In 30 trials, the MEAN filter re-
sults in 17 false-negative trials and the MEDIAN filter has
19. This implies that when applying one of these two filters,
there is more than 50% chance that the resulting PRR of
the new link in the breadcrumb link is below that prede-
fined threshold. In contrast, the EXP filter results in only 3
false-negatives, which is only 19% of that in the MEAN fil-
ter case. The dropping point differences for all 30 trials are
shown in Figure 16, in which the y axis means the distance
between the ground truth dropping point (last 90% PRR
point) and the dropping point calculated by the filters. For



example, a —5 value means the calculated dropping points
is 5 meters later than the ground truth dropping point.

Another observation worth mentioning is that on trials 6,
7, and 8, all estimators lead to a false-positive result as high
as 50 meters. This is because these trials go through complex
environments including consecutive corners and open-door
offices, and thus the link may become extremely unstable.
Therefore, although the final 90% PRR point of the ground
truth for those trials is around 130 meters, the estimators
decide to drop breadcrumb at around 80 meters because of
the complex environment.

Table 3: Comparison of filters: Regression Step.
MEAN || EXP RANGE || MED
LSD (m?) || 4038 11455 || Failed 4123
StdDev (m) || 10.93 14.60 | Failed 11.37
False-Neg 17 3 Failed 19

6.1.2 Prediction Step

Table 4 shows the results of the prediction step. Results
for Least Square Distance and number of false-negatives are
displayed. Similar trends as in the regression step can be
observed: the RANGE filter fails again; the MEAN and
MEDIAN filters have similar performance, and they perform
poorly in terms of false-negatives with 50% for each of them.
The EXP filter, on the other hand, has only 10% probabil-
ity of false-negative predictions, which shows it is still the
best candidate for the prediction step. The dropping point
differences for all 30 trials are shown in Figure 17.

Table 4: Comparison of filters: Prediction Step.

MEAN [ EXP [ RANGE || MEDIAN
LSD (m?) || 3940 10707 || Failed 3113
False-Neg || 15 3 Failed 15

6.2 Height Effect Solver Evaluation

We now compare the performance of the height effect
solvers that we proposed in Section 4.4. According to the
experimental results shown in Figure 10, we implement and
compare the following three candidates: fixed 5 dBm offset,
fixed 10 dBm offset, and adaptive offset.

The metric is the gap between the actual RSSI value of
crumb-to-crumb link and the RSSI threshold set by the de-
cision support system. We choose the EXP filter as the es-
timator of the decision support system based on the results
and analysis in the last subsection. Experiments are con-
ducted in several different trials and each trial is repeated
five times. In each trial five new breadcrumbs are dropped.

Figure 18 shows the results of using different height effect
solvers. Each bar value represents the average of five drops
in one trial, and the maximum and minimum differences are
also displayed. A negative difference means that the newly
dropped crumb has worse link quality than the predefined
threshold. We can observe that the conservative approach
of having a fixed 10 dBm offset results in a highly reliable
link, but has decreased average distance compared to the
adaptive approach, as shown in Figure 19. Having a fixed
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Figure 18: RSSI gap comparison of various height
effect solvers.
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Figure 19: Average distance comparison of various
height effect solvers.

5 dBm offset results in a more unstable link and is likely to
result in an unreliable breadcrumb chain, as evidenced by
trial number 5 in Figure 18. The adaptive approach results
in an average RSSI gap within 3 dBm for each trial as well
as an average deployment distance of 9.3 meters. These
results indicate that the adaptive approach leads to the best
solution with average RSSI above threshold in all trials and
has longer average distance than the conservative approach.

6.3 Adaptive Power Control Evaluation

The evaluation approach for adaptive power control in-
cludes two parts. First, we conduct a series of experiments
to validate the set point used in the approach. Second, the
adaptive approach is compared to using fixed transmission
power.

To validate the set point which is the threshold parameter
(—81.8 dBm) in the EXP filter calculated in Section 6.1, we
fix one transmitter and one receiver in many places in the
building, then the transmitter sends 500 data packets to the
receiver and both RSSI and PRR are recorded. The default
power level is set to 27. Various environments are covered
and five trials are done in each environment.

Figure 20 shows the average RSSI-PRR mapping in dif-
ferent environments. It is clear that the PRR is higher than
95% in all environments when the RSSI is set to the set
point, —81.8 dBm, which implies that this set point is ap-
propriate. We also observe that when RSSI is very low,
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the packet reception ratio varies a lot in different environ-
ments. The main reasons that PRR are quite different under
the same RSSI in different environments are obstacles and
multi-path fading.

We then compare the adaptive power control approach
against using fixed transmission power. A 10-minute con-
tinuous experiment is conducted to evaluate communication
quality over time. A breadcrumb is placed on the ground
and one person walks away until one breadcrumb is dropped
out of the dispenser. Then this newly dropped breadcrumb
begins to send packets to the previous one and the packet
reception ratio is recorded every 30 seconds.

Figure 21 shows the result of link quality. First, we ob-
serve that the initial PRR in the adaptive control case is
only 58% due to the multi-path fading effect. Then it in-
creases to 92% by adjusting the power level and maintains
a reliable link for the following nine minutes. On the other
hand, the link quality varies a lot when the power level is
fixed, for example, it drops to around 41% three minutes
after the link is established. The results indicate that adap-
tive control approach helps maintain a reliable wireless link
as well as recover from an unstable state.

6.4 Exploiting Reliability-Efficiency Tradeoff

After evaluating individual system components, the next
issue is the tradeoff between reliability and efficiency in our
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Figure 23: Trace for simulated rescue events.

system, i.e., how many more breadcrumbs are used in our
system than in related work by NIST [14].

A series of experiments are conducted in the building
of Computer Science Department of University of Virginia.
Figure 23 shows the path a firefighter walks. The base sta-
tion is connected to a laptop and located outside one en-
trance of the first floor of the building and the firefighter
walks along the path to the third floor. One user takes
the dispenser with breadcrumbs inside and enters the build-
ing. The decision support system monitors the wireless link
health and decides when to deploy a new breadcrumb. A
new breadcrumb is automatically dropped out of the dis-
penser when necessary and begins to relay data packets to
the base station.

The double scout algorithm is used and two breadcrumbs
are deployed at the start of the trace to initialize the Zig-
bee network. All breadcrumbs are placed in containers to
protect against the simulated harsh environments. Accord-
ing to our experiments, these plastic boxes (non-conducting
material) do not attenuate radio waves significantly.

Along the trace, the dispenser sends out request messages
periodically at the rate of 5 packets per second in order to
get responses from “active” breadcrumbs. Link quality infor-
mation is then recorded according to the identity of bread-
crumbs. Note that we did not try to find out the optimal
rate for sending request messages, since this optimal value
may be application-specific and thus does not have a general
answer. Moreover, the battery life of the nodes exceeds the
needed lifetime of the network in our experiments.

We integrate the double scout algorithm with the EXP
filter based decision support system and adaptive height ad-
justment, and compare our system to the approach in [14].
The parameters used in [14] are the same as used in our pa-
per, including mobile probe period 100 ms, averaging filter
length 20, RSSI threshold —77 dBm (—92 dBm minimum
value plus 15 dBm offset), and redundancy degree 0. Note
that the RSSI threshold is adjusted for 2.4 GHz hardware.
Parameters used in our system includes the results for EXP
filter from Section 6.1. We then apply each approach to the
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trace described in Figure 23 and each case is repeated five
times.

Table 5: Number of breadcrumbs dropped.
Trial number || 1 2 3 4 5

Our work 13 14 || 13 || 15 || 15
NIST [14] 10 || 12 || 12 || 12 || 11

Table 5 shows the results for number of breadcrumbs dropped

in the trace. We observe that the average number of bread-
crumbs used is 14 in our approach and 11.4 in the NIST
work, which indicates that we achieve 200% link redundancy
at the expense of 123% node redundancy. This is mainly
because of the filter selection for the decision support sys-
tem as well as the adaptive height control methods. In the
NIST work, the MEAN filter is more likely to result in late
dropping, so a more conservative threshold must be set in
order to maintain high PRR, therefore the average number
of breadcrumbs increases. Furthermore, they use a fixed off-
set to deal with height effect and the offset has to be set
conservatively too.

The logical network topology along with average PRR for
Trial 1 in our work is shown in Figure 22. It is clear that
11 out of 12 one-hop connections achieve more than 95%
PRR and even three-hop wireless links exist (1 — 4, 3 — 6,
and 5 — 8). We also observe that the PRR is only 69%
between breadcrumbs 4 and 6 and 67% between 8 and 10.
The main reason lies in the consecutive corners on the third
floor and the metal wall near the stairway of the first floor
(see Figure 23), which implies that complex environments
may have a big impact on link quality.

Finally, we compare our work with [14] in terms of system
robustness when breadcrumb failure occurs. Trial 1 in both
cases are selected and the results are shown in Figure 24.
We observe that our system has 90% probability to maintain
end-to-end connection when one breadcrumb fails, while the
NIST system has only less than 50%. Similar trends can be
observed when more breadcrumbs fail, which implies that
our system achieves better robustness than previous work.

7. DISCUSSIONS

Experimental results show that our automatic breadcrumb
system achieves better reliability-efficiency tradeoff and can
recover from unreliable wireless links. Our system is also
more robust to breadcrumb failures. However, there are
various opportunities to improve our breadcrumb system.

For instance, it would be interesting to further investigate
whether it is more desirable to use 2.4 GHz based or lower
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frequency hardware. Our current prototype uses 2.4 GHz
based hardware instead of lower frequency like 900 MHz due
to following reasons: First, by using a higher frequency, the
size of the antenna is significantly reduced. This largely in-
creases the possibility of having a lot of breadcrumbs placed
in a single dispenser. In addition, Zigbee is a mature proto-
col stack for 2.4 GHz based hardware. However, there are
some drawbacks for 2.4 GHz based hardware such as poor
penetration through walls and poor operation if a sprinkler
system is activated. It would be valuable to re-implement
our system in lower frequency hardware and compare the
performance with our current system.

Another interesting topic is to investigate the effect of dif-
ferent environments on the system performance. During the
evaluation process, we observed that both RSSI and PRR
perform differently under various environments, such as hall-
ways, corners, and stairs, and link monitoring algorithm can
be affected. This sheds some lights on further system op-
timization opportunities of setting different parameters in
various environments. Looking into the data and trying to
categorize is too complicated and beyond the scope of this
paper. In addition, all experiments in the evaluation parts
were repeated five times. During our experiments, we found
that the results are very consistent and this is the main rea-
son that we did not conduct more trials.

Moreover, we assume independent failure model in our re-
liability analysis while in practice consecutive breadcrumbs
may be destroyed due to harsh environmental realities like
collapsed walls. This is an open problem and hard to ad-
dress at this moment. In our opinion, one solution is to
increase the redundancy degree, so as to improve the sys-
tem robustness with best effort. Also adaptive power con-
trol can alleviate this problem by dynamically increasing



power levels of isolated breadcrumbs to get a better chance
to reconnect to the breadcrumb chain. In addition, the sys-
tem becomes more robust in multiple firefighter scenarios
because one group of firefighters can repair the destroyed
link of another group when they happen to pass nearby.

Finally, considering multiple firefighter coordination re-
sults in a more realistic and efficient breadcrumb systems.
All current work (including this paper) focused only on de-
veloping automatic and robust breadcrumb system assum-
ing uncoordinated firefighters. In practice, firefighters are
organized into small groups to execute different tasks and
sometimes enter the building from several entrances simul-
taneously. Systems and algorithms designed for a single
firefighter do not fit into this situation and lead to subop-
timal system resource (breadcrumbs) utilization as a result
of inefficient breadcrumb deployments. One example is that
a group of firefighters are running along a hallway, in an
uncoordinated scenario, the firefighter at the head of the
group drops breadcrumbs all the time because his system
always detects decreased link quality first. Later, when this
firefighter takes another separate route by himself, he finds
himself running out of breadcrumbs. Thus it is important
to investigate efficient and automatic firefighter coordination
algorithms to deal with multiple firefighters.

8. CONCLUSIONS

We have presented a new breadcrumb system deployment
scheme that supports automatic and robust deployment of
breadcrumbs for in-door firefighter applications. The sys-
tem is composed of four components: redundancy degree
optimization, decision support system, height effect solver,
and adaptive power control. Experimental results show that
compared to the state of the art work [14], our designed sys-
tem achieves better reliability-efficiency tradeoff and can re-
cover from unreliable wireless links. Our system is also more
robust to breadcrumb failures. In the immediate future we
have several items on our agenda, including leveraging mul-
tiple firefighter coordination and taking advantage of sensing
capabilities on breadcrumbs. Developing reliability models
for non-independent failures is another main task.
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