
Generalized Few-Shot Learning For Wearable
Sensor-based Human Activity Recognition

1st Lahiru Wijayasingha
Computer Science Department

University of Virginia
United States

lnw8px@virginia.edu

2nd John A. Stankovic
dept. name of organization (of Aff.)

University of Virginia
United States

jas9f@virginia.edu

Abstract—Few-Shot Learning (FSL) aims to create a classifier
which generalizes to classes not present in the training set
given just a few samples from each new class. Generalized FSL
recognizes samples from classes that are both present and not
present in the training set. We developed the first generalized
FSL system for Human Activity Recognition (HAR) based on
data from wearable sensors. This enabled the classification of
new human activities without the high cost of collecting data
and allowed for increased personal variation of performing
certain activities. We implemented prototypical networks and a
center loss based model for FSL. We trained and evaluated two
additional classifiers. The first one recognizes source classes and
the second determines if a target is from source/target domain.
We evaluated our model on three publicly available datasets
(UTWENTE, PAMAP2 and OPP) and showed that our methods
significantly outperformed the state-of-the-art on the FSL task.

Index Terms—component, formatting, style, styling, insert

I. INTRODUCTION

Human activity recognition (HAR) using wearable devices
has many applications including in fields such as healthcare,
security, entertainment and human-computer interaction [1]
[2]. Deep learning based methods are being applied success-
fully to solve this problem. However these models need a large
amount of data to achieve a high level of performance. Data
for common activities such as walking and running are easy to
obtain from public datasets, while data for activities outside
of those areas are difficult to obtain. For example, publicly
available data sets might not contain data for horse riding
or gymnastics because they are less common than walking.
Also, there may be certain personalized activities that are
unique to a certain individual. For example, the way certain
individuals cook may be different from others. Therefore data
for these activities are usually unavailable during the training
time. Unlike in the domain of computer vision, HAR lacks
data due to the difficulties in annotating data [3]. Consequently,
HAR models which can detect activities with very few training
samples are needed.

In Few-Shot Learning (FSL) setting, it is important to make
the distinction between source and target domain. Source
domain is a set of data samples from classes where data
is abundant (e.g. walking and running). Target domain is
data samples where only very limited amount of data is
available from each class (e.g. horse riding and gymnastics).
In the problems considered in this paper, target and source

domain classes are completely exclusive from one another.
FSL utilizes knowledge from source domain and generalize
this knowledge to classify the samples from the target domain
[4] [5]. To so this very few samples from the each class in
the target domain is used. For example, consider an HAR
system that is used to detect activities performed by an elderly
person living alone. This system may be trained with common
activities such as walking, sleeping, sitting and climbing stairs.
Now, the elderly person would like their device to recognize
other activities such as cooking, playing an instrument, doing
exercises, and walking with a mobility aid. It is impossible for
the manufacturer to account for all of these activities because
they may be personalized to each individual. For example,
each elderly person may be doing very unique exercises due
to injury or pain and the mechanics of walking with aid
depends heavily on the device used. The FSL system should
be able to be trained with just a few examples of these new
activities while being economical because the FSL system
will be running on the end user’s resource constrained mobile
devices.

A practical FSL solution should classify samples from the
target domain as well as the source domain. This is important
because while the user is interested in classifying the samples
from the target domain, it should not stop classifying samples
from the source domain. This task is called generalized Few-
Shot Learning (GFSL) and most FSL papers do not address it
[6]. Building a classifier for source domain is straight-forward
and in this paper we present the methods to train a FSL clas-
sifier to classify samples from the target domain and another
classifier to distinguish if a sample is coming from source
or target domain, which would make this a GFSL solution.
Although FSL has been applied in drug discovery, character
generation, robotics, image classification, gesture recognition
and neural architecture search [7], application of FSL in HAR
is very limited. Domains such as image classification has
the luxury of enormous datasets. In comparison, datasets in
HAR are minuscule. Therefore, FSL methods developed in
the image classification domain cannot be applied directly to
HAR.

We developed a generalized FSL solution for HAR using
wearable devices. Influenced by previous work on FSL [5]
we used a deep learning based embedding function to project
input data from wearable inertial sensors into an embedding



space. Previous work has shown that encouraging an embed-
ding model to generate features which are tightly clustered
around their respective class centroids improves their FSL
performance [5] [8].

We use two methods to reduce the intra-class distances
and increase inter-class distances of the embeddings. We use
center loss which is used successfully in facial recognition
systems [8] as our loss function. We also modified prototypical
networks, which is a popular FSL method [5] from the
literature. We generate embedding with these two methods
and used them to train CLSFSL

This paper is the first to demonstrate how to build a
generalized FSL solution for HAR. We ran experiments on
three publicly available datasets. Fine tuning was done on the
UTWENTE dataset [9] and evaluations were performed on
the OPP [10] and PAMAP2 [11] datasets. The methods on
average outperformed state-of-the-art FSL models by around
11% and 6% on the PAMAP2 and OPP datasets, respectively,
under FSL conditions.

II. RELATED WORK

Convolutional Neural Networks (CNNs) are proved to be
more robust to the changes in underlying data distributions
compared to Recurrent Neural Networks [12]. Fully Convolu-
tional Neural Networks (FCNs) have been shown to demand
less computational and memory cost while performing better
than other techniques when significant class imbalance is
present. Also, FCNs can accommodate variable input lengths
which makes it more suitable for processing various activities
with different duration. FCNs have been used successfully for
HAR with IMU data with above advantages evident [13] [14].

Lack of data for certain classes in HAR [15] can cause
probles such as performance degradation, overfitting and re-
duced robustness [16]. Lack of data could arise due to the fact
that there is more data for common activities such as walking
and running, but a limited amount of data for uncommon
activities such as grabbing a box [17] or certain classes being
simply unavailable during the development phase as described
in section 1. The significant time and labor costs related to
collecting data only exacerbates the problem [18]. In these
cases, the knowledge from the classes with many data samples
can be utilized to learn general knowledge that can be used to
classify rarely seen classes [18].

Unsupervised representation learning aims to generate
clustering-friendly embedding from input data without using
any labelled data. A common approach is to use an encoder-
decoder architecture to indirectly learn a low-dimensional la-
tent representation of the input data [19] [20]. After generating
clusters they may be mapped to an existing activity class using
a small amount of labelled data [19] [20]. Although unsuper-
vised representation learning has similarities to our problem,
we need a different solution to address the situation where we
have sufficient data from several classes and extremely limited
amount of data from some other classes.

Few-shot learning (FSL) is a machine learning technique
that specializes in learning from a few examples. It’s aim

Fig. 1. Operation of the FSL system

is to learn the ability to make inferences on new classes
not seen during training [5] [7]. FSL has shown its use in
several domains such as drug discovery, character genera-
tion, robotics, image classification, gesture recognition and
neural architecture search [7]. One popular example of FSL
is prototypical networks [5] where they learn a non-linear
mapping from input space to an embedding space. In essence,
prototypical networks aim to cluster the embeddings of the
same classes together while making the distance between
clusters of different classes further from each other. Similar
to prototypical networks [5], meta-learning [21] learns an
embedding function. These embeddings are then classified
with a SVM. Meta-learning optimizes the embedding function
using the loss obtained from the SVM classifier [21]. Most
of the FSL literature is only concerned about classifying
target classes but for a practical application, source class
classification may also be needed. Generalized FSL addresses
this problem by devising methods to classify both source and
target samples [6] [22] [23].

The research done in FSL in the HAR domain is limited.
In a FSL based HAR paper [18] a long short-term memory
(LSTM) model is used to extract features and classify activ-
ities. It was trained with data from source domain and the
network parameters obtained were transferred to the model
that classified samples in the target domain. For each sample
in the target domain parameters were only transferred from
similar classes to avoid negative transfer.

From the literature it can be seen that generating embedding
which have low intra-class variation and high inter-class
variation improved the FSL performance. We use center loss
along with softmax loss [8] to create such embeddings [8].
According to a taxonomy introduced by a survey on HAR [7],
our solution fell under model based methods which performed
task-invariant embedding learning. We also implemented pro-
totypical loss [5] with some modifications for the task of FSL
based HAR. The model FSHAR from early work on FSL
based HAR [18] is used as a baseline for comparison.

III. SYSTEM OPERATION

Fig. 1 shows the operation of our FSL system after it is
trained. Data flow is shown in Figure 2. A FSL embedding
function is denoted by f . CLSST distinguishes data from
source and target domain. CLSS classifies data in source
domain while CLSFSL classifies data from target domain.
We denote source domain data as S = {(si, yi)Ns

i=1}. Where
each si ∈ RD is the D-dimensional feature vector of a
sample. yi ∈ CS = {1, ..., |CS |} are the corresponding labels.
We divide S into Strain and Stest. We train the embedding
function f with data from Strain and perform testing on
Stest. While training, the source classifier CLSS is attached
at the end of f . CLSS is trained to classify the embeddings



generated by f into one of the classes present in S. The
error used in training CLSS is calculated from the class
probability generated by it. We learn an embedding function
f(., θsrc) : RD → RM using data from Strain which embeds
each sample si to an embedding σi ∈ RM . Here θscr is
the set of parameters of the embedding function f . This
process outputs embedded source data Σ = {(σi, yi)

Ns
i=1}.

These embeddings and corresponding class labels are used to
calculate a loss (explained in next section) which, in turn, is
used to train f using back propagation. FSL (CLSFSL) and
source/target (CLSST ) classifiers are trained with the data
from the user. In Figure 1, Xtest denotes a data sample to
be classified. This would be a multi dimensional vector of
IMU data. The embedding of the Xtest, f(xtest) is generated
with the trained embedding function f (CNN model). f(xtest)
is sent to CLSST . This outputs whether the input sample is
from a source class or a target class. If xtest comes from the
source data, f(xtest) is send to CLSS for classification. This
would give the probabilities of xtest being belonging to each
class in the source classes. If xtest belongs to target data,
f(xtest) is sent to CLSFSL which would classify it to one of
the target classes. When the user encounters new classes, the
system should be capable to incorporate these into the CLSST

and CLSFSL by retraining them. f and CLSS require no
modification after the initial factory training.

For the FSL tasks we have the data from target domain. T =
{(ti, zi)NT

i=1}. Where ti ∈ RD. zi ∈ CT = {1, ..., |CT |} are the
corresponding labels. We can generate the set of embeddings
from T by sending all ti ∈ T through the embedding function
f . This way we obtain T = {(τi, zi)NT

i=1} where each τi ∈ RM

and τi = f(ti, θsrc). To train the FSL classifier we extract K
number of samples from each class randomly from the data
in T. The number of classes in T is |CT |. This is considered
a |CT |-way-K-shot classification.

We extract K samples randomly from each label in T. We
build the FSL classifier CLSFSL with these data. We use rest
of the data in T for testing. To classify an unseen sample
(ttest, ?), we get the embedding of ttest as f(ttest, θsrc) =
τtest. Then CLSFSL(τtest) classifies the test sample ttest to
one of the classes in T . If the embedding function f embeds
the data to a lower dimension, that is if M < D, a simpler

Fig. 2. Training workflow

classifier can be built to classify the embedding of ttest into
a class. CLSFSL is preferred to be a simpler classifier since
the amount of data used to train CLSFSL is very small.

We build a source/target classifier CLSST to distinguish
samples from S and T . We select a K number of samples
from each class in both Σtest and T. We train CST with these
data. CST is tested with the rest of the data from Σtest and
T.

A. Calculating Class Centers
Both prototypical networks and center loss based networks

utilize class centers. Class centers for source data S can be
calculated as

CENTERk =
1

|Sk|
∑

(si,k)∈Strain

f(si) (1)

Here CENTERk is the center of class k. In prototypical
networks these centers are called ”prototypes” [5]. Center loss
paper calls them ”class centers” [8]. Ideally, the entire training
set Strain should be taken into account when calculating
the centers. But in practice, the centers are calculated only
considering mini-batches.

B. Prototypical networks
Prototypical networks from [5] use a neural network based

function to derive embeddings for input data. For each class in
S, they calculate a ”prototype” by taking the mean of the em-
bedding of each class as shown in equation 1. Given a distance
function d, prototypical networks generate a distribution over
classes for a sample point x based on softmax over distances.

pΦ(y = k|x) = exp(−d(f(x), CENTERk))∑
k′ exp(−d(f(x), CENTER′

k))
(2)

If x belongs to class k, the distance between the class center
CENTERk and x should be low and pΦ(y = k|x) value for
class k should be the maximum among all other pΦ(y = k′|x)
for all the other classes k′.

Learning aims to minimize the negative log-probability
J(Φ) = −logpΦ(y = k|x). Since f is a neural network, the
loss J can be used for training f by back propagation. Details
of the training procedure follows from prototypical networks
[5].

C. Center Loss
To create embeddings with low intra-class variation and

high inter-class variation, we use the center loss as described
in [8]. It is described as shown in the equation 3. The training
data were taken from source domain Strain.

LC =
1

2

m∑
k=1

||xi − CENTERi||2 (3)

Here m is the size of mini-batch. CENTERi is the center of
class of xi. The softmax loss for the mini-batch can be defined
by equation 4.

LS = −
m∑
i=1

log
eW

T
yi

xi+byi∑n
j=1 e

WT
j xi+bj

(4)



Algorithm 1 Training episode loss computation. CS is the set of classes
in source set. Ccl and Csl are the sets of classes selected to calculate
center loss and softmax loss. Here |Cs| = |Ccl|+ |Csl|. m is the number
of samples used to train per class. Sk denotes the subset of S where all
elements (si, yi) are such that yi = k. RANDOMSAMPLE(A,B) denotes
a set of B elements chosen uniformly at random from set A without
replacement.
Input : source set S = {(s1, y1), ..., (sN , yN )} where each yi ∈ Cs

output: The loss J for a training episode.
P =← RANDOMSAMPLE(Cs, |Ccl|)
for p in P do

Ap ← RANDOMSAMPLE(Σp
train,m)

CENTERp ← 1
m

∑
(si,yi)∈Ap

f(si)

CL← CL+ 1
2

∑
(si,yi)∈Ap

||f(si)− CENTERp||22
end for
for q in {{CS}\P} do
Bq ← RANDOMSAMPLE(Σq

train,m)
SM ← SM +

∑
(si,yi)∈Bp

softmaxloss(f(si), yi)

end for
J = SM + λCL

The final loss of the model is the summation of the two
losses with the hyperparameter λ to control LC

L = LS + λLC (5)

Note that in equation 3, Lc is the scaled average of euclidean
distance of data points from their class centroid. We use
euclidean distance as the distance measure. Research on FSL
with prototypical networks [5] show that euclidean distance
works better than other types of distances such as cosine
similarity for FSL problems.

We modified the training procedure to generate more gen-
eralized embeddings. During each training episode, a subset
of |Ccl| number of classes are selected from the mini-batch
which in-turn is extracted from CS . Samples in the mini-batch
belonging to Ccl are used to obtain the center loss Lc. The
rest of the data in the mini-batch is used to obtain the softmax
loss Ls. Pseudocode to compute loss J is shown in Algorithm
1. We use separate classes to calculate center loss and softmax
loss so that f would be adapted to unseen classes.

IV. EXPERIMENTAL EVALUATION

A. Dataset Information

We experiment on 3 publicly available HAR datasets. We
extract data from The Physical Activity Monitoring dataset
(PAMAP2) [11] and The Opportunity activity recognition
dataset (OPP) [10] as mentioned in literature [18] [12]. Com-
plex human activity recognition using smartphone and wrist-
worn motion sensors (the UTWENTE dataset) [9] contains 13
activities from 9 participants. We extract accelerometer and
gyroscope data from wrist-placed smartphones. This provides
us with time series data with 6 dimensions.

For each dataset we select certain classes as the source
and the others as the target. These target and source activity
splits are shown in Table 1. Note that the split of Datasets
PAMAP2 and OPP are the as same as the paper by Feng and
Duarte [18]. We create our own split for UTWENTE dataset.
To experiment with the effect of variations caused by users,
we divide the participants of PAMP2 and OPP datasets as
mentioned in Feng and Duarte [18] into 3 and 4 groups. We
do not apply this to the UTWENTE dataset due to missing

TABLE I
SOURCE/TARGET SPLIT FOR ACTIVITIES

source activities target activities
PAMAP2

Lie,Stand,Walk,Run,Rope Jump Sit,cycle,Nordic Walk,Iron
Ascend Stairs,Vacuum Clean Descend Stairs

PAMAP2
Open Door 2,close door 2 Open Door 1,close door 1
close fridge,clear table,drink from cup open dishwasher
close drawer 1,2,3,toggle switch open drawer 1,2,3
close dishwasher open fridge

UTWENTE
Walk,stand,type,drink,talk,smoke,eat jog,sit,bike,write
ascend stairs descend stairs

TABLE II
HYPERPARAMETERS USED

Parameter proto CL
samples per class 10 8
embedding size 128 128

learning rate 0.001 0.001
discount 0.7 0.9

C1 kernel size 2 2
C2 kernel size 4 1
C3 kernel size 128 128
selected classes 6 2

λ - 0.0001
support samples 7 5

Optimizer Adam Adam
num. episodes 1000 1000

TABLE III
PERFORMANCE ON UTWENTE

WITH KNN CLASSIFIER

1-shot 5-shot
proto 77.81 91.54
CL 78.84 93.25

information on participants. We perform two types of testing
on OPP and PAMAP2 datasets. They are when source and
target data is drawn from the same group and different groups
as mentioned in Feng and Duarte [18]. We fine tune our system
using the UTWENTE dataset for FSL performance and use
OPP and PAMAP2 for evaluations. When preparing data we
break the data sequences into sliding windows of 1 seconds
with 50% overlap and standardized. No other pre-processing
was performed.

B. Classifiers used for SFSL

We use KNN which had been used for FSL settings [24] due
to its simplicity [16] [21]. We also use a Distance Classifier
(DC) to classify f(xtest) to the class centroid with the closest
distance to it following prototypical networks [5]. We use
euclidian distance as the measure of distance because it has
proven to be more effective that some other distance measures
in FSL setting [5]. Finslly we also use SVM classifier because
sometimes it has show to out-peform simpler classifiers [25].

C. Fine-tuning

We fine-tuned the hyper parameters of the embedding
function f separately for both center loss and prototypical loss
based methods using the UTWENTE dataset. We modified a
CNN architecture which proved to be successful for HAR with
IMU data [26]. The FCN structure obtained is shown in Fig.
4. Here the embeddings are calculated from the C3 layer. The
output from the last pooling layer goes to the source classifier
CLSS which uses a convolutional layer followed by a softmax
layer for classification of source data. Parameters found for
both of the methods are shown in Table II.



Fig. 3. FCNN architecture
TABLE IV

PERFORMANCE ON PMAP2 USING KNN FOR CLSFSL

1-shot 5-shot
1 2 3 1 2 3

base same 50.87 57.67 58.98 65.95 62.84 70.08
different 54.59 50.58 63.70 67.91 59.22 77.18

proto same 59.33 63.84 62.67 74.92 79.18 83.76
different 62.62 58.82 51.87 75.20 76.84 80.31

CL same 58.65 62.22 64.23 74.01 78.38 84.11
different 58.68 59.84 53.07 74.69 74.84 78.98

D. Performance of the Models

In this section we report the accuracy of CFSL, CS and
CST for both prototypical and center loss based models, and
where applicable we compare it with a weight transfer based
method FSHAR from literature [18].

1) FSL performance (CLSFSL): We show the number of
training samples used to train CLSFSL per each target class
(1 or 5) and whether source and target data are generated by
the same participant (for OPP dataset)/group of participants
(for PAMAP2 dataset). Each value in this section is averaged
for over 100 models. Tables III to V shows these results. Note
that for each dataset we only show the results of the best FSL
classifier. KNN was the best option for CLSFSL under both
UTWENTE and PAMAP2 datasets while SVM was the best
for OPP.

Number of shots A common trend that can be seen from
the results is that the performance level improves when we
increase the number of training samples seen by CLSFSL

(number of shots). For example in Table III, under the KNN
classifier of CL model, the accuracy improves from 79% to
93% when number of shots is changed from 1 to 5. This can
be expected because when CLSFSL gets more data, it can
make a more informed decision.

Training data used for the FSL classifier For the OPP
and PAMAP2 datasets, the average performance of CLSFSL

is higher when it is trained and tested with data from the same
participant opposed to when they are trained and tested with
different participants. This can be observed from Tables IV
and V and can be more clearly seen from Table VI. Table
VI shows the average performance of all the classifiers for
CL model. We used KNN for all the CLSFSL and CLSST

classifiers except for CLSFSL under OPP dataset where we
TABLE V

PERFORMANCE ON OPP USING SVM

1-shot 5-shot
1 2 3 4 1 2 3 4

base same 55.92 53.24 58.62 54.75 67.08 64.50 67.68 69.05
diff 48.02 49.70 48.82 49.06 62.29 61.88 62.08 60.64

proto same 57.99 58.12 59.65 56.53 75.82 73.08 76.72 72.50
diff 51.62 50.93 48.41 49.22 70.22 68.43 62.38 67.00

CL same 69.82 63.15 70.34 64.22 82.33 76.93 82.46 77.85
diff 56.85 54.21 52.22 53.17 72.26 68.42 67.55 68.70

TABLE VI
AVERAGE PERFORMANCE OF THE CL MODEL WITH 95% CONFIDENCE

INTERVALS

CL from [18]
1-shot 5-shot 1-shot 5-shot

UTWENTE
CLSFSL 83.63 ±0.69 93.42 ±0.17
CLSS 84.87 ±0.44
CLSST 71.28 ±0.80 75.06 ±0.66
OPP
CLSFSL same 66.40 ±0.81 79.87 ±0.37 55.63 67.07

different 54.12 ±0.71 69.24 ±0.45 48.90 61.72
CLSS 96.21±0.12
CLSST 74.69 ±0.60 83.45 ±0.37
PAMAP2
CLSFSL same 60.57 ±0.98 78.66 ±0.66 55.84 66.29

different 59.08 ±0.98 76.79 ±0.51 56.29 68.10
CLSS 94.55 ±0.17
CLSST 77.95 ±0.57 86.73 ±0.31

used SVM due to its higher performance. In Table VI, the 5-
shot average performance of CL model trained on OPP data
when source and target data are from the same participant is
80% and when data comes from different participants, this
value drops to 69%. This is true for all the participants/groups
except for group 1 under 5-shot evaluation in PAMAP2 where
these performance metrics are roughly equal as can be seen
from Table IV. This characteristic where FSL performance
is greater when source and target data are drawn from the
same participants/groups than when they are different can also
be observed under the FSHAR model evaluated on the OPP
dataset. But, this is not so for the PAMAP2 dataset as can
be seen in the FSHAR paper [18]. Following the reasoning
from FSHAR paper [18] we can conjecture that this is because
the OPP train and test data from the same participant have
the same marginal distribution. Marginal distribution of data
selected from different participants must be different. The
PAMAP2 dataset on the other hand does not display the above
behaviour. This might be because we group 3 participants into
the same group for this dataset which may make the two
marginal distributions of the same group dissimilar. We can
conjecture that our centroid based models can learn relevant
concepts from data better even when marginal distributions of
train and test data are different.

Different methods of training embedding function From
the results in Table VI, it can be seen that the centroid
based models perform significantly better than the FSHAR
method [18]. The average improvement of CL method over
the FSHAR method [18] is around 10% for both the OPP
and PAMAP2 datasets under 5-shot setting. The improvement
is significantly greater when 5-shot setting is used opposed
to using just 1 sample. For the OPP dataset, the average 1
shot improvement when using CL model over FSHAR method
is around 8%. For 5-shot setting, this is over 10%. On the
PAMAP2 dataset, 1-shot improvement is around 3.7% and 5-
shot improvement is over 10%. These improvements going
from 1 shot to 5 shot settings can be attributed to CLSFSL

classifiers and to the quality of the embedding generated by f .
Also the FSL performance improvement is higher when source



TABLE VII
CLASSIFICATION ACCURACY AMONG TARGET CLASSES UTWENTE

sim SVM KNN
1 5 1 5 1 5

sitting 78.88 90.57 78.88 90.40 78.88 88.97
biking 73.66 79.85 73.66 87.72 73.66 91.93
jogging 83.70 94.40 83.70 95.00 83.70 95.27
descending stairs 90.35 95.68 90.35 96.05 90.35 96.17
writing 91.52 95.16 91.52 94.71 91.52 94.74

TABLE VIII
CLASSIFICATION ACCURACY AMONG TARGET CLASSES ON OPP

DC SVM KNN
1 5 1 5 1 5

open door 1 60.63 75.51 60.63 75.57 60.63 73.91
close door 1 71.71 79.82 71.71 80.18 71.71 79.66
open fridge 51.89 68.53 51.89 70.83 51.89 65.26
open dishwasher 46.71 61.48 46.71 62.26 46.71 62.37
open drawer 1 60.60 75.94 60.60 76.78 60.60 73.45
open drawer 2 54.28 70.68 54.28 70.74 54.28 70.99
open drawer 3 76.04 85.29 76.04 85.57 76.04 84.77

data comes from the same participant/group than when the
data comes from a different participant/group. For example,
on OPP dataset considering the CL model, the performance
improvement over the FSHAR method from the literature is
around 12% when data comes from the same participant. This
is only 6% when the data comes from a different participant.
For PAMAP2 dataset these values are around 8% and 5%.
This trend is also visible for prototypical networks. We can
conclude that the centroid based methods learn more useful
details from data than the FSHAR model does. Furthermore,
the improvement in performance is larger when training data
comes from a similar distribution to the test data. Also, we
can see that in most cases CL model performs the best. This
is true for the UTWENTE dataset, for all the settings on the
OPP dataset and for certain cases of the PAMAP2 dataset.

Class-wise breakdown of the CLSFSL performance can be
seen in Tables VII to IX. We also show the performance of all
three classifiers used for FLSFLS and the number of shots.

2) Source classifier performance: This section discuss the
performance of the classifier which classify source samples

TABLE IX
CLASSIFICATION ACCURACY AMONG TARGET CLASSES ON PAMAP2

DC SVM KNN
1 5 1 5 1 5

sitting 48.43 62.43 48.43 66.91 48.43 74.45
cycling 76.24 90.11 76.24 90.17 76.24 89.35
Nordic walking 78.04 85.24 78.04 89.02 78.04 91.57
descending stairs 43.23 59.87 43.23 64.82 43.23 65.99
ironing 53.18 65.25 53.18 69.08 53.18 67.26

TABLE X
SOURCE CLASS ACCURACY ON

UTWENTE

source class accuracy
walk 96.88
stand 77.15
ascending stairs 98.32
type 90.00
drink 82.88
talk 81.33
smoke 70.56
eat 81.07

TABLE XI
SOURCE CLASS ACCURACY ON

PAMAP2

source class accuracy
lying 93.98
standing 93.90
walking 94.87
running 94.87
ascending stairs 92.08
vacuum cleaning 93.35
rope jumping 96.84

TABLE XII
CLASSIFICATION ACCURACY ON SOURCE CLASSES ON OPP

source class accuracy
Close Dishwasher 96.62
Close Drawer 3 97.12
Close Drawer 2 90.07
Close Door 2 96.92
Close Drawer 1 92.26
Close Fridge 97.25
Toggle Switch 98.46
Open Door 2 95.94
Drink from Cup 97.38
Clean Table 99.42

TABLE XIII
CLASSIFICATION ACCURACY OF SOURCE CLASSES VS. TARGET CLASSES

DC SVM KNN
1 5 1 5 1 5

UTWENTE S 56.79 57.29 32.83 47.12 60.79 72.08
T 86.70 87.22 99.41 98.40 81.77 86.47

OPP S 56.27 60.51 22.59 70.17 66.62 79.09
T 64.89 62.84 95.60 87.71 82.77 87.81

PAMAP2 S 69.02 72.55 44.00 83.29 74.13 85.53
T 70.10 73.33 91.25 85.07 81.76 87.94

(CLSS) as can be see in Table VI. CLSFSL of UTWENTE
is around 93% while that of CLSS is around 85%. But for
OPP and PAMAP2, CLSFSL performance levels are in mid-
seventies while CLSS are mid nineties. We can surmise that
the embedding function might have overfit to the source data
for OPP and PAMAP2 datasets. But UTWENTE models seem
not to suffer from this. Therefore it is important to handle the
overfitting when creating a FSL solution.

Interesting relationships between performance levels of
source and target classes can be observed. From Table VII,
it can be seen that descending stairs class has the highest 5-
shot performance (for CLSFSL) around 96% for the KNN
classifier for the UTWENTE dataset. The highest performing
source class is ascending stairs at 98% (see Table X). We
can surmise that this is due to the similarities between these
two activities. Since the embedding function learned higher
quality embeddings for the source class ascending stairs, this
knowledge was easily transferred to the target domain. Sitting
on the other hand has the lowest 5-shot performance at 89%
among target activities under KNN (Table VII). This might
be because there are no similar activities in the set of source
classes of UTWENTE so the embedding function did not learn
concepts similar to sitting. For PAMAP2 dataset, the highest
achieving target activity (under 5-shot and KNN classifier)
is Nordic walking which has an accuracy of 91.5% as can
be seen from Table IX. On the set of source classes, the
highest performing activity is rope jumping at almost 97%
(see Table XI). We can hypothesize that this is due to the
inherent similarities between the two activities. Both activities
involve significant and synchronized arm and leg movements.
Ascending stairs from the set of source classes in PAMAP2
dataset and descending stairs from the target classes both are
the lowest performing activities in their respective domains
(Tables IX and XI). We can infer that the activity descending
stairs did not perform well in the target domain due to the
embedding function did not learn concepts related to ascending



stairs well in the source domain.
3) Source/target classifier performance: Table XIII demon-

strates that performance of CLSST on all 3 datasets. For each
dataset we show the accuracy of detecting both target (T) and
source (S) samples under 3 different types of classifiers DC,
SVM and KNN, under 1-shot and 5-shot setting. For 5-shot
setting, each classifier is trained with 5 samples from each
class in source and target domain and then tested on the rest
of data. It is evident that KNN is the best overall choice for
CLSST which has the average performance of 75%, 83%
and 87% on the UTWENTE, OPP and PAMAP2 datasets. A
summary result of this can also be seen in table VI. We have
only reported CLSST performance under KNN dues to its
highr performance.

It can be seen that the performance of our CLSFSL models
surpasses those from literature [18]. Although the 1-shot
accuracy values are not sufficiently high for any practical
use, 5-shot accuracy values show promise. Therefore we can
recommend to use the model CL with 5-shot criterion for a
FSL-based HAR system.

V. CONCLUSION

We present the first generalized FSL system for human
activity recognition with wearable devices. We show that
our methods outperform the state-of-the art in the FSL task.
Our system has real practical applications, especially as these
applications evolve over time. For example, consider elderly
people living alone. We can use wearable devices which are
programmed to recognize certain set of activities. But as the
condition of the elderly change over time, they might end
up doing different activities to what the device is previously
programmed for. We can use our system to detect these new
activities with just a few samples from each new activity.
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