
D
0018-9162/99/$10.00 © 1999 IEEE June 1999 29

Misconceptions
About Real-Time
Databases

atabases have become an integral part of many com-
puter systems—ranging from complex systems that
control air traffic, plant operations, and stock mar-
ket transactions to general-purpose computing sys-
tems that run audio and video applications.
Increasingly, computer systems—even general-pur-
pose systems—are requiring real-time support, so it’s
not surprising to hear more about real-time databases.

Unfortunately, there are many misconceptions
about the real-time aspects of databases. Ironically,
the state of confusion that exists today about real-time
databases parallels the confusion that existed a decade
ago surrounding the differences between real-time and
general-purpose computing.1 We believe that a careful
definition of real-time databases will help dispel these
misconceptions and will encourage research efforts
similar to those that have advanced real-time systems
over this past decade.

REAL-TIME DATABASES: SOME DEFINITIONS
We must first note that a system using real-time data,

such as sensor data, does not in itself constitute a real-
time database system. Because a real-time database is
by definition a database system, it has queries,
schemas, transactions, commit protocols, concurrency
control support, and storage management.

In a real-time database system, timing constraints are
associated with transactions, and data are valid for spe-
cific time intervals.2,3 The transaction timing constraints
can be completion deadlines, start times, periodic invo-
cations, and so on. It is not necessary that every trans-
action have a timing constraint, only that some do.

In addition to transaction timing requirements, data
has time semantics as well. Data such as sensor data,
stock market prices, and locations of moving objects
all have semantics indicating that the recorded values
are valid only for a certain time interval. A real-time
database makes this validity interval explicit as part
of its database schema.

We can define transaction correctness as a transaction
meeting its timing constraints and using data that is
absolutely and relatively timing-consistent. Absolute
time consistency means that individual data items used
by a transaction are still temporally valid and reflect
the true state of the world to an acceptable degree of
accuracy. Relative time consistency means that multiple
data items used by a transaction are updated (sensed)
within a specified time interval of each other. For exam-
ple, if a transaction uses temperature and pressure data
to make a decision regarding a chemical process, these
two data values must correlate closely in time or the
computation will likely make no sense.

Cy
be

rs
qu

ar
e

Some database users think “real-time”

databases just need to be fast and that

conventional databases are adequate for

real-time applications. Real-time database

designers don’t agree.

John A. Stankovic and Sang Hyuk Son
University of Virginia, Charlottesville

Jorgen Hansson
University of Skovde, Sweden

30 Computer

Using these definitions, we can better explain some
common misconceptions about real-time databases.

SOME MISCONCEPTIONS
ABOUT REAL-TIME DATABASES

We present nine common misconceptions about
real-time databases. The first three mistakenly argue
that real-time systems are synonymous with speed.
The next three argue that current database technol-
ogy can be used in real-time database systems. These
two groups of misconceptions are based on some com-
mon assumptions, but it is instructive to distinguish
between them. Finally, we examine three fallacies
about real-time database properties: temporality, pre-
dictability, and specialization.

Part of the confusion over real-time database systems
stems from the work of two communities coming
together. Mainstream database researchers and users
usually do not have much experience with real-time
issues, whereas the real-time system community has
dealt primarily with real-time data derived from sensors
and has not associated real-time issues with databases.

Real-time means speed
Mainstream database users usually do not have any

experience with real-time issues and think it is accept-
able simply to make a commercial database manage-
ment system run fast.

Hardware advances will address real-time database
requirements. Technology will exploit parallel proces-
sors to improve system throughput, but this does not
mean that such systems will automatically meet tim-
ing constraints. In fact, the increased size and com-
plexity of databases and hardware will make it more
difficult to meet timing constraints or to show that
such constraints will be met. Hardware alone cannot

ensure that transactions will be scheduled properly
to meet their deadlines, nor can it ensure that the data
is still temporally valid. A transaction that uses obso-
lete data more quickly is still incorrect.

Advanced database technology will address real-time
database requirements. Some database designers claim
that better buffering, faster commit protocols, and
novel query-processing techniques will speed up data-
bases sufficiently for use in real-time systems. While
these techniques help, they can’t guarantee either the
required deadlines or temporal validity of the data.
Required advances in database technology include
time-cognizant protocols for concurrency control,
commit processing, transaction scheduling, and log-
ging and recovery. Ample evidence now exists that
such protocols are considerably better at supporting
real-time transaction and data correctness than stan-
dard database protocols that simply go fast.4-8

Real-time computing is fast computing. Fast com-
puting aims to minimize the average response time of
a set of transactions. In contrast, real-time databases
aim to meet the timing constraints and data-validity
requirements of individual transactions and also keep
the database current via proper update rates. To do
this, we need time-cognizant protocols.

Figure 1 illustrates how a time-cognizant protocol
could improve the processing of two transactions, A
and B. Conventional database protocols, which gen-
erally schedule transactions on a first-come, first-serve
basis, will let A lock the data and complete, allowing
A to meet its deadline. B, on the other hand, will miss
its deadline because A’s lock on the data prevents B
from starting early enough.

In contrast, a real-time database with time-cog-
nizant protocols would preempt transaction A and
transfer data control to B because B’s deadline is ear-

A locks
data

B's
deadline

A starts A finishes but
B's deadline has passed

A's
deadline

(a)

A locks
data

B's
deadline

A starts

B finishes
A restarts

B arrives and
scheduling
aborts A
in favor of B;
B starts.

A finishes

A's
deadline

(b)

System is executing
transactions

A
B

B arrives
and blocks

on A

Figure 1. Processing
of two transactions
using (a) conventional
database protocols
and (b) time-
cognizant protocols.

lier. Transaction A would regain control after B com-
pletes, and both transactions would meet their dead-
lines in this example.

Current database technology can solve
real-time problems

Mainstream database designers also sometimes believe
they can shoehorn real-time principles into traditional
databases.

Traditional databases can handle realtime. This is
tricky. A current database system can define a field
for every relation (object) that contains the validity
interval of that data. Then the transaction itself can
check these fields to ensure absolute and relative
validity. However, this means that every transaction
must include this capability itself instead of having
the system support it. Furthermore, you can modify
the system to run some form of earliest deadline
scheduling by controlling the priority of each trans-
action.

By adding these two features, however, designers are
in fact moving toward a real-time database system. If
transactions have such constraints, it is more efficient
to build them into the system than to force fit a typical
database into this set of capabilities. Furthermore, if
you actually do this force fitting, you now have a real-
time database system that will very likely not be as effi-
cient as one developed from the ground up with these
capabilities. After all, all algorithms are programmable
on a Turing machine, but few people would advocate
using a Turing machine to build real systems.

Placing a conventional database in main memory is
sufficient. Some nonreal-time database designers
argue that placing a conventional database in main
memory is a viable way to gain performance and
thereby make it suitable for real-time systems.
Although main-memory resident databases do elim-
inate disk delays, conventional databases still have
many additional sources of unpredictability—such as
delays due to blocking on locks, transaction schedul-
ing, stolen processing time to handle external inter-
rupts, and so on—that prevent time constraints from
being ensured. Again, increases in performance can-
not completely make up for the lack of time-cognizant
protocols in conventional database systems.

A real-time database must reside totally in main mem-
ory. The previous misconception is the view held by
some nonreal-time database designers. Real-time
designers often hold the same view, but from a more
dogmatic perspective: You must place the database
in main memory. This is not correct either. The pri-
mary reasons for placing data in main memory are to
increase speed and avoid the unpredictable seek and
rotational delays introduced by disks.

The primary issue here is I/O. In most systems, I/O
requests are scheduled to minimize average response

time, maximize throughput, or maintain fair-
ness. Typical disk scheduling algorithms for this
type of disk scheduling are First-Come-First-
Served (FCFS), Shortest-Seek-Time-First (SSTF),
and the elevator algorithm SCAN. Typically, a
database transaction performs a sequence of
database read operations, computations, and
then writes the data back to the database.
However, since the deadline and the importance
of the transaction are not considered when disk
requests are scheduled, the timeliness of the
transaction is jeopardized.

In the same way traditional CPU scheduling
algorithms have been shown to be inappropriate for
real-time systems, the use of nontime-cognizant disk
scheduling algorithms are inappropriate for schedul-
ing disk requests. Disk scheduling algorithms that
combine a scan and deadline requirement work con-
siderably better than conventional algorithms.9 It is
likely that some combined solution will prevail where
critical data is placed and pinned in (nonvolatile) main
memory and less critical data is stored on the disk
using time-cognizant disk scheduling.

Fallacies about real-time databases
There are also some generic misconceptions about

the properties of real-time databases, including tem-
porality, predictability, and specialization.

A temporal database is a real-time database.
Although temporal databases and real-time databases
both support time-specific computation, they support
different aspects of time. A temporal database sup-
ports those aspects of time associated with informa-
tion—for example, time-variant information such as
stock quotes—whereas a real-time database tries to
satisfy timing constraints associated with operational
aspects of the database.

In the context of databases, two temporal dimen-
sions are of particular interest:

• valid time, or the time at which a fact is true in
reality, and

• transaction time, or the time during which a fact
is present in the database as stored data.10

These two dimensions are in general orthogonal,
although there could be some application-dependent
correlations between them.

Consider the difference between a temporal database
and a real-time database in the following example. The
military rank of Beetle Bailey can be specified in a tem-
poral database as that of private between January 1,
1998 and June 30, 1999, at which time he will be pro-
moted. It only states the timing fact that is believed to
be true, regardless of when that information was
entered. A real-time database, on the other hand, might

June 1999 31

Mainstream database
designers also

sometimes believe
they can shoehorn

real-time principles
into traditional

databases.

32 Computer

contain Beetle Bailey’s blood pressure, which is
valid for only a short time after it was measured.

In most real-time databases, the static timing
facts found in temporal databases are not a pri-
mary concern. In a real-time database, the valid
time is specified according to the semantics of
the external object in the real world. When a
value is entered into the database, its valid time
specifies that the value can be assumed to rep-
resent the actual value (absolute time consis-
tency). If the value of sensor data was inserted
into the database at time T and its valid time
interval is t, then the value must be updated
within time T + t; if it is not updated within that
time, the value becomes stale and useless, or even
dangerous. Current temporal database research
does not pursue operational timing constraints

such as maintaining correlation to real-time events in
the real world and meeting deadlines.

Because of their different objectives, real-time and
temporal databases use different policies and mecha-
nisms to resolve data and resource conflicts. Since
meeting timing constraints is essential in certain safety-
critical database applications, a real-time database
needs to provide a range of transaction correctness
criteria that relax ACID (atomicity, consistency, iso-
lation, durability) properties. However, such an
approach is generally not acceptable in temporal data-
bases. Temporal databases, along with other conven-
tional databases, attempt to be fair while maximizing
resource utilization. In real-time databases, timely exe-
cution of transactions is more important, and fairness
and resource utilization are secondary considerations.

Real-time database systems can’t make guarantees or
achieve predictability. Some argue that real-time data-
bases cannot achieve predictability due, in part, to the
complexity of making accurate—and not overly pes-
simistic—estimates of transaction execution times. This
complexity results because database systems have a
number of sources of unpredictability.3 Because a trans-
action’s execution sequence is heavily dependent on data
values, predictability can be adversely affected by data
and resource conflicts, dynamic paging and I/O, and
transaction aborts resulting in rollbacks and restarts. As
discussed earlier, placing the database in main memory
or adopting time-cognizant protocols for scheduling disk
requests and managing memory buffers would help alle-
viate the unpredictability due to disk delays.

Although it is difficult to evaluate the data-depen-
dence of general-purpose transactions, many real-time
transactions are

• specialized (updating periodic sensor data, for
example),

• fixed (using the same type and amount of data
each time), and/or

• prewritten and evaluated offline (as in canned
transactions).

This set of features enables associated protocols to uti-
lize such information and improve predictability.

Data conflicts may cause general-purpose transac-
tions to roll back and restart, increasing execution times
and, in the worst case, causing not only the transaction
to miss its deadline, but also jeopardizing the timeliness
of other transactions requesting resources. In real-time
systems, on the other hand, the set of transactions is nor-
mally well known and we can estimate needed
resources, such as execution times and required data.
With this information, we can thus minimize and bound
the number of data conflicts and transaction restarts.

Although we have made much progress in improv-
ing predictability, this issue is still very much an open
research question.

A real-time database is a specialized database.
While each real-time database application may have
different timing constraints, specialized database sys-
tems need not be developed from scratch for each
application. By analogy, such an assertion would be
tantamount to saying that any real-time application
needs its own specialized real-time operating system,
since its resource requirements and scheduling poli-
cies are different from others. Although specific tim-
ing requirements can vary among applications, each
application needs database support for specifying and
enforcing its requirements.

At the same time, conventional database systems can-
not be used for real-time applications simply by adding
a few functional improvements. Since support for tim-
ing constraints deals with the lowest level database
access mechanisms, the overall architecture of database
systems must become time cognizant for the very same
reasons that certain time-critical applications need real-
time operating systems instead of conventional operat-
ing systems. However, different real-time operating
systems don’t have to be developed for each application.

RESEARCH CHALLENGES
While a significant amount of real-time database

research has been done,11 this field is still in its infancy.
We now discuss several key research challenges.

System support
Database transactions differ from traditional tasks

(processes) in several ways. One main difference
involves the process of obtaining good estimates of
worst-case execution time. Other differences include
developing alternative correctness criteria, improving
buffer management, and resolving issues in transac-
tion abort and recovery.

Determining worst-case execution times. Obtaining
useful worst-case execution times for transactions is

While each real-time
database

application may
have different timing

constraints,
specialized

database systems
need not be

developed from
scratch for each

application.

a complex issue because transactions normally
involve multiple resources, such as CPU, I/O, buffers,
and data. It is also difficult to assess the impact of
blocking on transaction response times. While a con-
currency control protocol aims to ensure database
consistency by controlling the interleaved execution
of concurrent transactions, it too affects the transac-
tion’s response time.

Furthermore, transaction execution times usually
depend heavily on the volume of data and the data
values read from the database. Thus, to enforce the
timeliness of transactions and maintain database con-
sistency, scheduling algorithms must consider both
hardware resources and the scheduling of data
resources. We must therefore determine how to bet-
ter integrate concurrency control and the scheduling
of transactions.

Correctness criteria. In conventional databases,
serializability is the primary correctness criterion for
transaction schedules: The result produced by the
interleaved execution of a set of transactions should
be identical to one produced by executing the trans-
actions in some serial order.

Although serializable schedules ensure correctness,
under many circumstances the cost of enforcing seri-
alizability in real-time database systems is sometimes
too high. This is especially true for the class of real-
time applications where timeliness is essential. In this
case, producing a useful result on time with a nonse-
rializable schedule is better than producing a result
too late with a serializable schedule. A key challenge
is to define new and alternative criteria for database
correctness and develop methods that trade serializ-
ability for timeliness.

Buffer management. In conventional systems, buffer
management aims to reduce transaction response
times. Buffer items in these systems are normally allo-
cated and replaced based on the transactions’ reference
behavior. However, this approach can degrade perfor-
mance in a real-time system. For example, replacing
buffer slots referenced by currently executing (and not
yet committed) transactions can delay the completion
of transactions or even cause missed deadlines.

Buffer management policy must also account for
other semantics, such as periodic transactions. A poor
buffer management policy might allow pages to be
replaced just prior to the transaction’s next periodic
invocation. The challenge here is to develop policies
that consider the transaction’s importance and its tem-
poral requirements as well as enforce predictability.

Transaction abort and recovery. Transaction abort
and recovery consumes valuable processing time and
may affect other currently executing transactions.
Establishing the time at which recovery should be per-
formed therefore requires careful consideration.

In systems with lock-based concurrency control pro-

tocols, we want to avoid prolonged waiting on
the part of transactions accessing resources locked
by the recovering transaction; hence, locks should
be released as early as possible.

Optimistic protocols, on the other hand, per-
form conflict detection and resolution at the end of
the transaction. After the transaction has executed,
the concurrency control manager is notified and
checks for data conflicts. If it detects a conflict, it
aborts and then restarts the transaction. A trans-
action may be restarted a number of times before
it can commit successfully. This can cause prob-
lems in a real-time database system because the
increased processing time due to transaction
restarts can make the transaction late and can jeop-
ardize the timeliness of other transactions as well.
Resolving these issues in transaction abort and recovery
are key research challenges.

Distributed and global systems
Whereas many real-time systems perform a set of

tasks that are well understood at design time and thus
permit static solutions, large real-time systems—such
as air traffic control, autonomous vehicles, and mis-
sile control systems—typically operate for long peri-
ods in complex nondeterministic and fault-inducing
environments under severe time constraints. This gives
rise to the need for dynamic solutions and robust real-
time databases delivering real-time performance.
Furthermore, because these systems are highly dis-
tributed, we need to develop distributed protocols for
open real-time systems and applications.

Composition. Composition is the process of com-
bining modules and/or subsystems to achieve some
new capability. Composition can be done offline at
design time or online as a result of the system react-
ing to new conditions. Composition has long been
recognized as a key research issue for many systems,
including real-time database systems. However, we
have tended to focus largely on functional composi-
tion of a single system or application.

For today’s distributed and global systems, we need
to extend composition across multiple interacting
domains: function, time, fault tolerance, and security.
Today, most work focuses only on functional compo-
sition. Furthermore, both offline and online solutions
are required. Online composition must dynamically
create new system actions by combining functional,
timing-aware, fault-tolerant, and secure components,
within its own timing and fault tolerance require-
ments.

Finally, the results should permit verification.
Verifiable results will lead to adaptive high-perfor-
mance, fault-tolerant embedded systems that dynam-
ically address real-time constraints. Such systems will
provide both a priori acceptable system-level perfor-

June 1999 33

Obtaining useful
worst-case

execution times for
transactions is
a complex issue

because
transactions

normally involve
multiple resources.

34 Computer

mance guarantees and graceful degradation in
the presence of failures, time constraints, and
database access. How low-level real-time tech-
niques and real-time database technology
interact is a critical issue.

The distributed nature of the systems also
gives rise to new database research. Issues to
be investigated include developing distributed
real-time concurrency control, commit proto-
cols, and transaction scheduling; meeting end-
to-end timing constraints when database
accesses are involved; supporting replication
of data in real time; and ensuring interoper-
ability.

Open systems. Developing an effective archi-
tecture that supports general-purpose, open
real-time systems and applications is another

challenge facing the real-time community. This archi-
tecture would let a dynamic mix of independently
developed real-time applications coexist on the same
machine or set of machines, possibly embedded in the
Internet. Consumers could then run multiple applica-
tions with real-time requirements on their general-pur-
pose home and business computers, just as they run
nonreal-time applications today.

There are several difficulties associated with an
effective real-time architecture supporting open real-
time database computing. The architecture must deal
with system characteristics that are unknown until
runtime, including

• hardware characteristics, such as processor speeds,
caches, memory, buses, and I/O devices; and

• the mix of applications and their aggregate
resource and timing requirements.

These unknowns make perfect a priori schedulability
analysis effectively impossible. Thus, distributed sys-
tems will need more flexible approaches than those
typically used for building fixed-purpose real-time sys-
tems today.

In addition, any architecture must

• obtain real-time performance from legacy data-
bases,

• provide for interoperation between heteroge-
neous databases with time-sensitive data and
transaction deadlines,

• effectively partition data to meet time require-
ments, and

• create parallel, distributed recovery so the system
can interface with the external world as quickly
as possible, even before complete recovery occurs.

All of these requirements for distributed open sys-
tems present significant research challenges.

Integrating real-time with other properties
As time-critical applications continue to evolve,

real-time databases will need to support other prop-
erties, including fault tolerance, security, availability,
and survivability. These requirements have been stud-
ied in isolation, but supporting them together poses
unique scientific and engineering challenges.

Supporting combinations of these requirements can
be difficult because in some cases they are not com-
patible, or trade-off strategies are not clearly identi-
fied. Consider the integration of security and real-time
requirements. Many real-time database applications
maintain sensitive information shared by multiple
users and applications with different levels of security
requirements. In electronic commerce, for example, a
real-time database provides critical infrastructure to
support complex and flexible services and manage
requests with widely varying security requirements in
the context of a highly dynamic workload.

Security trade-offs. In general, when resources must
be shared dynamically by transactions with different
security classes, requirements for real-time perfor-
mance and security conflict with each other.
Frequently, priority inversion is necessary to avoid
covert channels (hidden timing channels), which must
not exist in secure systems.

As an example, consider a high-security, high-pri-
ority transaction entering a database, only to find a
low-security, low-priority transaction holding a write
lock on a data item it needs to access. If the system
preempts the low-priority transaction, the principle
of noninterference is violated. But if the system delays
the high-priority transaction, a priority inversion
occurs. Therefore, creating a database that is com-
pletely secure and strictly avoids priority inversion is
not feasible.

The integration of security and real-time require-
ments requires some concessions. In some situations,
priority inversions might be allowed to protect the
security of the system. In other situations, the system
might allow covert channels so that transactions can
meet their deadlines. However, when a system trades
off security, it is only partially secure. In this case,
defining the exact meaning of partial security is impor-
tant. A key issue is identifying the correct metrics to
evaluate the level of security.

Fault tolerance. There is a similar trade-off when
supporting fault tolerance and real-time require-
ments, as systems can provide different levels of fault-
tolerance support to avoid violating timing
constraints. For example, depending on the level of
fault tolerance, transactions can

• proceed to another node when a processor fails
and use replicated data,

• retry themselves in the case of transient faults, or

Developing an
effective

architecture that
supports general-

purpose, open real-
time systems and

applications is
another challenge

facing the real-time
community.

• produce partial results prior to the deadline to
avoid a timing fault.

Users and applications can request different levels of
service, depending on the importance of the timing
constraints and the system status. One key research
issue is mapping user requirements to the underlying
database system and object-level requirements. This
too is a question of composition. Given the underly-
ing object mechanisms that support fault tolerance,
the question is how to compose objects to meet ser-
vice-level requirements.

Other research issues. Other research challenges
exist, too numerous to discuss fully in this article. For
completeness’ sake, we briefly describe some key
issues in the “Other Research Areas” sidebar.

Currently, only a relatively small number of
real-time database researchers are tackling
these research challenges, and we need to

increase activity in this area. Industrial research
groups developed the first generation of commercial
real-time databases, which typically emerged from
telecommunications, manufacturing, and avionics
applications where conventional databases did not
adequately meet real-time requirements.

With the increasing popularity of audio and video
applications, we will likely see more of the open
research problems being addressed by large, com-

mercial database companies. We also expect that
research issues related to system support and distrib-
uted and global systems will be solved first, since they
are extensions to today’s technology. Research issues
involving the integration of real-time and other prop-
erties such as security and fault tolerance will likely
remain long-term problems due to their difficulty. ❖

References
1. J. Stankovic, “Misconceptions About Real-Time Com-

puting: A Serious Problem For Next Generation Sys-
tems,” Computer, Oct. 1988, pp. 10-19.

2. A. Bestavros, K-J Lin, and S. Son, eds., Real-Time Data-
base Systems: Issues and Applications, Kluwer Acade-
mic, Boston, 1997.

3. K. Ramamritham, “Real-Time Databases,” J. Distributed
and Parallel Databases, Vol. 1, No. 2, 1993, pp. 199-226.

4. R. Abbott and H. Garcia-Molina, “Scheduling Real-
Time Transactions: A Performance Study,” ACM Trans.
Database Systems, Sept. 1992, pp. 513-560.

5. S. Datta et al., “Multiclass Transaction Scheduling and
Overload Management in Firm Real-Time Databases,”
Information Systems, Mar. 1996, pp. 29-54.

6. J. Huang et al., “Priority Inheritance in Real-Time Data-
bases,” Real-Time Systems J., Sept. 1992.

7. R. Sivasankaran et al., “Priority Assignment in Real-Time
Active Databases,” VLDB J., Jan. 1996, pp. 19-34.

8. M. Xiong et al., “Scheduling Transactions with Tempo-

June 1999 35

Other Research Areas
Scaling. Because system timing proper-

ties are usually very sensitive to scaling,
understanding the complexity introduced
by large-scale applications is particularly
important in real-time databases.

Query languages and requirements
specification. In addition to ongoing
efforts to include real-time specifications
in Structured Query Language (SQL),
specifying real-time requirements in an
unambiguous manner and enforcing them
consistently needs further study.

Modeling. Various types of data have
different kinds of timing properties.
Researchers must develop models that
associate temporal properties with data
types and permit the clear and easy speci-
fication of relationships between consis-
tency and timing constraints.

New data formats. As multimedia
becomes more pervasive, we need effective
methods to support timing requirements
for these new data formats.

Benchmarks. Although there are bench-
marks for traditional database systems
(TPC and 007) and real-time systems
(Rhealstones and Hartstones), there are no
established benchmarks providing a rep-
resentative workload for real-time data-
bases.

Integration of active and real-time data-
bases. Real-time systems are inherently
reactive—they must respond to external
events in the environment as well as inter-
nal events triggered by timers or calculated
conditions/states. We must develop reac-
tive models that consider time constraints,
the formal coupling of events and accom-
panying responses, and efficient runtime
algorithms for detecting events.

Resource management. We must de-
velop and evaluate priority-based sched-
uling and concurrency control protocols
that can, in an integrated and dynamic
fashion, manage transactions with prece-
dence, resources (including processor,
communication resources, and I/O

devices), and timing constraints. In par-
ticular, we must integrate resource alloca-
tion policies and distributed transaction
management protocols.

Operating system internals. Empirical
research into the interaction between OSs
and real-time database systems is important:
We cannot guarantee the correct function-
ing and timing behavior of real-time data-
base systems without a thorough under-
standing of the impact of OS internals.

Trade-off analysis. Real-time perfor-
mance metrics for database correctness,
performance, and predictability will let us
better understand the trade-offs between
satisfying timing constraints and maintain-
ing database consistency. To this end, we
need additional methods that enable trade-
offs between serializability and timeliness,
precision and timeliness, and so forth that
will allow us to refine and improve these
new metrics. Such performance metrics are
especially critical for overload management
in real-time database systems.

36 Computer

ral Constraints: Exploiting Data Semantics,” Proc. Real-
Time Systems Symp., IEEE Computer Society, Los
Alamitos, Calif., 1996, pp. 240-249.

9. S. Chen et al., “Performance Evaluation of Two New
Disk Scheduling Algorithms for Real-Time Systems,”
Real-Time Systems J., Sept. 1991, pp. 307-336.

10. G. Ozsoyoglu and R. Snodgrass, “Temporal and Real-
Time Databases: A Survey,” IEEE Trans. Knowledge
and Data Eng., Aug. 1995, pp. 513-532.

11. A. Bestavros and V. Fay-Wolfe, Real-Time Database and
Information Systems: Research Advances, Kluwer Aca-
demic, Boston, 1997.

John A. Stankovic is the BP America Professor and chair
of the Computer Science Department at the University
of Virginia. His research interests are in distributed com-
puting, real-time systems, operating systems, and dis-
tributed multimedia database systems. Stankovic serves
on the Board of Directors of the Computer Research
Association and has served as the chair of the IEEE
Technical Committee on Real-Time Systems. He is the
editor-in-chief for IEEE Transactions on Parallel and
Distributed Systems. He is a Fellow of both the IEEE
and the ACM and is an IEEE Golden Core Member.
Stankovic received a PhD from Brown University.

Sang Hyuk Son is an associate professor of computer
science at the University of Virginia. His research

interests include real-time computing, database sys-
tems, and information security. He has been working
on supporting multidimensional requirements, includ-
ing real-time, security, and fault tolerance, in distrib-
uted object-oriented database systems. He is an
associate editor of the IEEE Transactions on Parallel
and Distributed Systems and is the editor of Advances
in Real-Time Systems (Prentice Hall, 1995), and the
co-editor of Real-Time Database Systems: Issues and
Applications (Kluwer Academic, 1997). Son received
a PhD in computer science from the University of
Maryland and is a senior member of the IEEE Com-
puter Society.

Jorgen Hansson is a PhD candidate at the University
of Skovde, Sweden, where he received an MSc in com-
puter science. His research interests include active real-
time database systems, real-time systems, and
scheduling of overloaded systems. He was general co-
chair and organizing co-chair for the International
Workshop on Active, Real-Time, and Temporal Data-
base Systems, 1995 and 1997, respectively. Hansson
was a visiting scholar at the University of Virginia,
January to July, 1998.

Contact the authors at the Dept. of Computer Sci-
ence, University of Virginia, Charlottesville, VA
22903; stankovic@cs.virginia.edu.

