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The massive scale and decentralized nature  

of the IoTT provide attackers with a  

large attack surface for exploitation.

Computer security problems have evolved over the last 50 years from a 
minor concern to major operational risks. Every day new devices are added 
to the Internet of Things (IoT). Conservative projections have 50 billion 
devices on the internet by 2020, but—with autonomous vehicles, smart 
phones, smart wearables, smart cities, numerous other smart applications, 
and nanotechnology—we foresee an “Internet of Trillions of Things (IoTT)” 
before long. If computer security problems are formidable now, consider 
when there is an IoTT!

The proliferation of devices and applications will give rise to many new 
complications and research challenges, especially in cyberphysical system 
(CPS) security. Because the smart devices of IoTT systems will be so numer-
ous and easily accessible, and will interact directly with the physical world 
(including humans), they will exhibit tremendously large attack surfaces with 
increasing types and numbers of vulnerabilities. Attacks on these systems 
may cause the inoperability of major infrastructures such as transportation or 
energy, great financial losses, and many other negative impacts, even death.

CPS technology is required to build IoTT systems. It is therefore neces-
sary to increase awareness of CPS security problems and to address them 
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before trillions of devices are deployed with insufficient 
security protections.

In this paper we define a CPS security attack 
 taxonomy based on new problems for the cyber, physi-
cal, and cyberphysical aspects of the IoTT, and discuss 
examples of new security problems for the physical 
and cyber physical areas. For each example, we explain 
potential consequences and present approaches to solu-
tions. We do not discuss cyberattacks, such as network 
distributed denial of service and malware, as they are 
well covered by existing literature.

CPS Attack Taxonomy
Cyberphysical systems are engineered systems that are 
built from, and depend on, the seamless integration 
of computational and physical components. They are 
often connected to the internet, with applications in 
many domains, such as smart cities, health care, trans-
portation, energy, emergency response, agriculture, and 
defense. CPS attacks can thus have serious and harm-
ful physical results (e.g., an air bag being activated dur-

ing normal driving). This characteristic sets them apart 
from traditional IT systems, where confidentiality is 
usually the most important property.

Figure 1 illustrates a taxonomy of CPS attacks. It does 
not show a complete range of attacks but rather pro-
vides examples in three categories: cyber, physical, and 
cyberphysical.

At the cyber layer, the IoT is susceptible to many 
common types of attacks, such as malware and distrib-
uted denial of service. A particularly serious concern 
with the IoTT will be the timely application of critical 
patches and system updates, which often require tempo-
rarily disabling system security protections. Given the 
massive scale and decentralized nature of the IoTT, this 
update process provides an attacker with a window of 
vulnerability and a large attack surface for exploitation.

Cyberphysical attacks combine software intrusion/
alteration with effects on the physical aspects of a 
system. Attacks by insiders, information disclosure, 
replay, and denial of service (DoS) have been common 
and can now also be applied to the physical aspects of 
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FIGURE 1 Taxonomy of sample attacks on cyberphysical systems (CPS). DDoS = distributed denial of service; DoS = denial of service; 
SQL = structured query language.
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the IoT. Identity and device spoofing and control sys-
tem instability are newer attacks, created—or signifi-
cantly increased in frequency—with the emergence of 
the IoT.

Many novel types of attacks have appeared at the 
physical layer of systems. These include ways to disrupt 
systems by attacking different steps in the supply chain. 
Attacks based on transduction (discussed below) are 
particularly debilitating. Physical tampering is a risk 
because smart devices often operate in open environ-
ments. And because most smart devices communicate 
wirelessly, they are vulnerable to jamming.

Physical Attacks on the IoT

Supply Chain and Other Tampering
Many security solutions assume that hardware is trust-
worthy, but with the common practice of outsourcing 
the construction of hardware platforms, the supply 
chain can be a source of security attacks (Ray et al. 
2018). Trojan horse circuits and embedded software 
might be included in delivered products to cause harm 
or surreptitiously transmit data to an adversary. For 
example, an internet router might not only transmit 
packets to the intended destination but also send  copies 
to the adversary.

Compounding the problem is that many companies, 
such as those involved in communications and the 
manufacture of printers, automobiles, and aircraft, want 
to (or already do) automatically collect data for main-
tenance and performance control. Such data may be a 
source of security attacks.

Supply chain attacks can affect all parts of society and 
almost all applications: financial records and company 
secrets can be stolen, automobiles and planes can be 
made to crash. New tools are needed to validate that 

delivered hardware/software platforms do not include 
hidden circuits or embedded software that can cause 
attacks.

With billions (or more) of IoT devices and easy access 
to them, other types of tampering are also possible. For 
example, an attacker can physically move sensors to 
an unwanted location, point a fixed-direction camera 
in the wrong direction, impede an actuator from its 
full range of motion, or jam wireless communications. 
These changes may result in fires not detected, missed 
detection of a serious crime at a previously monitored 
location, safety doors that don’t close properly, or com-
plete inaccessibility of an IoT application system.

Solutions for such attacks must be developed or 
improved. Unwanted movement of devices could 
be detected with additional motion sensors or 
 accelerometers. Correlation among data from a set of 
sensors could reveal that one sensor has been moved 
away from the others. Related sensing modalities (e.g., 
temperature, pressure, and volume sensors relate to 
each other by physics) could be used to detect attacks 
on one modality. And frequency hopping, spread spec-
trum, and other techniques can provide some resil-
ience to the jamming of wireless communications.

Transduction Attacks
One especially complex class of attacks for smart devic-
es is transduction attacks, which exploit the physics and 
unintended functions of circuits and sensors to alter a 
sensor’s output (Fu and Xu 2018).

Manipulation through Voice Recognition

The Dolphin Attack (Zhang et al. 2017) uses an 
 inaudible sound wave to trick a speech recognition 
system such as Siri, Google Now, or Alexa into taking 
action that was not requested. It takes advantage of the 
fact that, while microphones are built to primarily hear 
the human voice, they can also detect (unintended) 
 inaudible sounds, making them vulnerable to transduc-
tion attacks (Roy et al. 2017).

Because more and more IoT systems have or are 
developing voice interfaces, the consequences of  trans-
duction attacks are unbounded. The attacks may permit 
illegal entry to a location, open the door locks of a home 
or business, or provide harmful advice via a medical cog-
nitive assistant.

Solutions must include better frequency filters and 
signal processing to avoid the appearance of ultrasound 
resonances in the voice frequency range.

Many companies 
automatically collect data 

for maintenance and 
performance control.  

Such data may be a source 
of security attacks.
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Backdoor Coupling

Another type of transduction attack is called backdoor 
coupling: signals enter a system indirectly via coupling 
between wires or components, so a sensor designed to 
detect one modality may be activated by another. For 
example, it was shown that playing sounds embedded 
in a YouTube video allowed an adversary to control a 
smartphone’s accelerometer, thanks to a mechanical 
coupling between the speaker and the resonant fre-
quency of the sensor (Fu and Xu 2018). This can have 
negative consequences for any application that relies on 
the accelerometer, such as a step counter, dead reckon-
ing location estimators, or a sensor that monitors an 
elderly person’s level of activity.

Most security solutions are ineffective for transduc-
tion attacks because they are designed for digital risks, 
not analog. Circuits must be manufactured to reduce the 
effects of resonance, increase the frequency of checking 
sensor output by software, and enhance the layout of 
components on system boards to minimize unwanted 
coupling.

Cyberphysical Attacks

Types of security attacks that are exacerbated in the 
IoT are denial of service, spoofing, adversarial machine 
learning, and control system attacks.

Denial of Service
A DoS attack diminishes or eliminates a system’s 
 capacity to perform its expected function. Hardware fail-
ures, software bugs, resource exhaustion, environ mental 
conditions, or any complicated interaction between 
these factors can cause a DoS. When a bug is detected 
attackers often use the internet to initiate DoS attacks.

As an example of a DoS in communications,  attackers 
may induce a collision in only one byte of a trans mission 
to disrupt an entire packet. A naïve link-layer imple-
mentation may attempt retransmission repeatedly, cul-
minating in the exhaustion of batteries in one or more 
connected smart devices and disrupting system func-
tion, such as transportation monitoring in a smart city.

Solutions must detect such attacks and create power-
aware smart devices that avoid using all the power when 
under attack.

Spoofing
In a spoofing attack, a person or program successfully 
masquerades as another to gain an illegitimate advan-
tage. With the IoTT it could also be a smart device.

The attacking device can act as a data source, pre-
senting fake data streams to the system, or even pretend 
to be a particular person and issue commands as if it 
were that person. Spoofing can cause an IoT system to 
produce wrong, often safety-critical, results. For exam-
ple, an IoT-based process control plant may be errone-
ously informed that chemical vats are overheating and 
shut them down, causing loss of revenue, or indicate 
that they are operating well when they are not, resulting 
in overheating and even explosion.

Solutions require standard techniques such as authen-
tication, encryption, and anomaly detection, as well as 
IoT-specific measures that coordinate among properly 
acting smart devices. The use of redundant sensors that 
are not accessible through the internet may also prove 
useful.

Adversarial Machine Learning
Machine learning (ML) is essential to the functionality 
of many cyberphysical systems. For example, autono-
mous vehicles use deep neural networks (DNNs) to 
detect, identify, and locate objects in the environment 
and navigate the vehicle. Deep learning algorithms are 
also used to analyze and recognize speech for voice- 
activated cyberphysical systems and to recognize people 
and objects in security systems.

The extensive use of ML algorithms has enabled a 
new type of CPS attack: adversarial machine learning. 
Attackers can develop adversarial inputs with small 
(even imperceptible) perturbations that cause a trained 
ML model to misclassify an object, such as a road sign 
(Eykholt et al. 2018); misidentification of a stop sign, 
for example, could have very serious consequences for 
a self-driving car.

Adversarial ML attacks can also target speech recog-
nition systems (Carlini and Wagner 2018) and image 
recognition systems (Kurakin et al. 2017). A targeted 

Adversarial machine learning 
can cause misidentification 
of a stop sign, with severe 

consequences for a  
self-driving car.
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attack causes the ML system to assign a specific (i.e., 
targeted) label to the object; for example, an attack on 
a voice-activated command and control system would 
enable a command of the attacker’s choosing. Similarly, 
a targeted attack on a facial recognition system that 
matches faces against a whitelist of approved people 
(e.g., to control access for large events) could admit an 
unknown, potentially malicious person.

Many cyberphysical systems (e.g., self-driving cars, 
voice-activated command and control systems) can 
 easily be acquired legally or illegally by attackers to  carry 
out black box attacks. A black box attack is defined as 
one that does not have direct access to the underlying 
ML model (as in a white box attack) to develop sophis-
ticated attacks; the attacker can only deduce the CPS 
operation by providing specific inputs and observing the 
output. Black box attacks on complex systems are more 
difficult than white box attacks, but they have been 
demonstrated in a number of domains.

Adversarial ML attacks are a relatively new CPS 
threat. Research is needed to understand them and 
to build robust ML models that are not susceptible to 
adversarial manipulation of the physical artifacts (e.g., 
signs, images, audio) that are inputs to the system.

Control System Attacks
Control systems are a critical component of many types 
of cyberphysical systems. Examples include industrial 
control systems, supervisory control and data acqui-
sition systems, autonomous vehicles, and medical 
devices.

Instability and Physical Damage

In a control system attack, the adversary seeks to move 
the system from a region of stability to one of instabil-
ity where control outputs may fluctuate arbitrarily and 
exceed normal operating parameters. For example, gain 

scheduling is often used to control nonlinear systems. 
Essentially, the system is controlled by a family of linear 
controllers or gains, each of which is designed for a par-
ticular operating region. Gain scheduling attacks can be 
effected using techniques such as sensor spoofing and 
denial of service.

Consider an autonomous aerial vehicle (UAV). It 
uses carefully constructed gains for operating modes 
such as takeoff, landing, cruising, or hovering. By tam-
pering with the inputs, an attacker can cause a transition 
from a gain that is appropriate for the UAV’s operating 
mode to one that is inappropriate. For example, when 
the UAV is hovering, a change in the gain computed for 
cruising could result in loss of the UAV.

The ability to spoof a sensor reading or to delay 
receipt of a signal opens the possibility of a control 
system instability attack. Many control systems are 
designed assuming that sensor readings are within cer-
tain operating thresholds and that the communication 
channel to send both data and control signals operates 
as intended. By sending carefully constructed inputs 
using a replay attack, the adversary may make the con-
trol system unstable—and the system could enter a state 
where returning to a stable state is not possible.

Similarly, using DoS techniques, an attacker could 
cause a control system to become unstable by delay-
ing packets that contain control information needed to 
stabilize a system. The instability could result in severe 
oscillations that could cause physical damage. For 
example, a chemical plant control system that becomes 
unstable might begin rapidly opening and closing a crit-
ical valve, causing it to fail.

Unlike purely cyber systems, cyberphysical systems 
open the door to attacks that cause severe physical 
 damage—on par with the damage caused by kinetic 
weapons. However, unlike kinetic attacks, CPS attacks 
can be stealthy and precise identification of the attacker 
is often difficult. These attacks require a deep under-
standing of the physics of both the process being con-
trolled and the logic that controls the equipment. A 
well-publicized example of a CPS control system attack 
is the Stuxnet attack on the Iranian Natanz enrichment 
facility (Langner 2013).

Sophisticated stealthy attacks on physical infra-
structure can also exploit the physics of the process 
being controlled. A compelling example is an attack 
on an industrial pump in which the attack payload is 
a stream of cavitation bubbles created via malicious 
control of an upstream valve. Over time the stream of 

A chemical plant control 
system that becomes unstable 
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close a critical valve,  

causing it to fail.
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 bubbles will pit the pump’s impellers and eventually 
cause the pump to fail (Krotofil 2017).

Protective Approaches

The attacks described in this section rely on mali-
cious inputs that disrupt or hijack the control system. 
 Standard software engineering techniques, such as 
rigorous testing, can and do reduce the threat surface, 
but they often do not provide the necessary coverage—
especially for a complex system with a variety of sensors 
and actuators.

An approach called fuzzing shows promise in uncover-
ing CPS vulnerabilities not found by traditional tech-
niques. In fuzzing, inputs are automatically generated to 
force coverage of unexplored code (Miller et al. 1990). 
The technique is particularly applicable to cyber physical 
systems where the range of possible inputs is difficult to 
enumerate or bound.

For stealthy physical attacks, solutions include redun-
dant sensors and consistency checks to detect a deterio-
rating system.

Summary

The CPS-based IoTT presents an enormous increase 
in potential attack surfaces. Many of these systems will 
interact with humans, further expanding the attack sur-
face and resulting in significantly more vulnerabilities 
and potential negative impacts on society. If the past is 
any harbinger of the future, the security attack-solution 
competition will continue. Highly inventive  attackers 
will exploit the physical, cyberphysical, and cyber 
 layers to their advantage. Developers of smart devices 
and smart applications must be aware of new classes of 
potential attacks and build solutions for them as first 
principles, not only after problems are uncovered.

Some new solutions are promising, but of course they 
will be useful only if actually implemented. Diverse 
techniques have proven helpful in computer secu-
rity and should also help in the IoTT. However, too 
often speed to market, cost in dollars, or the benefits 

of homogeneity keep the development of devices and 
systems from incorporating known security solutions. If 
these conditions persist and there are trillions of smart 
 devices, there may be widespread chaos and increased 
risks of physical danger.
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