
Predictive Dependency Constraint Directed
Self-Healing for Wireless Sensor Networks

Jingyuan Li∗, Yafeng Wu∗, John A. Stankovic∗, Sang H. Son∗, Ziguo Zhong†, Tian He†,
Bong Wan Kim‡ and Seong-Soon Joo‡

∗Department of Computer Science, University of Virginia, Charlottesville, VA, U.S.A.
Email: {jl3sz, yw5s, stankovic, son}@cs.virginia.edu

†Computer Science and Engineering, University of Minnesota, Minneapolis, MN, U.S.A.
Email: {zhong, tianhe}@cs.umn.edu

‡Electronics and Telecommunications Research Institute, Daejeon, Korea
Email: {kimbw, ssjoo}@etri.re.kr

Abstract— Wireless sensor networks are now being considered
for mission critical applications, which are often largely unat-
tended and need to operate reliably for years. However, due
to the real world communication, sensing and failure realities,
clock drift, and node faults, the system performance may
degrade significantly over time. It is highly desirable that these
natural deteriorations can be monitored continuously and can
be corrected with self-healing when necessary. In this paper, we
introduce a dependency constraint directed self-healing scheme
for wireless sensor networks. We reveal that when self-healing
services are being composed, certain dependency constraints,
including invocation, parameter consistency, control and im-
plicit assumption dependencies must be carefully identified and
respected. We illustrate each of these dependency constraints
through case studies in 3 different systems covering the typical
functions of wireless sensor networks, including sensing, com-
munication and tracking. Our research indicates that, following
the dependency constraints in self-healing design is not only a
must for the correctness of self-healing services, but is also a key
to energy efficient self-healing.

Keywords— self-healing; dependency; wireless sensor net-
works; sensing; communication; tracking;

I. INTRODUCTION

Wireless sensor networks (WSNs) are now being consid-
ered for mission critical applications such as infrastructure
monitoring [10], [11], fire fighting [1], pollution control [15],
assisted living [21], military surveillance and tracking [22].
These systems will often need to exist for years, and operate
reliably in the context of real world communication, sensing
and failure realities. However, due to the negative impact of
noisy environments and the unreliable nature of the cheap
sensor nodes being used, it has been commonly observed and
reported that WSN systems are subject to performance degra-
dations, component faults, and even major system failures in
real world deployments [18], [17], [14].

Our key observation is that a WSN system may drift to
disorder and lose its key capabilities over time due to faults,
performance degradations, node failures, security attacks,
workload changes, and natural deterioration such as reduced
energy and clock drift, unless proper self-healing services
is applied to maintain order, or to recover the system from
disorder.

The central idea of our self-healing services is to ochestrate
the running of a selective set of existing system protocols
in order to prevent the impact of failures and to maintain
system performance. The design of our self-healing service
is inspired by the “system-wide reboot” and “system-wide
reconfiguration” schemes which had been used in WSNs
historically to handle malicious distributed failure conditions,
e.g., in VigilNet [7]. However, we argue that such simple
reboot/reconfiguration schemes can not fulfill self-healing for
WSNs in general and are rather energy inefficient.

In modern large scale complex WSNs, it is common
practice to have multiple protocols and dozens of compo-
nents integrated to perform a single application. The inherent
complexity of these systems makes composing self-healing
services a difficult problem, due to the intricate coupling and
complex dependency relationships among different part of
the system. Dependency relationships among different com-
ponents must be carefully studied, explicitly articulated and
respected when designing the self-healing services. What’s
even worse, the system may evolve over time, and components
may be added, deleted, and updated, each change potentially
impacting the dependency relationships and thus invalidate the
previous design of the self-healing solution.

In this work, we propose a novel dependency constraint
directed self-healing framework to allow users to compose
self-healing services both systematically and consistently, and
to be able to perform self-healing services in an energy
efficient manner. The framework also permits flexibility in
more easily modifying the self-healing services over time
rather than re-implementing the system.

The major contributions of our work are: 1) a predictive
self-healing approach that monitors for state deterioration and
maintains system performance under faults and failure condi-
tions, 2) a novel dependency constraint directed self-healing
solution that supports both correct and efficient self-healing,
3) small runtime costs that enable self-healing techniques to
execute on minimal capacity sensor nodes, and 4) a set of case
studies that demonstrate that the solutions are appropriate for
different types of systems and different types of protocols.



The rest of this paper is organized as follows. In Section II
we introduce the dependency constraint challenges for self-
healing. Section III presents the dependency constraint di-
rected self-healing design. Section IV presents case studies
of the self-healing design in 3 different systems, including
VigilNet [7], ATPC [12], and SBT [24]. Section V covers
an overview of the state-of-the-art self-healing practices in
WSNs and related works. Finally, in Section VI, we present
the conclusions.

II. SELF-HEALING DEPENDENCY CONSTRAINTS

There are often intricate coupling and complex dependency
relationships among different parts of a system in modern
large scale WSNs. Such dependencies incur constraints that
must be understood and accounted for when composing
self-healing services. Creating a methodology and run time
framework that address these issues provides more effective
self-healing both in terms of performance (only protocols
that have actual or potential problems need be re-executed)
and correctness (when re-running protocols to re-establish
consistent distributed state, the proper order and collection
of protocols are executed). A key element of this approach is
the dependency assessment.

We have identified 4 key types of dependencies which we
call: invocation, parameter consistency, control and implicit
assumption dependencies. The invocation dependencies are
often considered easy to identify via the explicit dependency
relationships implied by function calls. However, even these
dependencies are more complex than implied by the top-
down call tree (discussed below). Beyond these dependencies,
there is a collection of more complex dependencies that
exist in many systems. These complex dependencies share
similar traits, for example: they are often more implicit and
can’t be easily traced from explicit function calls. Rather
they exist in the form of race conditions among multiple
components, or among competing control loops, or due to
the assumptions made by the designer/implementer. In these
cases, each dependency must be carefully identified when
designing self-healing services. This collection of complex
dependencies includes the parameter consistency, control and
implicit assumption dependencies.

A. Invocation Dependency

Imagine that the system performance is being monitored
on a continuous basis, and over time more and more nodes
were found to be no longer responsive, and certain per-
formance metrics (for example, average end-to-end delay)
degrade dramatically. The self-healing framework using the
monitoring component decides that certain healing service
must be invoked to maintain the performance. However, such
healing service can’t be trivially defined by the collection
of all protocols, because: 1) certain protocols are related
to the performance metric, while others are not, so only a
portion of the protocols needs to be invoked; 2) due to the
dependency constraints among different components of the
system, protocols can’t be invoked in arbitrary order, but must

carefully follow the dependency constraints. We call this type
of dependency an “invocation dependency”.

Fig. 1. Invocation dependency.

Invocation dependency primarily refers to the type of
dependency that exists due to the vertical integration of a
protocol stack or because of a series of function calls. An
example of invocation dependency is as follows.

Suppose that average “end-to-end communication delay” is
an important state variable being monitored and it starts to
degrade to a level that affects losing tracks of vehicles or not
having enough time to react to alarms. The increased delay
may be due to some failed nodes so that current routes are
not effective anymore. Thus, a set of protocols must be re-
invoked to perform self-healing. End-to-end delay depends on
both the routing protocol and the MAC protocol. Further, the
delay performance of the routing protocol may also depend on
the time synchronization and the localization protocols. The
dependency relationships in this example are illustrated in the
Fig. 1. This set of protocols must be re-run to re-establish
new and effective routes. Individual protocols do not have the
global view to solve this problem.

B. Parameter Consistency Dependency

Parameterized protocols and functions permit flexible sys-
tems and adaptive performance by modifying the values
of the parameters at runtime. When a problem is detected
that needs self-healing, one approach is to adjust some of
these parameters. However, this must be performed carefully
and consistently. Our framework permits specification of
parameter dependencies and the required healing actions. For
example, imagine a WSN that is suffering from performance
degradation due to node failures and the self-healing service is
invoked. The service evaluates the current situation to decide
which action to take. Consider the following examples of
parameter dependency.

Due to the common practice of node duty cycling in WSNs,
there is usually only a portion of total nodes active at given
time, and this proportion P is a parameter that is decided
by the designer depending on system requirements. Suppose
there is another parameter R that determines the number of re-
dundant routes that must be maintained for system communi-
cation reliability. Since there are hidden dependencies among
these two parameters, we can’t set one of the parameters
without affecting the other. Thus, in our methodology these
parameters are identified and their relationship coded into



the self-healing action routines in the framework. The exact
settings are application dependent, but with our framework
they are set in a consistent manner.

Another example involves a duty cycle choice for a node
(rate at which it awakes and senses the environment) and the
duty cycle for the radio (rate at which the node is awake
for communicating with neighbors). Given deterioration in
energy levels available, the system might decide to reduce
the communication duty cycle. This decision should not be
performed in isolation, rather both duty cycles should be
considered in order to implement a system-wide effective
solution. Explicitly identifying these dependent parameters
and including them into an framework enables correct and
efficient decision, and is flexible to future system changes.

C. Control Dependency

Many sensor networks employ control loops within and
across protocols, nodes and even the entire system. Often such
control loops take a localized view and can operate inaccu-
rately from a system perspective. Designers must consider all
the control loops in the system and identify potential control
loop dependencies and the proper combined actions to avoid
control loops from inappropriately positively reinforcing each
other resulting in an overshoot situation, or cancelling each
other (when these are not the correct actions).

Imagine a WSN that implements both a communications
power control protocol (e.g., ATPC [12]) and a sensor power
management protocol. When the RSSI value is found to be
low, the power control protocol tries to increase the radio
transmission power in order to maintain link quality. Mean-
while, power management protocol may prefer the opposite
– decrease radio transmission power in order to conserve
energy (if the energy level is low). The dependencies among
these competing control loops must be identified and the
proper combined action must be defined for the self-healing
framework. In this case there may be a compromise that
increases the communications power less than it would have
if acting alone since the node is low on power.

In the future, as more actuators are added to WSNs, it
will become more and more important to identify and support
control loop dependencies in a correct manner. Our framework
offers this support.

D. Implicit Assumption Dependency

Often, protocols and functions are implemented with un-
stated assumptions. To support long-lived systems, identifying
and making explicit as many of these assumptions as possi-
ble will improve the effectiveness of self-healing. In other
words, a designer must attempt to understand the implicit
assumptions in the system and make them known to the self-
healing framework. Once known, the self healing framework
uses them in a correct manner.

For example, imagine a WSN that implements a localization
protocol which relies on minimum number N of GPS anchor
nodes to perform localization to the required level of accuracy.

Then, the implicit assumption adopted by the localization
protocol and stated to the self-healing framework is that the
number of available anchor nodes should not drop below N.
At runtime, if localization must be re-run because too many
nodes have been moved, this assumption is checked. If the
number of current true GPS anchors is greater than or equal
to N then self-healing continues. If not, then there must be an
action routine that “heals” this problem. Such a routine might
activate a GPS device on other nodes (assuming such backups
exist) or choose current nodes deemed accurate enough to
serve as anchor proxies or inform a system administrator that
new anchor nodes must be physically added to the system.

Identifying implicit assumptions is perhaps the most diffi-
cult problem for a system designer. However, our approach
forces a designer identify such dependencies and make them
explicit. This improves the system design as compared to the
case where this is not done.

III. DEPENDENCY CONSTRAINT DIRECTED
SELF-HEALING DESIGN

In self-healing enabled WSNs, a system should have at
its core a collection of smart capabilities, including: self-
cognizance, decision making and self-healing. These key
capabilities allow a WSN to be aware of its health status at
run time, such as clock drift, link quality, route accessibility,
energy levels, node aliveness and even the integrity of appli-
cation semantics. Given the health status of the system and
its components, the system needs the ability to evaluate this
information and to decide whether healing is necessary, when,
where and how should the system be healed.

The goal of our self-healing design is to provide systematic
self-healing mechanisms to maintain system performance for
WSNs in the presence of natural system deterioration due
to time, faults, failures and inconsistent states. We design
and implement a generic framework to enable the dynamic
invocation of self-healing services at run time. Our framework
allows individual system functions to specify the required self-
healing service, identifying when such a service needs to be
activated, and then creating the actual protocols to restore
system state for each function.

Fig. 2. Self-healing framework.

As illustrated in Fig. 2, our self-healing framework in-
corporates three components: health monitoring, self-healing
policy and self-healing engine. The health monitoring module
enables the WSN to be aware of its own health status



including the consistency of the distributed state of the net-
work. It monitors for the situation in which state consistency
deteriorates to a level that is approaching potential failure and
activates the action routines early to avoid such conditions.
The self-healing policy specifies dependency relationships
among system components that must be respected when
composing self-healing services, provides decision making
mechanisms on when self-healing service should be invoked,
and describes how to invoke related action routines. The self-
healing engine provides a set of self-healing services that are
invoked when the system needs to react based on predicted
deterioration or faults and errors that have occurred.

A. Health Monitoring

A monitor is implemented to collect the health state infor-
mation at system execution time. It is entirely implemented by
the developers of the self-healing framework, and the states
to be monitored are defined by system designers.

There are four types of health states (based on the way they
can be accessed), each of the following category represents a
particular type, and the corresponding way of implementing
health monitoring in WSNs.

• States that are available via directly interfacing with
the hardware layer. For instance, the node battery level.
The monitor can check these states by calling relevant
interfaces.

• States that exist in node software. For instance, the packet
buffer utility that exists in the routing protocol. The
monitor can use specific functions to access these states.

• States that need cooperation with other nodes. For in-
stance, the link quality between two neighboring nodes.
To support accessing these states, the monitor uses the
communication facilities to exchange information with
its counterpart at neighbors.

• Global states that only the base station can process.
For instance, the end-to-end delay. For these states, the
monitor at nodes use existing network layer protocols to
send states to the base station.

B. Self-healing Policy

1) Dependency Specification: Dependency specification is
designed off-line. How to identify all dependency constraints
among system components is a separate research question
that’s beyond the scope of this paper. Either the system
designer or the developer of the self-healing framework
presents the dependency specification in a file. Each line
of the file specifies a dependency relationship and the type
of dependency between two system components. The depen-
dency specification is then parsed by a script (a Perl script) to
generate a dependency component that contains corresponding
representations of dependency constraints in nesC to be used
by the run-time invocation component. The developer of the
self-healing framework then links the dependency component
with the run-time invocation component manually.

In our self-healing design, invocation dependency and
complex dependencies are represented with different run-time
data structures according to their different natures. Invocation
dependency is represented with a set of dependency trees.
Each parent node of the tree depends on its child nodes. At run
time, the run-time invocation component searches the list of
trees and checks against the root of each tree to determine if a
dependency exists. The complex dependencies are represented
with a linked list, each item in the list includes a set of
components with complex dependency constraints and the
type of each dependency.

2) Policy Library: The policy library is basically a set of
tables that are referred to once the monitor identifies changes
in system health status. Each entry in the table represents
a policy, which describes the state being monitored, the
condition (e.g., threshold values) under which action routines
must be activated and the corresponding self-healing action
under particular failure situations. Coordination among a set
of policies is enabled via user defined priority bits. Such co-
ordination requires the system to resolve certain dependencies
with higher priority than the others.

C. Self-healing Engine

A set of run-time invocation routines is embedded in the
main loop of the application to implement the self-healing
engine. Once the system finishes the initialization, it enters
both the functional state and the health monitoring state.
When major changes in system health status are identified,
depending on the self-healing policy and the type of depen-
dency constraints involved, self-healing commands are sent
out by the initiator (e.g., the base station). If only invocation
dependencies are involved, the system invokes related self-
healing protocols according to the dependency specification;
if complex dependencies also exist, the system uses a resolver
component to request a set of parameters to be adjusted
correspondingly, or a set of control loops to take consistent
actions accordingly, or a self-healing action to be taken in
response to violated system assumptions.

Fig. 3. Self-healing for communication and sensing coverage in VigilNet.

A key advantage of the modularized design of our self-
healing framework is that it allows users to deal with system
updates and changes relatively easily. Dependency specifica-
tions, policies and self-healing action routines can be added,



Fig. 4. Impact of the number of failures on
energy consumptions.

Fig. 5. Impact of the number of failures on
energy savings.

Fig. 6. Impact of failure intervals on energy
savings.

deleted or modified easily to allow the self-healing design to
evolve with the system over time.

IV. CASE STUDIES

In this section we present case studies for self-healing in 3
different systems, to illustrate each of the above dependencies.
Our case studies cover the typical aspects of WSNs, including
sensing, communication and tracking.

A. Self-healing in VigilNet: Invocation and Parameter Con-
sistency Dependencies

In this section, we illustrate the invocation and parameter
consistency dependency constraints in the context of self-
healing design in VigilNet [7]: a military surveillance appli-
cation.

VigilNet is a large-scale WSN for long-term military
surveillance with significant system complexities. The primary
design goals of the VigilNet system are to detect events and
moving targets, keep track of the position of the moving
targets and to correctly classify the detected targets in an
energy-efficient and stealthy manner.

Of critical importance to its application level performance
is the health status of a set of system functions, including
time synchronization, sensing coverage and communication
coverage. The major cause of performance degradation and
failures are natural clock drifts over time, link failures due
to radio communication realities [25] and node failures. In-
spired by the motivation to combat clock drift among all the
nodes, as well as to deal with node failures and disconnected
sub-networks, VigilNet implemented a rotational scheme to
reinitialize the entire network for all the services once per
day.

Such a rotational re-initialion scheme suffers from two
major problems. First, since re-initialization happens peri-
odically on a daily basis, any faults or failures only get
resolved at the end of the day when the system reinitializes.
Second, the re-initialization process interrupts the normal
operations of the system and introduces a constant overhead in
energy consumption, regardless of whether there are failures
occurring in the system or not.

To address these two issues, our self-healing solution allows
the system not only to be responsive to failures, but also to

be able to perform self-healing in an energy efficient manner.
In this case study, we explore self-healing for two important
functions in VigilNet – the communication coverage and
sensing coverage.

Due to the unreliable nature of the battery powered sensor
nodes being used, node failure occurs at times. If the failed
node happens to be a backbone node of the network spanning
tree, then it disconnects a sub-network from the system,
leading the system to lose communication coverage; on the
other hand, if the failed node happens to be a sentry node
(VigilNet incorporates a node duty cycling based scheme
to save energy, active nodes are selected strategically to
guarantee sensing coverage, while other nodes can go to sleep
to save energy. Such active nodes are called sentry nodes in
VigilNet.), then the system loses sensing coverage.

In either case of failures, the system performance can be
affected significantly. Thus, we monitor the health status of
the communication backbone nodes and sentry nodes on a
continuous basis, using periodic beacons. Once node failures
are detected, the system invokes a series of pre-installed
self-healing protocols to heal the system. Such invocation
sequences represent the minimum number of protocols that
need to be invoked, and are carefully ordered to satisfy the
dependency constraints described in Section II-A.

As illustrated in Fig. 3, when the system detects a com-
munication backbone node failure and determines that a self-
healing service must be invoked according to the self-healing
policy, it first uses the “wakeup service” to wakeup all the
nodes in sleep mode, re-runs the “asymmetric detection”
protocol to select good links, and then re-runs the “backbone
creation” protocol to pick the backbone nodes and create the
communication backbone, and finally, due to the change in
network topology, a “sentry selection” protocol needs to be
re-run to maintain sensing coverage based on the recovery
of communication coverage. If the failed node is a sentry
node, then the self-healing service only needs to invoke the
“wakeup service” and the “sentry selection” protocol to re-
establish sensing coverage.

By following the dependency constraint directed self-
healing design, our system is not only more responsive to
node failures (it heals the system almost immediately after
the failure has been detected), but also achieves significant
energy efficiency, because our self-healing only invokes the



minimum set of protocols needed to self-heal and only when
failures have actually occurred, rather than on a periodic basis.

To illustrate the benefit of our self-healing design, we
carried out a simulation to study the energy consumption in
contrast with the original system. Our simulation assumes the
same energy model as used in [7]. In a simulated scenario of
60 days of deployment, VigilNet reinitializes the system 60
times, consuming 1079.9 Joules (99.9936 mAh) of energy,
which is about 4.5% of the node’s battery capacity (2200
mAh). During the 60 days, we assume node failures follows
a Poisson distribution, with expected number of failures from
0 to 60.

The energy overhead of our self-healing service is presented
in Fig. 4 in contrast with the original VigilNet system,
which uses periodic reset to achieve the same purpose. We
can see that the energy consumptions of our self-healing
services increase linearly with the number of failures, but are
significantly smaller than the original system. Fig. 5 illustrates
the impact of the number of node failures on energy savings.
The energy savings decrease linearly with the number of node
failures, but are still significant (at least 60%) with even 60
node failures. Fig. 6 presents the impact of the average number
of days per failure on energy savings. As indicated in Fig. 6,
even if the failures occur on a daily basis (on average), we can
still save 60% of the energy for self-healing in communication
coverage and 80% of the energy for self-healing in sensing
coverage.

As an example of the parameter consistency dependency,
we found that when more and more node fails in VigilNet,
it becomes more and more difficult to maintain the network
lifetime without adjusting a set of system parameters to
meet the energy constraints. To maintain the targeted network
lifetime, the system must sacrifice the sensing coverage to
reduce energy consumption, thus the number of sentry nodes,
as a parameter, must be decreased during the self-healing
process. Similarly, the system must also reduce the level of
route redundancy to save energy, thus the number of redundant
routes, as another parameter, must also be decreased to adapt
to the new failure realities. However, these two parameters are
not independent. Thus, when self-healing action is initiated,
these two parameters must be adjusted consistently via the
resolver, based on the self-healing policy and the current
failure realities (e.g., proportion of node failures).

B. Self-healing in ATPC: Control Dependencies

In this section, we study a control dependency example
in WSN protocol stacks to illustrate how control dependency
constraints are addressed in our self-healing design.

It is well-known that WSNs suffer from unstable and poor
wireless links, and high packet loss ratio in many cases. One
effective way to address this issue is to use transmission power
control protocols, such as ATPC [12], which apply feedback
control to adjust transmission power levels according to packet
reception ratio. On the other hand, packet loss can also be
caused by collisions and congestions of concurrent traffic.

Backoff interval control methods are used to address this
issue, which apply feedback control to adjust backoff interval
of CSMA protocols to reduce the chances of collisions[8].
Both control loops take the packet reception ratio as input,
and improve communication qualities individually. However
they may conflict with each other when they exist in the
same system. For example, when packet losses are caused
by collisions, ATPC increases the transmission power in
response, but higher transmission power can’t reduce packet
loss due to collisions, rather, it aggravates collisions. On the
other hand, when packet losses are caused by poor link quality,
the backoff control loop increases the backoff window size,
but it can’t improve the link quality and packet reception
ratio, rather, it increases the transmission delay and reduces
the throughput.

To address this control dependency, our self-healing ap-
proach implements a resolver that utilizes the control coordi-
nator on top of both control loops. This control coordinator
manages control in two steps: First, it differentiates whether
packet losses are caused by poor link quality or by collisions,
via measuring RSSI values (in reality, when collisions occur
at receivers, high RSSI fluctuations can be observed); Second,
the coordinator invokes the corresponding control loop to
maintain communication quality. Fig. 7 illustrates the design
of this self-healing resolver.

We implemented both control loops and the resolver in
TinyOS, and conducted experiments on Telosb motes to study
their performance. Our experiment uses two pairs of senders
and receivers, which are placed close to each other initially.
Each experiment is divided into two time periods. In the
first period (0 ∼ 20s), the first pair starts to transmit 50
packets/s. At the same time, the sender moves away from
the receiver. In the second period (20 ∼ 30s), both pairs send
50 packets/s, and the first sender stops moving. During the
experiment, we measured the average packet reception ratio
and the transmission power level every two seconds, and the
results are shown in Fig. 8 and 9. Each data point is an average
of 5 experiments.

In the first period, when the sender moves away from
the receiver, the link quality degrades, ATPC is triggered
to increase the transmission power to maintain the packet
reception ratio. In the second period when two senders start
to transmit packets concurrently, without the self-healing
resolver, ATPC still runs and increases transmission power (as
shown in Fig. 8), which not only leads to approximately 9.5%
of energy waste, but also causes 7% more packet loss in the
worst case (as shown in Fig. 9). In contrast, our self-healing
resolver can avoid such problems, when packet losses are
caused by collisions only, it stops the ATPC loop and triggers
the backoff loop to maintain the communication quality.

Overall, dependent control loops can cause complicated
problems if not handled properly. By addressing the control
dependency via self-healing resolver in this case study, our
self-healing design not only maintains system performance,
but also eliminates the problems which dependent control
loops can otherwise cause.



Fig. 7. Self-healing resolver for control
dependency.

Fig. 8. Transmission power level over
time.

Fig. 9. Packet reception ratio over time.

Fig. 10. SBT tracking results without
faulty node.

Fig. 11. SBT tracking results (with faulty
stronger sensor reading).

Fig. 12. SBT tracking results with system
self-healing.

C. Self-healing in SBT: Implicit Assumption Dependency

To demonstrate our approach to implicit assumption de-
pendencies, consider a tracking application for WSNs called
Sequence-based Tracking (SBT) [24]. SBT is a system pro-
posed to localize and track mobile objects with a WSN. Given
the location information of all the nodes in the network,
SBT divides the whole map into a large number of small
regions with distinct sequence signatures, called faces. Each
ordered sequence signature reflects the distance relationships
of sensor nodes in the network to the corresponding face.
Once a target enters the network area, sensors detect the
target with a certain physical modality, following an implicit
assumption that a node will detect a weaker signal when
it is further away from the moving object. By comparing a
series of detection sequences obtained from ordering in-the-
field sensor nodes according to their sensing results with the
signature sequences of faces in the map, the mobile target
can be localized and tracked despite of strong sensing noise.
However, the basic assumption of SBT can be violated due
to faulty sensor readings, e.g., a malfunctioning sensor node
always outputs stronger sensing result than the ground truth
of the signal. In such situations, the performance of the SBT
system deteriorates significantly.

We use simulation to illustrate the impact of violated as-
sumptions and to reveal the benefit of our self-healing design.
In our simulation, 9 senor nodes are deployed in the map, a
mobile target moves in and out of the area under surveillance
with its movement trace depicted with a solid curve, as shown
in Fig. 10-12. The dashed curve in Fig. 10-12 shows the
estimated track of the target from the SBT system. We can see
from Fig. 10 that if every node works fine, the system gives
a sound result. However, if one faulty node appears, i.e., it

always gives significantly stronger sensing results, the SBT
system is not able to give good tracking results, as shown
in Fig. 11. As we can observe from Fig. 11, the estimated
locations of the target are shifted towards the faulty node,
this is because the faulty node reports a continuous stronger
detection result creating the illusion that the target is close to
the faulty node. According to the simulation results in Fig. 11,
we can see that the violation of the implicit assumptions can
cause significant errors in the tracking performance.

To deal with such problems, we apply self-healing in the
SBT system. Our self-healing procedure first evaluates the
sensor readings from each node in the network. If symptoms
of sensor malfunctioning is detected, the self-healing protocol
eliminates the faulty sensor node from the tracking system
so as to re-establish satisfaction of the implicit assump-
tions. Next, a sequence of self-healing routines including
map division, signature sequence assembling, and detection
sequence matching [24] are invoked following the invocation
dependencies. Fig. 12 presents the result of tracking after
removing the faulty sensor node from the tracking system
and self-healing. We can see that the tracking performance is
greatly improved after self-healing.

V. RELATED WORK

Self-healing, as an important research topic, has been
explored both within and outside the context of WSNs. IBM
initiated Autonomic Computing [9] in 2001, which aims to
develop novel computing systems that can self-configure, self-
heal, self-optimize and self-protect. Self-healing, as a property
of this computing paradigm, has been explored in the context
of personal computing [16]. However, these solutions can’t be
directly applied to WSNs since they are too heavy weight for



the resource constrained sensor nodes.

A few recent works have investigated self-healing in WSNs.
Some were targeting the architectural design of self-healing,
others explored self-healing for a particular system or proto-
cols.

SASHA [2] proposed an immunology inspired self-healing
architecture for sensor networks, featuring adaptive network
monitoring, automatic fault recognition and coordinated re-
sponse. However, the system’s ability to self-heal was only
demonstrated in terms of dealing with faulty sensor read-
ings. In BiSNET [3], self-healing (in terms of detecting and
eliminating false positives in sensor readings) is a property
derived from the biologically inspired architecture. However,
the system’s ability to self-heal is not demonstrated in gen-
eral. GS3[23] presented a distributed algorithm to configure
the network nodes into a cellular hexagonal structure. The
self-healing under various perturbations, such as node joins,
leaves, deaths, movements, and corruption, is achieved by the
property of the hexagonal structure. However, self-healing is
only derive from the particular structure, and is not applicable
to other systems in general.

A number of papers explored the possibility of self-healing
(in terms of bridging holes in routing or node coverage) by
means of mobile nodes [5], [19], [6]. Although node mobility
is possible and anticipated by researchers, it is still a luxury
for current sensor network practices in general. POSH [4] pro-
poses a self-healing protocol that allows sensors to collectively
recover from compromises via infusion of secure randomness,
however, its focus is only on backward secrecy (recover
from prior compromise). [13], [20] proposed processes for a
ZigBee based sensor network to repair itself after node failure
or communication breakdown by allowing a disconnected
subnet to rejoin the network. They both improved the standard
self-healing scheme described in ZigBee specification [26],
however, their focus is only on network connectivity.

VI. CONCLUSION

In this paper, we present a predictive dependency constraint
directed self-healing scheme for WSNs. We explored 4 types
of dependency constraints (including invocation, parameter
consistency, control and implicit assumption dependencies)
and their impact on self-healing for WSNs. We proposed a
self-healing framework and a dependency constraint directed
design approach to deal with these dependencies in self-
healing. We illustrated each of these dependency constraints
through case studies in 3 different systems covering the typical
functions of WSNs, including sensing, communication and
tracking. Our research indicates that, following the depen-
dency constraints in self-healing design is not only a must for
the correctness of self-healing service, but is also a key to
energy efficient self-healing in WSNs.

VII. ACKNOWLEDGMENT

This work was supported in part by the Ministry of Knowl-
edge Economy (MKE) of the Republic of Korea under grant

2008-F-052, and NSF CNS-0614870 and CNS-0626632.

REFERENCES

[1] Berkeley FireBug. http://firebug.sourceforge.net/.
[2] T. Bokareva, N. Bulusu, and S. Jha. Sasha: Toward a self-healing hybrid

sensor network architecture. The Second IEEE Workshop on Embedded
Networked Sensors, pages 71–78, May 2005.

[3] P. Boonma and J. Suzuki. Bisnet: A biologically-inspired middleware
architecture for self-managing wireless sensor networks. Computer
Networks, 51(16):4599–4616, 2007.

[4] R. Di Pietro, D. Ma, C. Soriente, and G. Tsudik. Posh: Proactive co-
operative self-healing in unattended wireless sensor networks. In SRDS,
Oct. 2008.

[5] X. Du, M. Zhang, K. Nygard, M. Guizani, and H.-H. Chen. Distributed
decision making algorithm for self-healing sensor networks. In ICC,
June 2006.

[6] B. Haynes, M. Coles, and D. Azzi. A self-healing mobile wireless
sensor network using predictive reasoning. Sensor Review, 28(4):326–
333, 2008.

[7] T. He, S. Krishnamurthy, L. Luo, T. Yan, L. Gu, R. Stoleru, G. Zhou,
Q. Cao, P. Vicaire, J. A. Stankovic, T. F. Abdelzaher, J. Hui, and
B. Krogh. Vigilnet: An integrated sensor network system for energy-
efficient surveillance. ACM Transactions on Sensor Networks, 2(1):1–
38, 2006.

[8] B. Hull, K. Jamieson, and H. Balakrishnan. Mitigating congestion in
wireless sensor networks. In SenSys, 2004.

[9] IBM Autonomic computing white paper - An architectural blueprint for
autonomic computing, 2005. IBM Corp.

[10] S. Kim, S. Pakzad, D. Culler, J. Demmel, G. Fenves, S. Glaser, and
M. Turon. Wireless sensor networks for structural health monitoring.
In SenSys, 2006.

[11] S. Kim, S. Pakzad, D. Culler, J. Demmel, G. Fenves, S. Glaser, and
M. Turon. Health monitoring of civil infrastructures using wireless
sensor networks. In IPSN, pages 254–263, 2007.

[12] S. Lin, J. Zhang, G. Zhou, L. Gu, J. A. Stankovic, and T. He. Atpc:
adaptive transmission power control for wireless sensor networks. In
SenSys, 2006.

[13] W. Qiu, P. Hao, and R. Evans. An efficient self-healing process for
zigbee sensor networks. In ISCIT, Oct. 2007.

[14] N. Ramanathan, K. Chang, L. Girod, R. Kapur, E. Kohler, , and
D. Estrin. Sympathy for the sensor network debugger. In SenSys,
November 2005.

[15] D. Shin, S. Y. Na, J. Y. Kim, and S.-J. Baek. Fish Robots for Water
Pollution Monitoring Using Ubiquitous Sensor Networks with Sonar
Localization. In ICCIT, Nov. 2007.

[16] Sterritt, R. and Bantz, D.F. Personal autonomic computing reflex
reactions and self-healing. In IEEE Transactions on Systems, Man,
and Cybernetics, May 2006.

[17] R. Szewczyk, J. Polastre, A. M. Mainwaring, and D. E. Culler. Lessons
from a sensor network expedition. In EWSN, pages 307–322, 2004.

[18] G. Tolle, J. Polastre, R. Szewczyk, D. E. Culler, N. Turner, K. Tu,
S. Burgess, T. Dawson, P. Buonadonna, D. Gay, and W. Hong. A
macroscope in the redwoods. In SenSys, 2005.

[19] N. Vlajic and N. Moniz. Self-healing wireless sensor networks: Results
that may surprise. In Globecom Workshops, Nov. 2007.

[20] J. Wan, W. Chen, X. Xu, and M. Fang. An efficient self-healing scheme
for wireless sensor networks. In FGCN, Dec. 2008.

[21] A. Wood, J. Stankovic, G. Virone, L. Selavo, Z. He, Q. Cao, T. Doan,
Y. Wu, L. Fang, and R. Stoleru. Context-aware wireless sensor networks
for assisted living and residential monitoring. IEEE Network, 22(4):26–
33, July-Aug. 2008.

[22] T. Yan, T. He, and J. A. Stankovic. Differentiated Surveillance for
Sensor Networks. In SenSys, November 2003.

[23] H. Zhang and A. Arora. Gs3: scalable self-configuration and self-
healing in wireless sensor networks. Computer Networks, 43(4):459–
480, 2003.

[24] Z. Zhong, T. Zhu, D. Wang, and T. He. Tracking with Unreliable Node
Sequence. In INFOCOM, Apr. 2009.

[25] G. Zhou, T. He, S. Krishnamurthy, and J. A. Stankovic. Impact of radio
irregularity on wireless sensor networks. In MobiSYS, pages 125–138,
2004.

[26] ZigBee Specification Version 1.0, 2004. ZigBee Alliance.


