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Abstract

There is a growing need for real-time data services in distributed environments. Providing
quality-of-service guarantees for data services in a distributed environment is a challenging task.
The presence of multiple sites in distributed environments raises issues that are not present in cen-
tralized systems. The transaction workloads in distributed real-time databases may not be balanced
and the transaction access patterns may be time-varying and skewed. Data replication is an effective
method to help database systems meet the stringent temporal requirements of real-time applica-
tions. We have designed an algorithm that provides quality-of-service guarantees for data services
in distributed real-time databases with full replication of temporal data. The algorithm consists of
heuristic feedback-based local controllers and global load balancers (GLB) working at each site. The
local controller controls the admission process of incoming transactions. The global load balancers
collect the performance data from other nodes and balance the system-wide workload. The simula-
tion results show that the new algorithm successfully balances the workloads in distributed real-time
databases and provides tight transaction miss ratio guarantees under various transaction workloads.

Index Terms

Quality of Service, real-time databases, replication, distributed real-time systems, feedback con-
trol, load balance

I. Introduction

There is a growing need for real-time data services in distributed environments. For example,
in ship-board control systems, data is shared in a distributed real-time database embedded in the
ship [29] [28]; in traffic control and agile manufacturing, transactions should be processed within
their deadlines using fresh (temporally consistent) data that reflects the current real-world status
[22]. For many of these applications, providing real-time data services in distributed environments
is essential. The issues involved in providing predictable real-time data services in centralized
database systems have been researched and the results are promising [16] [18] [17]. However, we are
not aware of research results for providing data services with Quality-of-Service(QoS) guarantees
in distributed real-time database environments.

In distributed environments, it is challenging to provide data services with QoS guarantees while
still meeting transaction temporal requirements needed by different real-time applications. One of
the reasons is that distributed system’s performance depends on the workload distribution. Trans-
action workload fluctuations cause uneven distribution of the workload among the sites even if on
the average, all sites receive similar amount of workload. A site may experience transient over-
loads by burst arrivals. Moreover, transaction access patterns may be time-varying and skewed.
With skewed access patterns, many transactions may access a set of data items stored only at
a specific site, overloading the site. In addition, the overloading point also changes dynamically.
The QoS management algorithm must deal with those situations and guarantee the specified QoS
requirements.

Data replication can help database systems meet the stringent temporal requirements of real-
time applications. Data replication greatly improves the system performance when the majority of
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operations on data replicas are read operations. It also helps avoid the data access skew problem
mentioned above because transactions can access locally available data replicas.

Load balancing is a technique to provide better QoS in distributed systems. By transferring
transactions from highly overloaded sites to the less overloaded sites, the overload situation is
alleviated and the QoS of transactions are maintained. In this paper, we study the issues involved
in providing QoS in distributed real-time databases and propose a QoS management algorithm that
controls and balances the workloads in real-time database systems. The algorithm consists of local
feedback controllers and heuristic feedback-based global load balancers (FB-GLB) running at each
site. The local controller controls the admission process of the incoming transaction workload. The
global load balancers collect the performance data from other sites and balance the workloads.
A simulation study shows that strict QoS requirements are guaranteed under a wide range of
workloads.

The rest of the paper is organized as follows. Section 2 describes our real-time database model.
The real-time database QoS management architecture is presented in Section 3. In Section 4, the
algorithm for distributed environments is described. Section 5 shows the details of the simulation
settings and presents the evaluation results. Related work is discussed in Section 6 and Section 7
concludes the paper and discusses future work.

II. Real-time Database Model and Performance Metrics

Before we present our QoS management algorithm, we first introduce the distributed real-time
database system model and the performance metrics considered in this paper.

A. Real-time Database Model

In this paper, we consider a distributed real-time database system which consists of a group
of main memory real-time database systems connected by a Local Area Network(LAN). For the
high performance of main memory accesses and the decreasing main memory cost, main memory
databases have been increasingly used for data management real-time applications [4], [7]. We fo-
cus our study on medium scale distributed databases (in the range of 5 to 10 sites), since the load
balancers need full information from every sites to make accurate decisions. Several applications
that require distributed real-time data services fall in that range. For example, a ship-board control
system which controls navigation and surveillance consists of 6 distributed control units and 2 gen-
eral control consoles located throughout the platform and linked together via a ship-wide redundant
Ethernet to share distributed real-time data and coordinate the activities [29]. We leave it as the
future work to make our solution applicable to large scale distributed real-time applications with
100s sites involved, using only a partial information from a subset of sites.

In this paper, we apply firm deadline semantics in which transactions add value to the application
only if they finish within their deadlines. Hence, tardy transactions (transactions that have missed
their deadlines) are aborted upon their deadline miss. Firm deadline semantics are common in
several real-time database applications. A late commit of a real-time transaction may incur the
loss of profit or control quality, resulting in wasted system resources, due to possible changes in the
market or control status. Our objective is to provide QoS guarantees for real-time data services in
those applications.

A.1 Data Composition

In our system model, data objects are divided into two types, namely, temporal data and non-
temporal data. Temporal data are the sensor data from physical world. In ship-board control
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application, they could be ship maneuvering data such as position, speed and power; in stock
trading, they could be real-time stock prices. Each temporal data object has a validity interval and
is updated by periodic sensor update transactions. Non-temporal data objects do not have validity
intervals and therefore there are no periodic system updates associated with them. Non-temporal
data do not change dynamically with time.

In our distributed real-time database system model, a local site is called a node. Each node hosts
a set of temporal data objects and non-temporal objects. The node is called the primary node
for those data objects. Each node also maintains a set of replicas of temporal data objects hosted
by other nodes. The fresh value of temporal data objects are periodically submitted from outside
to their primary nodes and propagated to the replicas. In our replication model, temporal data
objects are fully replicated and the replicas are updated as soon as the fresher data are available.
Non-temporal data objects are not replicated because replicating non-temporal data objects will not
improve the system performance when the read/write ratio is not high. For instance, replicating
real-time stock quotes would be appropriate in stock trading, since a significant portion of user
transactions only read the data.

A.2 Transaction Model

In our system, transactions are divided into two types, system update transactions and user
transactions. System update transactions are temporal data (sensor data) update transactions
and temporal data replica update transactions. User transactions are queries or updates from
applications. User transactions are divided to different service classes, e.g., class 0, 1 and 2. The
lower the service class number, the higher the priority the transaction has during the execution.
Class 0 is the service class that has the best quality of service guarantee.

Transactions are represented as a sequence of operations on data objects. The operation of
system update transaction is always write. For user transaction, the operation on non-temporal
data objects could be read or write while operation on temporal data could only be read. There
is certain execution time associated with each operation and the execution time of a transaction is
the sum of the execution time of all its operations.

Operations of one transaction is executed in sequential fashion. One operation can not be executed
unless all previous operations are finished.

B. Major Performance Metric

In our distributed real-time database system model, the main performance metric is per-class
deadline miss ratio. The Miss Ratio for service class i is defined as:

MRi = 100× #tardyi

#tardyi+#timelyi
(%)

where #tardyi and #timelyi represent the number of class i transactions that have missed and
met their deadlines, respectively. The DBA (Database Administrator) can specify a tolerable miss
ratio threshold (e.g., 2transactions. Since database workloads and access patterns of transactions
vary dynamically, it is reasonable to assume that some deadline misses are inevitable. A few deadline
misses are considered acceptable unless they exceed the specified tolerance threshold. To guarantee
QoS, an admission control is applied, and hence the deadline miss ratio is accounted for admitted
transactions only.
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C. Other Performance Metrics

In addition to the deadline miss ratio, we use other performance metrics to measure the system’s
performance.

C.1 Transient Performance Metrics

Long-term performance metrics such as average miss ratio are not sufficient for the performance
specification of dynamic systems, in which the system performance can be time-varying. For this
reason, transient performance metrics such as overshoot and settling time are adopted from control
theory for a real-time system performance specification [32]:

• Miss Ratio Overshoot (MROSi) is the maximum transient miss ratio of class i transactions.
• Settling time (ts) is the time for the transient miss ratio overshot to decay and reach the

steady state where the miss ratios are below the specified average values.

C.2 System Resources Utilization and Throughput

In our main memory database model, the CPU time is the main system resource for considera-
tion. Using the system throughput, we show that our algorithm does not sacrifice the transaction
throughput to provide the QoS guarantees.

• CPU Utilization: The utilization of each individual node.
• TP: The number of completed transactions per second.

D. QoS Specifications

The transactions at each node are divided into several service classes. Each service class has
certain QoS specifications. In this paper, we consider the following QoS specification as an example
to illustrate the applicability of our approach for service differentiation.

QoSspec = {(MRQoS0 ≤ 1%,MROSQoS0 ≤ 2%, ts ≤ 50seconds),(MRQoS1 ≤ 10%),(MRQoS2 =
best− effort)}

Note that this specification requires that the average miss ratio is below 1% for Class 0. In the
ship-board system, class 0 transactions relate to tracking important targets. Due to the environ-
mental uncertainty, 100% guarantees are not possible. We also set MROS0 ≤ 2%, therefore, a miss
ratio overshoot of class 0 transactions should not exceed 2%, and the overshoot should decay within
50 seconds. The average miss ratio should be below 10% for Class 1. Class 1 transactions are those
that track less important targets, such as “friendly” targets. The best-effort service is specified for
Class 2. Class 2 transactions include environmental monitoring and certain display activities.

In our previous work [?], we presented an approach for service differentiation in a centralized real-
time database system. In this paper, we extend the feedback-based miss ratio control to distributed
real-time databases. It is challenging to provide average and transient miss ratio guarantees in
distributed environments, while differentiating real-time data services among the service classes.

III. System Architecture

The system architecture of one node is shown in Fig. 1. The real-time database system consists
of an admission controller, a scheduler, a transaction manager, and blocked transaction queues. A
local system performance monitor, a local controller and a global load balancer are added to the
system for QoS management purpose. In Fig. 1, the solid arrows represent the transaction flows in
the system and the dotted arrows represent the performance and control information flows in the
system.
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Fig. 1. Real-time Database Architecture for QoS Guarantee

The system performance statistics are collected periodically by the transaction manager. At
each sampling period, the local monitor samples the system performance data from the transaction
manager and sends it to the local controller. The local miss ratio controller and utilization controller
generate local control signals based on the sampled local miss ratio and utilization data. The details
of the controller will be discussed in the next section.

The admission controller is used to avoid overloading the system. It is based on estimated CPU
utilization and the target utilization set point. At each sampling period, the target utilization
parameter is set by the local controller. The estimated execution time of an admitted transaction
is credited to the estimated CPU utilization. Transactions will be rejected if the estimated CPU
utilization is higher than the target utilization set by the controller. To provide better services to
transactions of higher service classes, priority-aware admission control is used, i.e., all arrived class
0 transactions will be admitted to the system. The underlying assumption is that the system should
be designed with sufficient capacity to handle significant number of incoming transactions of class
0.

The transaction manager consists of a concurrency controller (CC), a freshness manager (FM),
a data manager (DM) and a replica manager (RM). For concurrency control, we use 2PL-HP [2].
2PL-HP is selected since it is free of a priority inversion and is shown to work well in real-time
databases.

During the transaction execution, if it needs temporal data hosted by other nodes, the transaction
manager will use the local copy. If it needs to access non-temporal data hosted by other nodes,
the transaction manager will send sub-transaction initiation request to the primary node of the
data. The remote node then sets up a sub-transaction, which executes on behalf of the original
transaction. The two-phase commit protocol is used to ensure the serializability of concurrent
transactions.
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Fig. 2. Utilization and Miss Ratio Controllers in Centralized Systems

The FM checks the freshness before accessing a data item using the corresponding absolute validity
interval (avi). It blocks a user transaction if the target data item is stale. The blocked transaction(s)
will be resumed and transferred from the block queue to scheduler as soon as the corresponding
data object is updated. FM also checks the freshness of accessed data just before a transaction
commits. If the accessed data item is stale, the transaction will be restarted. In this way, the data
objects accessed by committed transactions are always 100% fresh at the commit time.

The user transactions are scheduled in one of multi-level queues according to their service classes.
A fixed priority is applied among the multi-level queues. A transaction in a low priority queue is
scheduled to run only when there is no ready transactions at the higher priority queues. A low
priority transaction is preempted upon arrival of a high priority transaction. Within each queue,
transactions are scheduled using Earliest Deadline First (EDF). The system update transactions
are executed together with user transactions. Since they update the data objects needed by user
transactions, system update transactions are given higher priority than user transactions.

IV. Algorithm for QoS Guarantees in Distributed Real-time Databases

In this section, the QoS management algorithm in distributed real-time databases is presented.
We first introduce a feedback-based control algorithm for centralized systems. Then we give the
details of our decentralized load balancing algorithm and the integration of the two algorithms.

A. Algorithm in Centralized Systems

Feedback control has been proved to be very effective in supporting a required performance
specification when the system model includes uncertainties. Basically, the target performance can
be achieved by dynamically adapting the system behavior based on the performance deviation
measured in the feedback loop. Feedback control has recently been applied to various computation
systems to provide performance guarantees [30], [40], [42].

A.1 Centralized Control Loops

In each node, there are a local miss ratio controller and a local utilization controller. As shown in
Fig. 2 (a), the local miss ratio controller takes the miss ratios from latest sampling period, compares
them with the QoS specification and computes the local miss ratio control signal ∆UMR, which is
used to adjust the target utilization at the next sampling period. The equation used in this paper
to derive ∆UMR is as follows.
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Fig. 3. Local Control Architecture

∆UMR =
n∑

i=1

PMR × (MRi −MRQoSi
) +

n∑

i=1

IMR × (LTMRi −MRQoSi
) (1)

MRi is the miss ratio of class i transaction of last period and LTMRi is the long term average miss
ratio of class i transactions; MRQoSi

is the specified miss ratio requirement by the QoS specification;
n is the specified QoS level; PMR and IMR are two controller parameters.

In order to prevent under-utilization, a utilization feedback loop is added. This is used to avoid
a trivial solution, in which all the miss ratio requirements are satisfied due to under-utilization.
At each sampling period, the local utilization controller compares the utilization of the last period
with the preset utilization threshold and generates the local utilization control signal ∆UUtil using
equation 2.

∆UUtil = PUtil × (Util − Utilpreset) + IUtil × (LTUtil − Utilpreset) (2)

Util is the CPU utilization of last sampling period and LTUtil is the long term average CPU
utilization of the system; Utilpreset is the preset CPU utilization threshold; PUtil and IUtil are the
controller parameters.

The controller parameters determine the behavior of the controllers. The process of tuning their
values is called controller tuning. The controller analysis and tuning are not the focus of this paper.
Details of the analysis and tuning used in our controller design are provided in [32], [18].

The local control architecture is shown in the Fig. 3. At each sampling period, the system
utilization and transaction miss ratios are input into utilization controller and miss ratio controller.
The smaller output of two controllers is used to adjust the target utilization of the admission
controller.

B. Global Load Balancer

To balance the workload between the nodes and thus provide distributed QoS management,
decentralized global load balancers (GLB) are used. GLBs sit at each node in the system, collab-
orating with other nodes for load balancing. As discussed before, in this paper we consider GLBs
utilizing full information from every node, which is reasonable for medium size distributed real-time
database applications such as ship-board control systems. At each sampling period, nodes in the
system exchange their system performance data. The GLB at each node compares the performance
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of different nodes. If a node is overloaded while some other nodes in the system are not, the GLB
at the overloaded node will send some workload to other nodes that are not overloaded in the next
period.

B.1 Miss Ratio Index

To measure the system performance of one node, we integrate the miss ratios of different service
classes into the performance metrics Miss Ratio Index (MRI) and Long Term Miss Ratio Index
(LTMRI). MRI is a measure of system performance deviation from the specifications. It is defined
as follows.

MRI =
n∑

i=0

WMRi
× (MRi −MRQoSi

) (3)

In the definition, MRi is the miss ratio of class i transactions and MRQoSi
is the specified miss ratio

guarantee for class i transactions. WMRi
is the predefined Miss Ratio Weight for transaction service

class i. Larger miss ratio weights are associated with higher priority classes because transaction
deadline misses of higher class transactions are more serious than the deadline misses of lower class
transactions.

The long term miss ratio index LTMRI is the long term average of the miss ratio index. It is
calculated using the following equation:

LTMRI[k] = α× LTMRI[k − 1]− (1− α)×MRI[k] (4)

where 0≤ α≤ 1 and LTMRI[n] is the long term miss ratio index of period n.

B.2 Load Transferring Factor

The load sharing process is guided by the load transferring factor (LTF). The LTF at each node
is an array of real numbers which denote the amount of workload the local node transfers to other
nodes during the next sampling period. The LTFij is defined as follows.

• LTFij: The workload that local node i can transfer to node j during the next period.
The LTF is measured by required CPU time of transactions that one node can transfer to other

nodes. For example, if LTFij is 0.2 and the sampling period is 2 seconds, node i can transfer to
node j a set of transactions that require 0.2× 2 = 0.4 second of CPU time for execution. In case
different nodes have different processing capacity, a standardized CPU time unit may be used.

B.3 Decentralized Global Load Balancing Algorithm

When one node collects the performance data from the other nodes, a feedback-based load bal-
ancing algorithm is carried out to calculate the LTF . The algorithm is divided into two steps,
Workload Imbalance Test and LTF Adjustment.

• Workload Imbalance Test: The first step is to test whether there exists load imbalance
between nodes. To do that, we calculate the mean deviation of MRIs from different nodes.
The mean deviation is defined as follows.

MeanDeviation =

∑n
i=1(ABS(MRIi)−MEAN(MRI))

n
(5)

where MRIi is the miss ratio index of node i; ABS(MRIi) returns the the absolute value
of MRIi and MEAN(MRI) returns the mean of MRIs; n is the number of nodes in the
system.
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The mean deviation of MRI is a measure for workload balance in the system. A high value of
the mean deviation means that the workloads are not balanced among the nodes while a low
value of the mean deviation means the system workloads are well balanced. Depending on
the value of the mean deviation, the algorithm makes different LTF adjustments. A system
parameter, Mean Deviation Threshold, is used to test whether there exists load imbalance in
the system. When the measured mean deviation is larger than this threshold, load imbalance
is considered to be present in the system. Otherwise, the system workloads are considered
to be balanced.

• LTF Adjustment: The LTF adjustment is divided into two cases depending on whether
there is load imbalance among the nodes.

– Load Imbalance: When there is load imbalance in the system, i.e., the mean deviation of
MRIs is larger than the threshold, it is necessary to share the load between nodes. The
load balancing algorithm at the overloaded nodes will shift some workload to the less
loaded nodes. A node i is considered to be overloaded compared to other nodes if and
only if the difference between its MRI and MRI mean is larger than the preset mean
deviation threshold, i.e., (MRIi −MEAN(MRI)) > MeadDeviationThreshold. A
node j is considered less overloaded if its MRI is less than the MRI mean, i.e.,
(MRIj −MEAN(MRI)) < 0.
For an overloaded node i, the algorithm generates the control signal ∆LTFij for load
transferring factor LTFij, the transaction workload that is transferred from node i to
the less loaded node j. The load sharing factor incremental value ∆LTFij is calculated
using the following equation.

∆LTFij = PLTF × (MRIi −MRIj) + ILTF × (LTMRIi − LTMRIj) (6)

where MRIn and LTMRIn are the miss ratio index and long term miss ratio index
of node n; PLTF and ILTF are tunable system parameters that determine the weights
of MRI and LTMRI on the control signal.
To avoid that two nodes both have positive LTF s with each other and transfer trans-
actions back and forth, special care is needed to make sure that transactions are only
transferred at one direction between two nodes. When a node needs to update its
LTF s for another node, it sends a message to the corresponding node for the purpose
of LTF adjustment. The LTF adjustment process is described as follows. Assume
that node i needs to adjust its LTF for node j.
∗ At node i: Send ∆LTFij to node j. If ∆LTFij is larger than or equal to LTFji

at node j, add ∆LTFij −LTFji to LTFij; otherwise, do nothing. (Node i has
the LTFji of node j because it is broadcast with the local performance data
by node j)

∗ At node j: After receiving ∆LTFij from node i, if ∆LTFij is larger than LTFji,
set LTFji to 0; otherwise subtract ∆LTFij from LTFji.

– No Load Imbalance: When the mean deviation of MRI is less than the specified thresh-
old, the GLB will reduce the load transferring factors. The LTF s are reduced in the
following way.

LTFij = LTFij × γ (7)

where 0 < γ < 1. γ is called the LTF Regression Factor which regulates the load trans-
ferring factors regression process. After reducing LTF , if a LTF becomes sufficiently
small (less than 0.0005), it is reset to 0.
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Fig. 4. Integration of Local Controller and GLB

If a node fails to collect the performance data of some other nodes during a certain period, the
performance data of pervious period is used. This strategy works because message losses are very
rare in wired networks. As shown in the simulation study in the next section, using history data
does not bring in serious problem to the correct functioning of the algorithm.

There is a possibility that a cycle of load transferring can be formed between nodes, although
the probability is very low. When that happens, the load transferring factor regression process
discussed above will solve the problem, given the fact that it does not happen frequently.

C. Integration of Local Controller and Load Balancer

To provide QoS in distributed environments, we need both local workload control and global load
balancing functionalities. We integrate local controller with the global load balancer by modifying
the feedback loop in Fig. 3. The modified feedback loop is shown in Fig. 4.

As shown in the figure, an extra phase, LTF Adjustment, is added to the local controller. In
this phase, the local controller reduces the LTF s if the specified QoS is not violated and there is
extra CPU time. Note that when the LTF at one node is larger than zero, the node transfers some
transactions to other nodes. When extra CPU time is available, the local controller first reduces
the LTF s, thus reduces the workload it transfers to other nodes. When there are no local LTF s
that are larger than 0, the controller signal will be used to increase the target utilization parameter
at the admission controller, which increases the admitted transaction workload during the next
period. The system parameters used in global load balancer and their values used in this paper are
summarized in Table I.

V. Performance Evaluation

The main objective of our performance evaluation is to test whether the proposed algorithm can
provide the specified miss ratio guarantees even in the presence of unpredictable workloads. We con-
duct a simulation study which varies the transaction workload and study the system performance.
This section presents the results of the simulation study.

A. Simulation Settings

For the simulations, we have chosen values that are, in general, representative of some on board
ship control such as found in [29]. Precise details of these systems are not available, but we use
values estimated from the details that are available. We have also chosen other values of typical
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Parameter Value
Miss Ratio Weight 0 (WMR0) 4
Miss Ratio Weight 1 (WMR1) 2
Miss Ratio Weight 2 (WMR2) 0.1

MRI Mead Deviation Threshold 0.1
PLTF 0.02
ILTF 0.02

LTF Regression Factor 0.9

TABLE I
System Parameter Settings

Parameter Value
Node # 8

Network Delay (0.05 - 1.2) ms/ pkt
Temp Data # 200/Node

Temp Data Size Uniform(1 - 128)bytes
Temp Data AVI Uniform(0.5 - 5) seconds

Non-Temp Data # 10,000/Node
Non-Temp Data Size Uniform(1 - 1024) bytes

TABLE II
System Parameter Settings

of today’s capabilities, e.g., network delays. The general system parameter settings are given in
Table II. There are 8 nodes in the distributed system, each one of them hosts 200 temporal data
objects and 10000 non-temporal data objects. The sizes of temporal data objects are uniformly
distributed between 1 and 128 bytes and their validity intervals are uniformly distributed between
0.5 and 5 seconds. The sizes of non-temporal data objects are uniformly distributed between 1 and
1024 bytes. The network delays are modelled by calculating per packet end-to-end transmission
delay. Depending on the packet’s size (64 - 1500 bytes for Ethernet), the end-to-ends delay ranges
from 50 microseconds to 1.2 milliseconds. If the data size exceeds one packet size, the data is put
into separate packets and the transmission delay is the sum of delays for those packets.

The settings for user transaction workload is given in Table III. A user transaction consists
of operations on temporal data objects and non-temporal data objects. The operation time for
one operation is selected between 200 microseconds to 2000 microseconds. The slack factor for
transactions is set to 10. To increase the data contention, we introduce Temporal Data Access Skew
and Non-temporal Data Access Skew. The 20% access skews mean that 80 percent of all transaction
operations will access 20 percent of data objects. The Remote Data Ratio is the ratio of the number
of remote data operations (operations that access data hosted by other nodes) to that of all data
operations. The remote data ratio is set to 20%, which means 20 percent of all operations are remote
data operations. In most real systems, it is almost impossible to know the exact execution time
of a transactions. To model the execution time estimation errors, the Execution Time Estimation
Error is introduced. It is the estimation error of the execution time of user transactions. In our



12

Parameter Value
Operation Time 0.2 - 2 ms

Temp Data OP # (1 - 8) /Tran
Non-temp Data OP # (2 - 4 ) /Tran

Transaction SF 10
Temp Data Skew 20%

Non-Temp Data Skew 20%
Class 0 Ratio 33%
Class 1 Ratio 33%
Class 2 Ratio 33%

Remote Data Ratio 20%
Exe Time Est Error Normal(20%, 10%)

Arrival Rate 83 Trans/sec

TABLE III
User Transaction Workload Parameter Settings

simulation, it conforms to normal distribution with mean 20% and standard deviation 10%. At
each node, the user transaction arrives according to Poisson distribution and the average arrival
rate is 80 transactions per second. User transaction are divided into three service classes and each
takes one third of all transactions.

B. Baseline Protocols

To evaluate our algorithms, we compare the performance of our algorithm with two baseline
algorithms.

• Best Effort: The system operates in best-effort manner. All arrived user transactions are
admitted and no controls are taken for limiting transaction workload or balancing load among
nodes.

• Local Control Only: Nodes employ only local feedback-based controllers.
The Best Effort algorithm admits all transactions and services all arrival transactions in a best-effort
manner. The Local Control Only algorithm controls the system admission parameter based only
on local system performance data. We used only two baseline protocols because we have not found
any other QoS management algorithms for distributed real-time database systems in the literature.
The performance of two baseline algorithms is compared with the performance of our algorithm,
which is called Feedback-based Global Load Balancing and Control (FB-GLB).

C. Simulation Results

The simulation results are presented in this section. Each simulation is run 10 times and 90%
confidence intervals are drawn for each data point. Confidence intervals in some graphes are not
shown to improve the readability.

C.1 Load Balancing with FB-GLB

The first set of experiments evaluates the load balancing function of FB-GLB. In the experiments,
we introduce two workload bursts at one node. The bursts begin at 100th second and 200th second
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and each one lasts for 50 seconds. We use the mean deviation of the MRIs of nodes to show the
performance of the algorithm. As discussed in the previous section, the mean deviation of miss
ratio indexes measures the performance differences between nodes. The lower the mean deviation
value, the more balanced the system workloads are.

As shown in Fig. 5, the system running best effort algorithm keeps unbalanced throughout the
workload burst periods; with FB-GLB, the system workload become balanced (mean deviation of
MRI becomes less than 0.1) within 5 seconds. Note that the mean deviation of miss ratio indexes
keeps at zero most of the time because MRI is positive only when the QoS specification is violated.
During the normal operation, the QoS requirements are not violated, resulting in MRIs and their
mean deviation all equal to zero.

C.2 System Performance During Normal Operation

In this set of simulations, the system using FB-GLB is running under stable system conditions.
The arrival rate and access patterns of user transactions do not change during the simulation. From



14

0

0.2

0.4

0.6

0.8

1

50 100 150 200 250 300

M
ea

n 
R

at
io

Time (seconds) 

Best Effort

MR0
MR1

0

0.2

0.4

0.6

0.8

1

50 100 150 200 250 300

M
ea

n 
R

at
io

Time (seconds) 

Local Control Only

MR0
MR1

0

0.2

0.4

0.6

0.8

1

50 100 150 200 250 300

M
ea

n 
R

at
io

Time (seconds) 

FB-GLB(Overhloaded Node)

MR0
MR1

550

600

650

700

750

800

50 100 150 200 250 300

T
hr

ou
gh

pu
t t

ra
n/

se
c

Time (seconds) 

Throughput of the Whole System

FB-GLB
Local Control Only

Best Effort

Fig. 7. System Performance (One Node is Overloaded)

Fig. 6 we can see that the FB-GLB algorithm keeps the miss ratios of transactions in classes 0 and
1 around zero while maintaining the CPU utilization around 95% throughout the entire simulation
duration.

C.3 Handling One Overloaded Node

In many soft real-time systems, the transaction workload may vary significantly with time. The
QoS management system should deal with this kind of workload variation and still guarantee the
specified QoS requirements. In this set of simulations, we create a huge workload burst and test
whether QoS is still maintained given this dramatic change of workload. At 100th and 200th second,
we create a workload burst at one node. The workload is increased to 300% of normal workload
during the workload burst and the workload bursts last for 50 seconds each.

The miss ratios at overloaded nodes are shown in Fig. 7. As we can see, for the best-effort
algorithm, QoS requirements are violated and the miss ratio of class 1 transactions remains over
90%. For the system running only local control algorithm, the miss ratio of class 1 transactions
exceeds the QoS requirement during the workload burst period and the control algorithm does
not seem to be able to keep MR1 around the specified 10%. For the system running FB-GLB,
the system adapts to the workload burst very quickly and MR1 returns to specified 10% within 5
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Fig. 8. System Performance (Two Nodes are Overloaded)

seconds. Note that this settling time result of 5 seconds is significantly better than the 50 seconds
requirement.

As shown in the figure, the throughput of the system is not seriously affected by our QoS man-
agement algorithm. The system that runs FB-GLB has almost the same throughput as system that
runs only local controllers. They show lower throughput when the arrival bursts end at 150th and
250th seconds because both algorithms reduce transaction admission rate for class 1 and class 2
transactions during the transaction workload bursts. Their throughput gradually catch up with the
throughput of the best effort algorithm after the burst.

C.4 Handling Multiple Overloaded Nodes

In distributed systems, there may exist multiple overloaded nodes at the same time. Supporting
required QoS in such situation is crucial for QoS management systems for distributed real-time
databases. To test whether our system could provide acceptable transaction services in such situa-
tions, we conduct a set of simulations where two out of eight nodes are severely overloaded. As in
the previous simulations, at 100th and 200th second, the workload at two nodes suddenly increase
to 300% of normal workload. The overloads last for 50 seconds.

As shown in Fig. 8, the responses of different algorithms are almost the same as those with
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only one overloaded node. The throughput difference between the best effort and FB-GLB becomes
larger than that of the case where only one node is overloaded. The reason is that more transactions
of classes 1 and 2 are rejected during the arrival rate burst when two nodes are overloaded, compared
to the case when only one node is overloaded.

It is important for two overloaded nodes not to affect each other by transferring large amounts
of workloads to each other. It is useless to do that because the destination node of transaction
transfer is also overloaded. Fig. 9 shows the LTF between two overloaded nodes, node 0 and node
1. To make the figure easier to read, LTF from node 1 to node 0 is shown as a negative value. As
we can see in the figure, the two LTF s remain very small throughout the simulation, which means
that there is little transaction transfer (interference) between two overloaded nodes.

C.5 Sensitivity to Message Loss

In our decentralized load sharing algorithm, each node needs to exchange its performance data
with other nodes periodically. It is possible that one node may not be able to collect the perfor-
mance data of all the other nodes. When that happens, the node uses the performance data from
the pervious period. This set of simulations evaluates the performance of that strategy. In the sim-
ulations, we created transaction bursts at one node and measured the performance of algorithms
with 10% message loss rate. The results are shown in Fig. 10.

As shown in Fig. 10, the performance of the algorithm is not affected by 10% message loss. The
system workload remains balanced and the QoS at the overloaded node is maintained.

VI. Related Work

Since the major publication by Abbott and Garcia-Molina [1] in 1988, real-time databases received
a lot of attention [44] [34] [5] [20] [21] . A breath of research topics in real-time databases have been
studied, including concurrency control[27][15][44], scheduling algorithms [14] [19], security[10] [38]
[26] and recovery [36], to name a few.

Distributed real-time databases has also drawn attention in recent years [37] [35] [6] [24] [23] [39]
[41] [25] [12]. In [13], Ginis et. al. discussed the design of open system techniques to integrate a
real-time database into a distributed computing environment. Concurrency control mechanisms for
distributed real-time databases are studied in [24] [23]. Lee et. al. [25] built a model for wireless
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distributed real-time database systems and performed simulation experiments to identify the effect
of wireless bandwidth on the performance of distributed real-time database systems. In [43], a
state-conscious concurrency control protocol called MIRROR is proposed for replicated real-time
databases. However, to the best of our knowledge, no research results have been published for
providing data services with QoS guarantees in distributed real-time database systems.

Feedback control has been applied to QoS management and real-time scheduling due to its ro-
bustness against unpredictable operating environments [3] [42] [31] [8]. In [32], Lu et. al. proposed
a feedback control real-time scheduling framework called FC-UM for adaptive real-time systems.
Stankovic et. al. [40] presented an effective distributed real-time scheduling approach based on
feedback control. Kang et. al. [18] proposed an architecture to provide QoS guarantees for central-
ized main memory databases. In this paper, we proposed a heuristic feedback-based dynamic load
sharing algorithm and integrated it with the local control algorithm to provide a QoS management
in distributed real-time database systems.

Load balancing has been a research topic for general distributed systems for many years [11] [33]
[9]. In those systems, the system performance is often measured by system throughput, but QoS
real-time guarantees are not considered as the most important performance metric. Further, they
have not dealt with the issues of transaction deadlines and data freshness.

VII. Conclusions and Future Work

The demand for real-time data services in mid-size distributed applications such as ship control
is increasing. The complexity and non-determinism of these applications produce a need for QoS
guarantees rather than 100% guarantees. Our solution, using feedback control, meets steady state
miss ratio and transient settling time requirements. The solution is shown to be appropriate for
an important class of mid-size distributed real-time systems as represented by today’s ship-board
control systems.

We plan to extend this work in several ways. One direction is to extend the algorithm so that it
scales to large distributed systems. In large distributed systems, each node will not collect perfor-
mance data of all nodes periodically. Instead, the load balancing algorithm will balance transaction
workloads only among nearby nodes. Partial data replication and efficient replica management
algorithms will also be added because full replication is inefficient or impossible in large distributed
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systems. Derived data management is another interesting extension. Derived data is of particu-
lar interest for some real-time database applications such as e-commerce and online stock trading
systems.
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