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Abstract

Distributed soft real-time systems are becoming increasingly unpredictable due to several important factors
such as the increasing use of commercial-off-the-shelf components, the trend towards open systems, and the
proliferation of data-driven applications whose execution parameters vary significantly with input data. Such
systems are less amenable to traditional worst-case real-time analysis. Instead, system-wide feedback control is
needed to meet performance requirements. In this paper, we extend our previous work on developing software
control algorithms based on a theory of feedback control to distributed systems. Our approach makes three
important contributions. First, it allows the designer for a distributed real-time application to specify the desired
temporal behavior of system adaptation, such as the speed of convergence to desired performance upon load or
resource changes. This is in contrast to specifying only steady-state metrics, e.g. deadline miss ratio, which was
the focus of previous literature. Second, unlike QoS optimization approaches, our solution meets performance
guarantees with no accurate knowledge of task execution parameters -- a key advantage in a poorly modeled
environment. Last, in contrast to ad hoc algorithms based on intuition and testing, our solution has a basis in the
theory and practice of feedback control scheduling. Performance evaluation reveals that the solution not only
has excellent steady state behavior, but also meets stability, overshoot, and settling time requirements. We also
show that the solution outperforms several other algorithms available in the literature in terms of the
aforementioned metrics when applied in unpredictable distributed real-time environments.

1. Introduction

Many soft real-time systems such as smart spaces, financial markets, processing audio and video, and the world wide

web are not amenable to traditional worst-case real-time analysis. Most of these systems are distributed. They operate in

open environments where both load and available resources are difficult to predict. Monitoring and feedback control are

needed to meet performance constraints. Several difficulties are observed in meeting performance constraints in these

systems. One main difficulty lies in their data-dependent resource requirements, which cannot be predicted without

interpreting input data. For example, the execution time of an information server (e.g., a web or database server) heavily

depends on the content of requests, such as the particular web page requested. A second major challenge is that these

systems have highly uncertain arrival workloads; it is not clear how many users will request some resource in the WWW

or how many users might walk into a smart space. A third challenge involves the complex interactions among many

distributed sites, often across an environment with poor or unpredictable timing behavior. Consequently, developing

certain types of future real-time systems will involve techniques for modeling the unpredictability of the environment,

handling imprecise or incomplete knowledge, reacting to overload and unexpected failures (i.e., those not expressed by

design-time failure hypotheses), and achieving the performance levels and temporal behavior necessary to successfully

accomplish specified systems tasks.

We envision a trend in the theory of real-time computing that aims at providing performance guarantees without the
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requirement of fine-grained task execution models such as those involving individual task execution times. Instead, we

shall see the emergence of coarse-grained models that describe the aggregate behavior of the system. Coarse-grained

models are easier to obtain and they need not be accurately computed. These models are more appropriate for system

analysis in the presence of uncertainty regarding load and resources. In this paper, we explore one such model based on

difference equations. Unlike the more familiar queuing-theory models of aggregate behavior, difference equation models

do not make assumptions regarding the statistics of the load arrival process. Thus, while both types of models describe

queuing dynamics, difference equation models are independent of load assumptions and consequently more suitable for

systems where load statistics are difficult to obtain or where the load does not follow a distribution that is easy to handle

analytically. The latter is the case, for example, with web traffic, which cannot be modeled by a Poisson distribution.

Differential equation models include input load as a measured variable. Hence, they are particularly suitable for feedback

control architectures in which input load is measured at run-time.

Using difference equations, software designers should be able to model parts of software systems much as control

engineers model electrical and mechanical systems, and use those models to develop software control algorithms based on

a theory of feedback control. We have already demonstrated that this is feasible for a single site controller in various

situations [28][30]. This paper presents the extension of these ideas and models for distributed systems. These extensions

are non-trivial as many complications arise in distributed systems. Importantly, we have developed a distributed system

solution that not only has excellent steady state behavior, but also meets stability, overshoot, and settling time

requirements. We show that our solution outperforms several of the best other algorithms available in the literature. Some

of our key performance results are the ability to adapt to unpredictable environments and better transient and steady state

response. In addition to improvements in performance, our solution has a basis in the theory and practice of feedback

control scheduling. This is in contrast to the more common ad hoc algorithms based on intuition and testing where it is

very difficult to characterize the aggregate performance of the system and where major overloads and/or anomalous

behavior can occur since the algorithms are not developed to avoid these problems.

The paper is organized as follows. In section 2, we present the framework of our distributed feedback control

scheduling (DFCS) system. In Section 3 we present the analytical model of the system and our particular distributed

systems solution. Section 4 presents the performance evaluation of our algorithm compared to various baselines. Section

5 presents the performance evaluation of our solution compared to two of the best solutions from the current literature.

Section 6 discusses the state of the art and Section 7 concludes the paper.

2. DFCS Framework Overview

Early research on real-time computing was concerned with guaranteeing avoidance of undesirable effects such as

overload and deadline misses. Solutions were predicated on knowing worst-case resource requirements a priori. In

contrast, in highly uncertain environments, the main concern is to design adaptation capabilities that handle uncertain

effects dynamically and in an analytically predictable manner. To address this issue, we propose a framework called
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Distributed Feedback Control Real-time Scheduling (DFCS). The framework is based on feedback control that

incrementally corrects system performance to achieve its target in the absence of initial load and resource assumptions.

One main performance metric of such a system is the quality of performance-convergence to the desired level. In our

framework, the desired convergence attributes may be specified and enforced using mechanisms borrowed from control

theory. These mechanisms are very robust and have been applied successfully for decades in physical process-control

systems that are often non-linear and subject to random external disturbances. Before establishing our DFCS framework,

we give an overview of the software system being controlled and describe the feedback-control  mechanism involved.

We assume that there are N computing nodes connected via a network. Tasks arrive at nodes in unknown patterns.

Each task is served by a periodically invoked schedulable entity (such as a thread) with each instance having a soft

deadline equal to its period. The periodicity constraint is motivated by the requirements of real-time applications such as

process control and streaming media. It is also motivated by recent trends in real-time operating system design, such as

temporal isolation of independent applications. Note that temporal isolation is usually achieved using operating system

constructs such as capacity reserves, hierarchical schedulers, and resource shares, all of which rely on periodic

scheduling in the kernel.

We abstract a typical adaptive system by one with two sets of performance metrics. The primary set represents metrics

to be maintained at specified levels, for example, the optimal utilization of a server, or the desired altitude of an airplane.

The secondary set represents negotiable metrics such as service quality. The objective of adaptation is to incur minimum

degradation in secondary metrics while maintaining the primary metrics at their desired values. To represent multiple

levels of degradation in secondary metrics, we assume that each task has several service levels of different quality. For

example, a task can execute for varying amounts of time with the quality of the result improving with greater execution

time.

The goal of our distributed feedback control architecture is to maintain the primary performance metrics around their

targets. A key intuition that affects the architecture of the feedback loops is that the dynamics of a distributed system

manifest themselves on two different time-scales. Fast dynamics are observed on individual nodes. These dynamics arise

from local load changes due to individual task arrivals and terminations. Slower dynamics are observed globally on the

scale of the entire system. These dynamics arise from changes in aggregate load distribution. Hence, our feedback

architecture necessarily involves two sets of loops, local and distributed ones, each tuned to the dynamics of the

corresponding scale.

    Each node in the distributed system (Figure 1) has a local feedback control system (LFC) and a distributed feedback

control system (DFC). The distributed feedback controller is responsible for maintaining the appropriate QoS balance

between nodes. The local feedback controller is responsible for tracking the global QoS set point set by distributed

controller and ensuring that tasks that are admitted to this node have a minimum miss ratio (MR) and the node remains

fully utilized. It is important to note that these two types of controllers form the main parts of the distributed scheduling in

the system, but they are not the entire algorithm. In this paper we develop the distributed controller, rely on a local

controller (developed earlier and presented in a previous paper), and then embed these two controllers into the complete
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distributed scheduling algorithm (in section 3.7). We test the complete algorithm.

Now consider a few more details about the controllers’ structure. The distributed controller commands the local

controller via the QoS set point. The entire control system of the local node becomes an actuator for the distributed

controller to control the state of one local node. The local controller manipulates its actuators in the LFCS to achieve the

target QoS set point. While the framework is general enough to accommodate different definitions of QoS, in this paper,

we let the primary performance metric be the deadline miss ratio (MR). Since performance metrics of admitted tasks can

be trivially satisfied if the admitted task set is empty, it is especially important to quantify the loss of QoS due to task

rejection to avoid trivial solutions. For this reason, we use two different miss ratio measurements, MR and inNode-MR.

The former is the global miss ratio of all submitted tasks (whether they are admitted or rejected). The latter is the miss

ratio of admitted tasks only. The distributed controller is responsible for bounding the overall miss ratio, MR, of the

system. The local controller is responsible for controlling the inNode miss ratio of locally admitted tasks as dictated by

the distributed controller. These design choices lead to the control system in Figure 1. Note that each of the local

controller and the distributed controller has two similar parts, a miss ratio controller and a utilization controller. The miss

ratio controller is active during overload. The utilization controller is active at underutilization when no deadline misses

are observed. Its purpose is to keep the system sufficiently utilized. These are key parts of our model developed in the

next section. The LFC also has a service level ratio controller (SLR) to address our secondary metric.
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Figure 1: A Typical Node in DFCS.

    To summarize:

•  Distributed Feedback Control (DFC): DFC is responsible for maintaining appropriate QoS balance between
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nodes.

•  Local Feedback Control (LFC): LFC is responsible for tracking the global QoS set point set by DFC and ensuring

that tasks that are admitted to this node have a minimum MR and the node remains fully utilized.

•  Admission Control (AC): Admission control is based on estimated CPU utilization and the global service level set

point and decides to admit or reject tasks from the outside. If one task is rejected, it will be offloaded to another

node based on a certain routing policy.

•  Reject Control and Service Level Actuator (RCSL): To track the service level set point from the DFCS, the

service level actuator modifies the service level of tasks in the system to the appropriate level, then the reject

control actuator will abort tasks or notify AC to admit more if necessary.

•  Controlled Real-time System (RTS): The real-time system is the plant processing the request from the users. We

can plug various scheduling algorithms into the RTS based on different requirements. We use EDF in our design.

3. DFCS Modeling and Design

The design of DFCS control policies requires two components: a task model and difference equations describing the

dynamics of the DFCS in underutilization and overload situations, respectively. The design process proceeds as follows:

•  First, we specify the task model to be dealt with.

•  Second, we specify the desired dynamic behavior using both transient and steady-state performance metrics. This

step requires a mapping from the performance metrics of adaptive real-time systems to the dynamic response

metrics of control systems used in control theory.

•  Then we establish a mathematical model of the system for the purposes of feedback control. We take a simple

approach where our model aggregates the overall performance of the system in a single model.  We show by our

performance study that this model works well, in spite of its simplicity.

•  Finally, based on the performance specifications and the system model from steps 2 and 3, we apply the

mathematical techniques of control theory to design the controller that gives analytic guarantees on the desired

transient and steady-state behavior at run-time. We map the resultant controller to various nodes in the system

depending on the network structure being studied. This step is similar to the process that a control engineer uses to

design a controller for a feedback-control system to achieve desired dynamic responses.

3.1 Task Model

   For each task iT , there are N QoS service levels (N > 1). Task iT  running at Service Level q ( )Nq <≤0  has a

deadline ][qDi  and an execution-time ][qC i  that is unknown to the scheduler. The requested CPU utilization, )(qJ i  =

][qC i / ][qDi , of the task is a monotonically increasing function of the service level q, which means that a higher QoS

will require more CPU utilization. Let the average CPU utilization needed for a task set at level 0 be bU . Without loss of

generality, the average CPU utilization for a task set at level q is  f(q) bU , where f(q) is a polynomial representing the



6

Taylor’s series expansion of the relation between CPU utilization and QoS level. Here we use the first order

approximation of this relation to define )(qJ :

bUAqqJ )1()( +=  , where q ranges from zero to MaxLevel.

We make use of this approximation in the rest of the paper to derive the system model. Note that if this approximation

is not appropriate, higher order ones can be used. The design process remains the same.

3.2 System Specification and Performance Metrics

To design adaptive systems, it is necessary to devise specifications and performance metrics for the adaptation process

itself. Following the successful practice of the control community in specifying and evaluating the performance of control

loops, we have proposed a series of canonic benchmarks that test software adaptation capabilities. These benchmarks

generate a set of simple load profiles adapted from control theory; namely, the step load and the ramp load. The step load

represents a worst-case load variation: one that occurs in zero time. The ramp load represents a more gradual variation

that features a slower rate of change. By experimenting with different rates of change, it is possible to assess the

convergence of an adaptive system to the desired performance upon perturbations caused by changes in the environment.

Effects of different “speeds” of environmental variation can be analyzed. If the rate of change of the environment is

bounded, this analysis can yield guarantees on convergence time and worst-case performance deviation.

We measure system load in percentage of the system capacity. The load corresponding to the full system capacity is

said to be 100%. An overload is a system load that is higher than 100%. A load profile )(tL  is the system load as a

function of time. In practice, this load is translated into system-specific parameters for evaluation purposes. For example,

a 500% system load can be translated to the request rate of 8,000 request/sec in a specific web server (assuming a fixed

requested file type/size distribution). We have shown in [28][30] that these load profiles can be used as benchmarks in

adaptive systems to provide a common test-suite for quantifying and comparing the speed of adaptation to load changes of

different adaptive systems.

    Consider a time window ],)1[( kWWk − , where W is called the sampling period and k is called the sampling instant.

During this window, let )(kM  be the number of task instances that miss their deadline, let )(kT  be the total number of

task instances, and let MR(k) be the miss ratio M(k)/T(k). The following metrics are used to describe the quality of

adaptation:

•  Overshoot oM : the maximum amount by which )(kM  exceeds its reference value, expressed as a percentage of

the reference value. Overshoot oM happens due the transient that follows an abrupt change in workload. In many

situations, it is necessary to keep overshoot within a certain range. Otherwise the whole system may not tolerate

the deviation and may cease to work.

•  Settling time sT : The time it takes the system miss-ratio to enter a steady state after a load change occurs. The

settling time represents how fast the system can recover from disturbances such as overload. This metric has also

been called reaction time or recovery time.
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•  Steady-state error sE : It is the difference between )(kM  and its set point when no disturbance happens and after

system transients have decayed. It indicates the DFCS’s ability to regulate the controlled variable near the

reference value in the long term.

Using these metrics, we can compare the effectiveness of feedback-control to other adaptive real-time scheduling

policies. We can also specify the desired behavior of the adaptation process in terms of these metrics to guide the

control loop design. The critical part towards the enforcement of these metrics is a good aggregate model of the system.

This is described in the next section.

3.3 DFCS Modeling

Let the utilization U(k) be the fraction of time the CPU is busy in some sampling window, k. Let S(k) be the service

level ratio defined as:

 ))()((

 )(

)( 0

MaxLevelkMkT

qqlevelserviceatcompletedTasksofNumber

MaxLevel

levelservicetaskAverage
kS

MaxLevel

q

×−

×
==

∑
=

Before applying control theory to design a controller from specifications of adaptive behavior, it is necessary to model

the controlled DFCS mathematically. By this we mean deriving the relation between utilization, service level ratio and

the resulting miss ratio. Equivalently, we can relate utilization and service level ratio to the number of  missed deadlines,

which is the approach we take below. When the number of missed deadlines is known, the miss ratio can be trivially

obtained. In each time window ],)1[( kWWk − , CPU utilization is proportional to the number of tasks that finish

successfully. This relationship can be modeled as:

)())()(()()( qJkMkTkckU ×−×= (1)

where )(kc  is the percentage of the arrived tasks that finish in the same sampling window. For example if 1)( =kc , all

tasks arrive and finish in the same period. From the perspective of control theory, worst-case conditions for convergence

stability are those when system gain is maximum, i.e., when the system is most sensitive to changes in its inputs. The

maximum gain condition corresponds to 1)( =kc , in which case equation (1) can be simplified as:

)())()(()( qJkMkTkU ×−= (2)

From definitions of )(qJ in section 3.1 and )(kS , we can derive the following formula:

 bUMaxLevelkSAqJ ×××+= ))(1()( (3)

Combining Equations (2) and (3), we get

bUMaxLevelkSAkMkTkU ×××+×−= ))(1())()(()( (4)

Two important subcases arise in modeling the system: namely, overload and underutilization. They are modeled

separately in the two subsequent subsections, respectively.

3.4 Model: System Dynamics at Overload

When the DFCS is overloaded and tasks begin to miss their deadlines, there are two approaches to tackle the situation:
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Admission control and QoS adjustment. Admission control reduces a node’s local miss-ratio by rejecting incoming

requests. QoS adjustment tries to accommodate more tasks by degrading their service levels. In the DFCS design, we

deem task rejection the same as missing the task’s deadline. Hence, we favor QoS adjustment to adjust miss control. Here

we get a difference equation that describes how QoS adjustment affects the number of misses when the system is

overloaded  ( 0)( >kM ). From Equation (4),  we obtain

))(1(

)(
)()(

MaxLevelkSAU

kU
kTkM

b ××+
−= (5)

Since we assume EDF scheduling, when deadline misses occur it must be that the CPU utilization U(k) is 100%.

Substituting this in Equation (5) and obtaining its differential, we get the linearized small-signal model of the system:

T(k)S(k) GkM M ∆+∆×=∆ )(  , 
))(1()1(1 kSMaxLevelA)kSMaxLevelA(U

MaxLevelA
 G

b

M ××+−××+
×=

where )1()()( −−=∆ kMkMkM , )1()()( −−=∆ kSkSkS , )1()()( −−=∆ kTkTkT

(6)

We use Equation (6) as the model for the purpose of controller design in overload situations.

3.5 Model: System Dynamics at Under Utilization:

When DFCS is underutilized, we model the number of missed deadlines as zero. Hence, this is not an appropriate

measurement for control purposes. Instead, we switch to utilization measurements. We can increase the QoS of the task

set when the utilization is low to improve our service to the user. Here we obtain a difference equation that describes how

QoS adjustment affects the CPU utilization when the system is underutilized ( %100)( <kU ). We set the number of

misses 0)( =kM in Equation (4). The resulting equation is differentiated yielding the following model:

)()()( kTGkSGkU tU ∆×+∆×=∆ (7)

Where })1({( bU UMaxLevelAkTG ×××−= , bt UMaxLevelkSAG ××−×+= ))1(1(  , )1()()( −−=∆ kUkUkU

3.6 Distributed Feedback Control Loop Design

Having modeled the node dynamics, we now apply control design methods to the distributed feedback control loop. First,

we define a set of performance specifications we want to achieve. Based on our knowledge of the DFCS model and the

performance specifications, we apply a control design method called Root Locus to tune the distributed controller, which

is the crucial part of the DFCS. Due to space limitations, we do not review local controller design here, which has been

intensely studied in our previous work [28][30].

3.6.1 Design of the Control Loop

In the distributed case, we want each node in the DFCS to provide the same QoS to the user. This property is often

preferred in many distributed applications. For example, in a web server farm, the QoS of each HTTP request should be

independent of where this request is served in the farm. So the major goal of the distributed controller is to calculate the

QoS set point for the system, based on the global miss number error )()( kMMkE Sm −=  and/or the global CPU utilization

error )()( kUUkE SU −= . As shown above, the DFCS can be modeled with two difference equations. One describes the
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relation between the changes of the service level ratio and the changes of miss number when the whole system is

overloaded; the other models the relation between the changes of the service level ratio and the changes of CPU

utilization when the system is underutilized. Based on this knowledge, we design the distributed feedback control loop.

   Because the external workload is not under our control, we deem T(k)∆  to be the external disturbance to the system.

Let UG  be the gain from S(z)∆  to U(z)∆  when the system is underutilized and MG be the gain from S(z)∆  to M(z)∆

when system is overloaded. We get:

)()1()()1()( kSGkMkMkMkM M ∆+−=∆+−=       when ( 0)1( >−kM ) (8)

       )()1()()1()( kSGkMkUkUkU U ∆+−=∆+−=         when ( %100)1( <−kU ) (9)

where MG and  UG  are defined in (6) and (7), respectively.

We can now draw the block diagrams of the feedback control system. When the system is overloaded, the distributed

miss feedback control loop is invoked. It is shown in Fig 2. The components inside the dotted rectangle describe the

dynamics of the controlled process with input S(z)∆  and output M(z) , where )(zC M  is the miss controller to be designed

and SM  is the miss set-point. Note that while the output of this figure is the number of missed deadlines, the miss ratio is

simply that output divided by the total number of tasks. Either metric can be used depending on the chosen set point.

More importantly, note that while the controlled system gain does change by a multiplicative factor when the metric used

is miss ratio, the overall loop gain remains the same. This is because the designed controller gain in this case will be

multiplied by the inverse  of that factor. With the above observation in mind, the discussion below applies to both miss

ratio and miss number control.

MG

-

)(zS∆)(zEM

)(zM∆)1/( −zzM S ∑ ∑

1−z

)(zM

zzM /)(

)(zCM

Fig. 2 Miss Feedback Control Loop

When the system is underutilized, we use the distributed utilization feedback control loop shown in Fig 3. )(zCU  is the

CPU utilization controller to be designed and  SU  is the CPU utilization  set point.

)1/( −zzU S

UG

-

)(zS∆)(zEU

)(zU∆

∑ ∑

1−z

)(zU

zzU /)(

)(zC
U

Fig. 3 CPU Utilization Feedback Control Loop

In z-transform notation we have:

1
)()(

−
=

z

zM
zHzM s

M  with 
MM

mM

m
GzCz

GzC
zH

)(1

)(
)(

1 +−
=

− (10)
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1

)()(
−

=
z

zU
zHzU s

U   with  
UU

UU

U
GzCz

GzC
zH

)(1

)(
)(

1 +−
=

− (11)

Here the gains MG and UG  are assumed to be set at some fixed values for nominal control design and analysis.

Because our system intrinsically has an integral part, it is enough to use only a Proportional controller to design

)(zC M and )(zCU to guarantee the stability and zero steady state error. A general form of the digital Proportional

controller in the time domain and z-domain is:

)()( kEKkS p=∆   (time domain)           PKzC =)(   (z-domain) (12)

Here we denote MK  as the Proportional term for the miss controller and UK for the utilization controller. These values

are substituted in Equations (10) and (11). Setting MM KzC =)( and UM KzC =)(  we get:

1
)()(

−
=

z

zM
zHzM s

M   with 
1)1(

)(
−+

=
zGK

zGK
zH

MM

mM

m (13)

1
)()(

−
=

z

zU
zHzU s

U   with  
1)1(

)(
−+

=
zGK

zGK
zH

UU

UU

U (14)

3.6.2 Stability

According to control theory, system performance is determined by the poles of the closed loop transfer function. From

Equations (13) and (14), we get )1/(1 MM GK+  as the pole for )(zH m  and )1/(1 UU GK+  as the pole for )(zHU , which

are inside the unit cycle. Hence, for the the DFCS system stability is ensured.

3.6.3 Steady State Error

Based on the Final-Value Theorem, the steady state values of )(kM  and )(kU  are:





î



−
×

−+
−=−=

→→∞→ 11)1(
)1(lim)()1(lim)(Lim

1z1zk z

zM

zGK

zGK
zzMzkM s

MM

MM  = sM





î



−
×

−+
−=−=

→→∞→ 11)1(
)1(lim)()1(lim)(Lim

1z1zk z

zU

zGK

zGK
zzUzkU s

UU

UU  = sU

This result theoretically proves that the DFCS system can bring the miss number and CPU utilization to their set point

in steady state with zero steady state error. It can also be verified that for a constant external disturbance TT(k) ∆=∆ ,

this asymptotic property still holds.

3.6.4 Settling time

Settling time can be determined by the poles inside the unit cycle. The closer the pole is to the origin, the shorter the

settling time. Theoretically, we want )1/(1 MM GK+ and )1/(1 UU GK+  to be as small as possible to reduce settling time.

However, there are limitations on how large the gains MK and UK can be. For example when system is in overload, if we

reduce SLR too much, the system will become underutilized. The limitation can be described as a maximum rate of

change:

 )()( zEzM U≤∆  and   )()( zEzU U≤∆ (15)
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From the block diagram we know that )()( zEGKzM MMM=∆  and )()( zEGKzU UUU=∆ . Thus, the following should

be satisfied:

1≤MM GK and 1≤UU GK (16)

While the previous sections establish the theoretic foundation for DFCS design, in reality MG and UG  are time-

varying, and the proportional term of the distributed controller is taken in (17) to deal with a worst case situation:

}{

1

M

M
GMax

K = and 
}{

1

U

U
GMax

K = (17)

If we let 1=MM GK and 1=UU GK , the poles of )(zH m  and )(zHU  will be 0.5. According to control theory, the

settling time is determined by the distance of the pole from the origin of the root locus plot. With radius of 0.5, the

theoretical settling time is about 8 sampling periods, which guarantees the specification in Table 1. In the experiment,

based on the model, the calculated controller settings are 0.82 and 1.22 for the miss and utilization controllers,

respectively.

3.6.5 Performance specification of DFCS

As an example, here we assume the desired DFCS has the performance specifications listed in table 1. The sampling

period is W = 1 sec. The transient and steady state performance requirements are the following: (1) the miss ratio and

CPU utilization of DFCS should be stable after a step load of 160%. (2) DFCS should settle down to steady state within

10-sec. (3) Both the miss ratio and CPU utilization of DFCS should remain at their set-point in the steady state.

Load Profile SL(0,160%)

Sampling Period W 1 sec

Settle Time sT < 10 sec

Steady-state miss number sM < 1%T(k)

Steady-state cpu utilization  >99%

Table 1. Performance Specification

3.7 Network Structures

In a distributed system, the interactions between nodes must be considered. These interactions depend on the logical

network structure. We investigate two logical network structures (hierarchical and neighborhood, see Section 3.7.1 and

Section 3.7.2 below) and design distributed real-time scheduling algorithms based on each network structure. The

neighborhood structure (a mesh) has good scaling potential and hence is used for comparison with other well-known

distributed scheduling algorithms. The hierarchical structure does not scale well, although there are some situations

where a hierarchy is valuable.
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Figure 4 Network structures

3.7.1 Hierarchical Distributed Feedback Control Scheduling (H-DFCS)

Hierarchical feedback control scheduling allows a large distributed systems to be broken down into a multiple levels,

as illustrated in Figure 4.A.  By doing so, only the information that is required to coordinate sub-systems needs to be

exchanged at higher levels. In the H-DFCS system, any node that has sub-nodes can be considered a coordinator. The full

scheduling algorithm for this system operates every sampling period in the following manner. Each node contains the

LFCS control system, with the exception of the top node in the hierarchy. This node contains the LFCS control system

along with the DFCS control system. The top node will receive the MR and CPU utilization averaged for the entire

system and use this as inputs to its distributed controller to determine the new service level set point for the entire system.

   Load balancing is achieved by migrating tasks between nodes through the network. Each node determines the route

by comparing the MR values from the node’s children, parent and siblings. The MR values are weighted, to describe the

number of nodes that they represent. This information is then used to assign a percentage to each entry in the route table,

specifying the ratio of the offloaded tasks to be sent along each route. In the hierarchical case that implements a binary

tree, there are 4 possible routes from any given node --- two to its two children, one to its parent, and one to its sibling.

Routes are unidirectional, and are assigned only if the miss ratio of the other node in question is lower than that of the

current node.

3.7.2 Neighborhood Distributed Feedback Control Scheduling (N-DFCS)

In neighborhood feedback control scheduling (Figure 4.B) every node contains both a local and distributed controller.

This means that a node shares its state information with its direct neighbors and receives state information from these

same neighbors. This information that is exchanged is averaged and used to determine the service-level set-point for the

node as well as the routes from the node. This prevents a node from being isolated from other nodes, keeps information

sharing to local neighbors,  and overall creates a more decentralized scheduling system.

Basically, the DFCS is controlling the node based on the state of the node as well as the state of its neighbor nodes.

For example, Figure 5 shows the neighbors of two nodes (nodes 4 and 5) in a mesh structure (neighbors(4)={1,3,5,7} and

neighbors(5)={2,4,6,8}). The distributed controller inside node 4 decides the global service-level set-point within subnet

{4,1,3,5,7}.
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One main difference between the neighborhood solution and the hierarchical solution is that the former works within

individual subnets instead of the whole distributed system. The advantage here is that state information is shared in a

more decentralized manner. The hierarchical system needs to wait for the messages to be passed all the way up the

hierarchy prior to making decisions and returning the set point, which poses a possible scalability problem.  In

comparison, the neighborhood algorithm always works in a fixed time, regardless of the number of nodes in the system

(assuming every node has the same number of neighbors).

4. Performance Evaluation

In the first part of our performance evaluation we compare the performance of both hierarchical and neighborhood

feedback control scheduling algorithms with two baseline algorithms: no cooperation and neighborhood open loop.

No Cooperation: The no cooperation baseline algorithm is exactly what it implies.  Nodes in the system do not interact

or cooperate in any fashion.  When a task arrives at a node even if it cannot be scheduled at that node, it remains at that

node. The network architecture for this system is not relevant since each node operates independently. This can be

considered as a global open loop system without any load balance support. Note: each node still uses local feedback

control, but there is no global feedback support.

Neighborhood Open Loop: Neighborhood Open Loop (NOPEN) is a second baseline algorithm, in which a node

schedules a task using local feedback, if it can. If it cannot be scheduled, it will select a neighbor with a lower miss ratio.

If more than one neighbor has a lower miss ratio, the probability of one neighbor to be selected is proportional to the miss

ratio difference between the node and this neighbor. Then the task is offloaded to the selected node. If the task cannot be

scheduled at the receiving node, it will be again sent to another selected neighbor, until its deadline expires. It can be

considered as a global open loop system with load balance support. The load balance method used in NOPEN is the same

one used in the feedback control algorithms so that performance gains are not coming from different load balancing

strategies, but from the distributed controllers.

4.1 Experimental Setup

For the experiments, we set up 15 nodes as shown previously in Figure 4.B with the network delay modeled as one

fifth of the average task period. Each task has two different service levels (best and half), which indicates its CPU

requirement. The system is initialized with 100 tasks. This represents ~16% load if all tasks use their highest (best)

service level (it represents a ~8% if all task use half of their service request). At time 200, a step load is applied with
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1000 tasks, which represent ~160% load if all tasks use their highest service level (80% if half). To test the system

reaction to unbalanced workloads, the extra workload is applied uniformly to the first 8 nodes (0~7) and the remaining 7

nodes (8~14) don’t accept any extra workload directly from the outside. Of course they can accept tasks offloaded by

other busy nodes throughout the network.

Workload Model

In our experiments, each task has just 2 different logical versions. A task in the system is described by a tuple

),,,,( iiii AETEETBCETWCETP , where i is either 1 or 0 corresponding to the higher or lower service levels,

respectively. P is the period (the deadline of each task instance equals its period), WCET is the worst-case execution

time, BCET is the best-case execution time, EET is the estimated execution time and AET is the average execution time.

The actual execution time is computed as a uniform random variable in the interval ],[ iWCETAET  or

],[ AETBCETi , depending on a random Bernoulli trial with probability )/()( iiii BCETWCETBCETAET −− . The

following equations describe each tuple value as they are used in this experiment:

5.0)( ×+= iii BCETWCETEET

ETFEETAET ii ×=

01 2 WCETWCET ×=

ii BCETWCET ×= 4

)10,1(uniformBCETi =

)50,5(1 uniformWCETP ×=

This workload model is a very general one. For example, task execution times vary from 1 to 40 time units; task

periods vary from 20 to 2000 time units.

Here ETF  is the execution time factor and can be tuned to vary the accuracy of the estimation of the average

execution time.  For example, an ETF  of 1.0 means that the average execution time that is reported to the scheduler will

be the average execution time of the task.  If the ETF  is less than 1.0, this means that the estimation is less than the

actual average execution time of the task.  If the ETF  is greater than 1.0, then the estimation is greater than the actual

average execution time of the task.  By varying this factor we can determine how the system will react to a pessimistic or

optimistic estimation of the required execution time for the tasks in the system. It is important to note that while the

workload is described with a WCET , the local and distributed controllers have no knowledge of their values! In these

experiments, all tests were run 20 times. However, the graphs represent the trace of single run since it shows how the

system acts over time. The long term average for cpu utilization and miss ratio were extremely tight (within 1% of the

mean) using a 90% confidence interval.

4.2 Performance Comparison

From the results shown in Figure 6, at time 200 all algorithms react to the incoming step load very quickly, because
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each node has its own local feedback control system, which was previously shown to be very effective in unpredictable

situations [28][30]. But we can see that without global feedback both baseline algorithms do not perform well in terms of

transient and steady state response. For example, when the step load occurs at time 200, the miss ratio peaks at almost

60% in no cooperation case (Figure 6.a), compared to only 40% for the other three algorithms. Also, for the no

cooperation system while it does adapt to the step load, the local controllers do not reach a zero miss ratio after the step

load. This is because there is no load sharing between nodes and the tasks have to be executed at the node where it was

originally sent. Furthermore, since the loads are not shared between nodes, the CPU resource is not effectively utilized.

For example, as shown in Figure 6.a, it turns out that the average CPU utilization is relatively low (around 67%) even

when there is a non-zero miss rate (around 22%).  The second baseline, the Neighborhood open loop, provides a way to

share load between nodes in the sense that the tasks that cannot be scheduled will migrate to other nodes. However, each

node does not adjust its service level based on the load of other nodes. The node with small number of local tasks will set

its service level relatively high, and accept offloaded tasks from overloaded nodes until it reaches 100% utilization. After

that, without global feedback control, this node doesn’t lower its service level to further accept offloaded tasks.  As a

result, although NOPEN exploits the computational power of all nodes, NOPEN can’t balance the service level between

each node, which leads to a higher miss rate (about 8% in Figure 6.b) than found in the closed loop solutions (Figures 6c

and 6.d) where the miss ratio is between 0-1%. Also, the graphs show that the reaction time to the sudden overload (step

load) is sluggish in the open loop case in that it takes a relative long time (about 12 sampling periods) for the system to

reach steady state.

a. No cooperation b. Neighborhood open loop
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c. Hierarchical closed loop d. Neighborhood closed loop

Figure 6  Comparison with baseline algorithms using step workload

On the other hand, both closed loop algorithms show satisfactory response in terms of CPU utilization and miss ratio.

After the step load at time 200, the local closed loop controller adjusts its output to reduce the miss ratio according to the

difference between the actual miss ratio and the miss ratio set point. The global close loop controller adjusts global

service level set point according to busyness of the whole system in HCLOSE case and subsystem in NCLOSE case.

Through the synergy between the local and distributed controllers, the miss ratio drops to zero and the CPU utilization

quickly approaches 100% to provide the best service to the tasks. Also, because of the global service level set point, the

whole distributed system behaves as a single node to the user, which is preferred in many practical applications.

The above experiments were performed with 1=ETF , which means the average execution time of each task is the

same as the estimated execution time. Of course, the actual execution time of each task could vary over time. In reality, it

is usually difficult to get the accurate estimation of the execution time because of the uncertainty and unpredictability of

the environment. Therefore, we have also run the above comparisons for different ETF  values. The result further

dramatizes the performance difference between the global closed loop case and the two baselines. For example if

25.1=ETF  it takes NOPEN about 40 sampling period to settle down, but it only takes NCLOSE about 12 sampling

periods.  Due to space limitations, we only provide the ETF=1 case here. We will show the impact of imprecise execution

time estimation (i.e., varying  ETF) in the next section when comparing our solution to other algorithms in the literature.

    In summary, these experiments demonstrate that feedback control scheduling is a feasible solution for distributed real-

time systems. Compared with other baseline algorithms, it can reach zero miss ratio at steady state, effectively share the

load between nodes, yield high CPU utilization, and promptly react to load change.

     Although both H-DFCS and N-DFCS perform well, as we mentioned earlier H-DFCS has an inherent problem of

scalability. For proper control, H-DFCS needs to wait for the messages from its children before making decisions. As the

size of the system increases (the number of nodes in the systems gets large), such delays could take too long, making the

system less prompt to sudden workload changes. This imposes a potential problem for large systems. In fact, we have
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noticed this effect from our extensive experiments. When the number of nodes increases, the settling time of H-DFCS

increases because it takes a longer time for the distributed controller to gather information and react to changing load.

However, there is no such problem for N-DFCS because each node exchanges information only with its neighbors. For

this reason we decided to use only N-DFCS to compare with other well known distributed real-time scheduling

algorithms from the literature.

5. Performance Evaluation with Previous Known Algorithms

To further evaluate the performance of DFCS, we compare N-DFCS with two other well-known scheduling

algorithms, QoS negotiation [1] and Dynamic QoS Management (DQM) [23]. We first present a brief summary of these

two algorithms.

QoS Negotiation: The task model in QoS negotiation is similar to our current task model. A distributed system is

assumed in which tasks can arrive at any node. There are several QoS levels for each task. These levels are specified

upon task arrival as alternative acceptable performance levels for the task. Each QoS level has different resource

requirements and a corresponding benefit (called reward) of executing the task at that QoS level. A node can accept a

task in which case a QoS contract is said to be signed which promisses to execute the task at one of its specified QoS

levels. Alternatively, the task may be rejected in which case no contract is signed. There is a penalty if the task is

rejected, and a different (higher) penalty if the QoS contract is violated. The latter allows a node to break the contract

unilaterally and offer a compensation. For example, in a video-on-demand service, the server may offer “free Blockbuster

coupons” for those whose feed was interrupted after contract establishment. The overall objective of the service is to

schedule the tasks to yield a maximum global reward taking into account rejection and QoS violation penalities. At each

node, there is a local scheduler, which uses a greedy hill-climbing heuristic to schedule the tasks for maximum reward.

The heuristic upgrades the task with the largest reward differential between QoS levels when the system is underutilized,

and downgrades the task with the smallest reward differential when the system is overloaded. Underutilization is

measured by idle time, while overload is measured by deadline misses. When tasks execute at a level that is lower than

the maximum QoS level declared in their contract, the system is said to have an unfulfilled potential reward (UPR). A

global scheduler runs periodically to migrate tasks from nodes with high UPR to nodes with low UPR to balance the load

and gain higher global reward. A hysteresis is used to prevent oscillations in the load balancing processes. The hysteresis

reflects the cost of task migration.

Distributed Dynamic QoS Management: In DQM, each task is associated with a different level of QoS and there

are benefits and estimated CPU utilizations for each level. The aim of DQM is to adjust the QoS level of tasks in order to

reduce miss ratio and maintain high CPU utilization. More specifically, in the situation of system overload (which is

tested by the miss ratio, i.e., if the miss ratio is high, then the system is overloaded), DQM will lower the level of a task's

QoS, which has the highest CPU utilization/benefit. In the case of underutilization (which is tested by the percentage of

CPU idle cycles), DQM will raise the level of a task's QoS, which has the lowest CPU utilization/benefit. There are two
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thresholds associated with the algorithm: one for miss ratio and the other for CPU utilization. Once the miss ratio is

higher than the threshold, the DQM will lower the service level. If the CPU utilization is lower than the threshold, DQM

will increase the service level of the system. This is actually a kind of heuristic feedback. The initial algorithm of DQM

was designed for a centralized system. To neutralize this limitation, we optimally distributed the total incoming load to N

distributed DQM nodes. Because of the way we distribute the load, each DQM node can act independently.

5.1 Experimental Setup

In most cases, the same experimental setup as that in Section 4 is used. One important variation in this experiment is to

use different values of ETF  to cover different cases of execution time estimation. As we discussed before, it is usually

difficult to provide an accurate estimation of the actual execution time beforehand because of many unknown factors. To

make a more realistic comparison, the experiments have evaluated the performance with different estimations:

timeExecutionEstimatedETFmeecution TiAverage Ex ×=

To recall, when 1=ETF , it means the estimation is accurate on average. When 1>ETF , then average execution time

is larger than estimated execution time. The average execution time is overestimated when 1<ETF . By varying ETF ,

we can compare the performance under different situations. In these experiments, we run the simulation for each

algorithm with ETF = 0.75, 1.00, 1.25 and 1.50, to cover the cases of underestimation and overestimation. In the

experiment, all tests were run 20 times. However, the graphs represent the trace of single run since it shows how the

system acts over time. The long term average for cpu utilization and miss ratio were extremely tight  (within 1% of the

mean) using a 90% confidence interval.

Performance Comparison

As shown in Figures 7.b and 7.f, QoS negotiation outperforms N-DFCS by 10% when the estimation is accurate. This

should be the case because QoS negotiation is a well-tuned algorithm under the assumption that task execution time are

known exactly. Note that its performance depends heavily on the accuracy of the estimation of the execution time. In

many real systems it is usually difficult to provide the accurate estimation beforehand.

When the actual execution time is overestimated ( 75.0=ETF  in Figure 7.a), the QoS negotiation algorithm makes

conservative decisions, resulting in lower CPU utilization (76%) and provides low average service level (0.31),

compared to 100% CPU utilization and 0.71 average service level of our N-DFCS algorithm ( 75.0=ETF  in Fig 7.e).

When the actual execution time is underestimated ( 1>ETF ), the performance of QoS negotiation becomes even

worse. This is because the scheduling decision is based on inaccurate estimations. In the underestimated situation, the

estimated execution time is less that the actual execution time. In that case, the scheduler makes poor decisions by

requiring less resources than actually needed by the tasks, causing them to miss their deadlines. The deadline miss ratio

reaches 18% for 25.1=ETF in fig 7.g and 28% for 50.1=ETF in fig 7.h, respectively. This is mainly because the

algorithm is an open loop algorithm and hence it lacks the mechanism to dynamically adjust its decision according to the

actual outcome from the system.

The results also show several deficiencies of DQM. DQM cannot effectively eliminate the error, (i.e., reaching zero
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miss ratio error) at steady state (fig 7.c, 7.d, 7.i,  7.j). The problem is that unlike the feedback control in N-DFCS, there

is no effective way for DQM to minimize the miss ratio. DQM will lower the service level once the miss ratio is higher

than the threshold. One way to lower the error is to choose a smaller threshold. The problem is that if the threshold is

very small, the system becomes excessively sensitive to disturbances and becomes unstable. A similar problem exists

with the CPU utilization threshold. Furthermore, DQM cannot effectively handle the step load and its reaction to the load

change is sluggish. For example figure 7.d, after 60 sampling periods, it still has 8% miss ratio. Unlike feedback control,

which can output a larger control signal to eliminate the error more quickly when the error is large, DQM responds to

high miss ratio according to the heuristic, i.e., lower the service level with the highest CPU utilization/benefit. This leads

to the slow response, especially when the miss ratio is high. When the estimation is inaccurate, the performance of DQM

is even worse, both in transient and steady-state response. The source of these problems is that DQM is a heuristic

feedback control algorithm, which adjust the system heuristically based on the output. Without a theoretical basis, such

an approach can be inefficient and difficult to tune.

a. QoS Negotiation( ETF=0.75) b. QoS Negotiation( ETF=1.00)

c. DQM( ETF=0.75) d. DQM (ETF=1.00)
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e. NDFCS  (ETF=0.75) f. NDFCS (ETF=1.00)

Figure 7 System Performance Comparison

g. QoS Negotiation( ETF=1.25) h. QoS Negotiation( ETF=1.50)
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i. DQM( ETF=1.25) j. DQM (ETF=1.50)

k. NDFCS  (ETF=1.25) l. NDFCS (ETF=1.50)

Figure 7 (continued) System Performance Comparison

The results show that the feedback-control based approach is very effective. Although the scheduler depends on the

estimation to make a decision, the controller can adapt to the inaccuracy of the estimation by monitoring the actual output

and adjusting the system according to the difference between the set point and the actual output. When the miss ratio is

higher than the set point after the step load, it can adjust service level and therefore reduce the miss ratio. This is also true

for the CPU utilization control. This gives N-DFCS the advantage of working in uncertain and unpredictable situations.

Furthermore, as we showed in Section 3, based on system modeling, we performed systematic design based on control

theory. Given the performance specification such as steady-state error and settling time in Table 1, we designed the

controller that satisfies the specification. Through this approach, we have theoretically and experimentally proved the

effectiveness of our DFCS framework.

6. Related work

The scope of applications of real-time computing has gradually grown from closed embedded systems to include open

applications operating in unpredictable complex environments such as the Internet. Real-time scheduling theory produced

several important scheduling techniques that require progressively fewer assumptions regarding task arrival patterns,

execution times, and resources available. The traditional approach to providing guarantees in performance-critical

systems has been to rely on static allocation and scheduling algorithms that assume full a priori knowledge of the

resource requirements of tasks [6][41][42][49]. The concept of dynamic real-time systems [44], pioneered by the Spring

kernel project [45][46], was introduced later to describe applications where run-time workload is unknown until

admission control time. It resulted in planning-based scheduling algorithms that provide online guarantees for

dynamically arriving tasks [51]. Task execution times were assumed to be known, e.g., using pre-run-time code analysis
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techniques such as [19][50]. The results of the analysis depend on specific platform hardware and operating system. The

analysis, therefore, needed to be repeated for each target platform.

QoS-adaptive service models were presented later in [1][4][5][11][22][23]. Resource allocation mechanisms were

developed to take advantage of adaptation. For example, the Q-RAM architecture [37] introduces QoS-sensitive near-

optimal resource allocation algorithms for applications with multiple resource requirements and multiple QoS

dimensions. FARA [39][40] presents a hierarchical adaptation model for complex real-time systems and algorithms for

optimizing multi-dimensional adaptation cost. An end-to-end QoS model is presented in [23] in the context of a

middleware approach to QoS management that requires application cooperation. In [17] a dynamic distillation method is

proposed to adapt to network and client variability via on-line compression techniques. While these approaches are more

flexible in that they allow adaptation, they still share in common with their predecessors the need to know the resource

requirements of tasks. A QoS mapping stage typically translates QoS specifications into resource requirements using

prior knowledge of execution times.

More recently, a next generation of adaptive architectures has emerged. This architecture differs in two respects from

early adaptive approaches. First, the performance of the adaptive system is modeled in some coarse-grained manner that

represents the relation between aggregate QoS and aggregate resource consumption. This is as opposed to fine-grained

models that require knowledge of individual task execution times. Second, feedback was used as a primary mechanism to

adjust resource allocation in the absence of a priori knowledge of resource supply and demand. This is in contrast to

early optimization-based QoS adaptation techniques that assumed accurate models of application resource requirements.

Examples of such approaches include [8][18]. In [18], a transaction scheduler called AED monitors the system deadline

miss ratio and adjusts task priorities to improve the performance of EDF in overload. The DQM algorithm [8] features a

feedback mechanism that changes task QoS levels according to the sampled CPU utilization or deadline misses. These

algorithms are based on heuristics rather than theoretical foundations. A particularly interesting approach that belongs in

this category is one that uses feedback control theory as the underlying analytical foundation for building feedback-based

adaptive systems. This approach uses difference equations to model the aggregate behavior of the system. These

equations are then used to design feedback loops with guaranteed properties on both steady state and transient behavior

such as speed of convergence. This approach has been adopted by several researchers. For example, Li and Nahrstedt

presented a fuzzy-controller on a sender node that dynamically adjusts the sending rate in a distributed visual tracking

system [27]. In [9], Buttazzo presents an elastic task model for adaptive rate control. In [36] integrated control analysis is

presented. Hollot et. al. [21] presents control analysis of a congestion control algorithm in Internet routers. In [20],

Gandhi et. al. designs a feedback controller to control the queue length of a Locus e-mail server. Eker [15] proposed to

integrate on-line CPU scheduling with control performance in embedded control systems. Abdelzaher et. al. [2][3]

developed a web server architecture that guarantees desired server utilization under HTTP 1.0. Lu [28] presented a new

feedback architecture to provide relative and absolute delay guarantees in HTTP 1.1 servers. In [29][30], feedback

control real-time scheduling algorithms are developed to achieve deadline miss ratio guarantees in uni-processor systems.

This paper generalizes the control-theoretical QoS-adaptation approach to distributed systems. Unlike the above solutions
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that deal with a single controller on a single node, we develop models and algorithms for a group of decentralized

controllers that controls the aggregate performance of a distributed system (such as networked embedded systems in

smart spaces).

7. Conclusions

We have developed an effective distributed real-time scheduling approach based on feedback control. We have shown

that the algorithm is stable and meets transient performance requirements. The algorithm is based both on a novel

analytical model and employing standard feedback control design techniques using that model. A performance evaluation

study has demonstrated that the algorithm outperforms both baselines and important previous algorithms from the

literature in uncertain environments.
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