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Abstract

Embedded systems operate under severe constraints in processing power, memory footprint, power availability, and communication bandwidth. To be successful these systems must also meet cost, time to market, performance, and dependability constraints. Building each embedded system from scratch is not cost-effective. Instead, designing, building and tailoring embedded systems by using domain specific components has promise. However, in using components the most difficult issues are ensuring that hidden dependencies won't cause failures and that non-functional properties such as real-time performance and reliability are being met. We have built the VEST toolkit whose aim is to provide a rich set of dependency checks based on the concept of aspects to support embedded system development via components. We describe the toolkit and its application on an avionics case study.

1. Introduction 

Success of embedded systems depends on low cost, quickness to market, and in some cases, flexible operation of the product. The reliability of these products and the degree of configurability are paramount concerns. In many cases there are important real-time constraints that have to be met. Building embedded system software is time-consuming and costly. The use of software components for constructing and tailoring these systems has promise. What are needed are tools to support program composition and analysis of component-based embedded systems. In these systems designs are instantiated largely by choosing pre-written components from libraries rather than by implementing the design from scratch. Composition tools are different from top-down design tools (e.g., Rational Rose [31]) that do not directly support composition of pre-existing components. One major difficulty of embedded system composition is the crosscutting dependencies among components that are often hidden from the composers. Composition tools should provide dependency checks across components boundaries and expose potential composition errors due to the cross-cutting dependencies. Our work is focusing on the development of effective composition mechanisms, and the associated dependency and nonfunctional analyses for real-time embedded systems. Our solution is based on extending the notion of aspects. Aspects [17] are defined as those issues that cannot be cleanly encapsulated in a generalized procedure. They usually include issues that affect the performance or semantics of components. This includes many real-time, concurrency, synchronization, and reliability issues. Aspects, to date, have largely been language dependent in that aspects are implemented as language constructs. A major contribution of our work is that we extend the concept of aspects to language independent notions and apply them at design time. Our solutions are embodied within a toolkit called VEST (Virginia Embedded Systems Toolkit). VEST provides an integrated environment for the composition and analysis of real-time embedded systems. VEST models application components, middleware, OS, and hardware components. This feature supports the composition and tailoring of every layer in an embedded system for a specific application, which leads to more complete cross components dependency checks and more optimization opportunities. 
VEST includes features that are also found in other tools. However, there are several novel features in VEST. The major contributions of VEST are two types of language-independent aspects referred to as aspect checking and prescriptive aspects. They permit the benefits of aspects to be exercised early in the design process rather than in the implementation phase. A set of representative aspects in embedded software are identified and implemented in VEST. These aspects improve our understanding of specific crosscutting concerns found in embedded systems. VEST also implements an extensible real-time schedulability analysis tool for distributed embedded systems running on real-time CORBA. Our analysis expands schedulability analysis to the situation where tasks consist of multiple components distributed across multiple CPUs with an end-to-end deadline. This type of analysis is necessary for many modern real-time embedded systems, but is not available in existing analysis tools (e.g., [12]) for real-time CORBA.

This paper gives an overview of VEST (section 2), and describes language independent aspects and the scheduling analysis in sections 3 and 4, respectively. Section 5 briefly discusses some of the additional dependency checks found in VEST. The implementation details of VEST are presented in section 6. VEST is evaluated via a case study of a typical avionics scenario (section 7). The avionics scenario uses Boeing’s Bold Stroke middleware [38], which is based on TAO [37]. The case study is a qualitative mechanism for showing the effectiveness of our solutions. A main advantage of our tool is that it addresses the most difficult parts of component composition, the hidden crosscutting dependencies and the overall real-time analysis. Some issues such as the overall reliability of the embedded system are not yet addressed. Section 8 contains a state of the art discussion and section 9 summarizes the main results.

2. Overview of VEST 

VEST provides an integrated environment for constructing and analyzing component-based real-time embedded systems. VEST helps developers select or create passive software components, compose them into a product, map the passive components onto active structures such as threads, map threads onto specific hardware, and perform dependency checks and non-functional analyses to offer as many guarantees as possible along many dimensions including real-time performance and reliability
. Embedded systems issues are explicitly address via the mapping of components to active threads and to hardware. The VEST environment is composed of four component libraries, a prescriptive aspect library, a set of aspect checks, and a GUI-based environment for composing and analyzing embedded products.

· Component Libraries: Because VEST supports real-time embedded systems, the VEST component libraries contain both software and descriptions of hardware components. VEST components can be abstract or actual. An abstract component is a design entity that represents the requirements, e.g., a timer with certain requirements or a generic processor is an abstract component. An actual component is the implementation or description of a reusable entity. For example, a specific timer module written in C and a Motorola MPC7455 are examples of actual components. Sets of reflective information exist for each of these component types. The reflective information of an abstract component includes its interface and requirements such as security levels. The reflective information for actual components includes categories such as linking information, location of source code, worst-case execution time, memory footprint, and other reflective information needed to analyze cross cutting dependencies. To support the whole design process of embedded systems, VEST implements the following four component libraries each for a separate software/hardware layer:

· Application Library includes software components for a particular application domain. For example, an avionics application library includes a set of navigation, planning, sensor fusion, and pilot display components. Currently application components in VEST are CORBA components. 

· Middleware Library includes components of the middleware. For example, a Real-Time CORBA library includes different CORBA service modules such as scheduling services and persistence services.

· OS Library includes components of operating systems. For example, threads are OS components in VEST and also have reflective information describing their attributes such as invocation period and scheduling priorities.
· Hardware Library includes descriptions of hardware components such as processors, RAM, NVRAM, buses, network connections, DSP, A/D and D/A, actuators and sensors. The hardware objects can also be abstract such as a processor or actual such as the Motorola MPC7455.
· Prescriptive Aspects Library: Prescriptive aspects are reusable programming language independent advice that may be applied to a design. For example, a developer can invoke a set of prescriptive aspects in the library to add security to an avionics product. We describe prescriptive aspects in section 3.1.

· Dependency Checks: VEST implements both a set of simple intra- and inter-component checks and aspect checks that crosscut component boundaries. A developer can apply these checks to a system design to discover errors caused by dependencies among components. One dependency check in VEST is the real-time schedulability analysis for both single-node and distributed embedded systems. VEST can also invoke off-the-shelf analysis tools from its GUI environment. We describe aspect checks in section 3.2.

· Integrated Composition Environment: VEST provides a GUI-based, integrated environment that let developers to compose embedded systems from components, perform dependency checks, and invoke prescriptive aspects on a design. The GUI of VEST displays four main panels (see Figure 1). The main canvas contains the product under development. At first this contains abstract components that describe the design. The user then chooses actual components from libraries to instantiate the design. Actual components also appear on this main canvas. The second graphical panel (on the right hand side of Figure 1) displays the structure of the product under development. The third panel (on the bottom left) displays all the components in a particular component library once it is chosen. The fourth panel (on the lower right) displays all the attributes (reflective information) of a particular component when that component is highlighted. The developer can invoke a dependency check by clicking on a corresponding button on the menu bar. He can also apply a prescriptive aspect by invoking an aspect interpreter from a button on the menu bar. 

From the VEST GUI, a system developer can compose an embedded system following the following process:

1) Design a product by choosing and combining abstract components from the libraries. 

2) Design the hardware platform by choosing and combining abstract components from the libraries.

3) Map software components to hardware and threads so that the active part of a composed system can be designed and analyzed. Only after this step can we truly do the real-time analysis since execution times are highly platform dependent. 

4) Synthesize the product by instantiating abstract components with actual components. It is possible to create a hierarchy of components.

5) Apply prescriptive aspects. This is one area where we believe VEST makes a major contribution. Previous systems do not have enough support for crosscutting dependencies among components and this is one specific goal for VEST. 

6) Perform crosscutting dependency checks and invoke (off-the-shelf) analysis tools to analyze a configured system. If some checks fail, the developer may needs to reconfigure or replace the actual components and repeat the checks. 

[image: image5.png]" GHE:

File Bdit View findow Help

|lviBEEX[2c[tdd]s HSE[FTEM®  ||cosmeats: [ €

T Fane: [soturare Foforars Aspect[SiRbatractco <] Base: A

o [ 3

x
-
-
-
&
o

_DataRepositary

5 BSeenaricl
583 AspectFelder
T hspect
583 HadnareFoLder
T Yardnare
583 WiddlenareFoLder

3 FeultTolersncelliddLenare
530 Persistenceltiddlenars
T PersistanceSpeci fication
23 Securi tylliddlevare
2] OSFelder
Tos
123 SoftwarsFolder
B T Software
T Dataiepositary
T Display
T Siiner
= T

R SensorProperties

* [httributes [erofarences |
] " FommoProperries
[
SWTimer SoftwareComponent KeyMord
Bectusion
[
St aciConponents [FRcTee Eonprments | iRcFeremee

fer s s o o



VEST also provides a separate GUI for system administrators to maintain the libraries and checks. From this interface a system administrator can create a new abstract or actual component. Specifying components entails supplying a significant amount of validated reflective information. He can also add/delete prescriptive aspects and dependency checks. 

Figure 1. VEST’s Integrated Composition Environment

3. Language Independent Aspects

Aspects [17] are defined as those issues that cannot be cleanly encapsulated in a generalized procedure. For example, changing one component may affect the end-to-end response time of many components that are working together. Security aspects of a system also involve multiple correlated components. Aspects, as defined in the literature, are at the programming language level. For example, AspectJ [17] provides syntax that permits the specification of aspects and a weaver that weaves the code specified in the aspect into the base Java code. In VEST we apply the concept of aspects as crosscutting dependencies at design time. This results in language independent aspects. We have discovered that there are, at least, two types of language independent aspects. The first type we call prescriptive aspects. In prescriptive aspects, a general set of advice is programmed and retained in the prescriptive aspect library. This advice can then be applied to the design, not source code. The application of this advice changes the reflective information associated with the affected components (section 3.1). The second we call aspect checks. Aspect checks look for specific crosscutting dependencies, which are often hidden from developers (section 3.2). Language independent aspects help developers to handle crosscutting dependencies among components at the design stage. Compared with aspect oriented languages (AOP), language independent aspects reduces errors in the early stages of software design lifecycles, which leads to shorter time to market. Language independent aspects can achieve the benefit of aspects in embedded systems even when general purpose languages (e.g., C++, C, and Java) are used for implementation.

3.1. Prescriptive Aspects

Prescriptive aspects are advice that may be applied to a design. In VEST the advice is written in a simple VEST Prescriptive Aspect Language (VPAL). Prescriptive aspects are independent of programming languages because they apply to the system design, and the resultant new design can be implemented in any programming language. To change the system design, prescriptive aspects can adjust properties in the reflective information (e.g., change the priorities of a task or the replication levels of a software component). It can also add/delete components or interactions between components. An English language description may also be associated with each aspect. This permits an explanation of why this advice is in the library and how and when to use it. It is also possible to more formally specify a set of constraints to be associated with the advice. These constraints are used to prevent the advice from being applied when it is inapplicable to do so (currently this constraint capability is not implemented). A particular piece of advice may be parameterized to permit a wider utility of a particular prescriptive aspect. 

Specification and Examples

We have examined specific prescriptive aspects related to the avionics domain via Boeing’s Bold Stroke middleware. The following are examples of prescriptive aspects organized in categories. Each of these examples only list the (parameterized) advice; they do not show the accompanying English language description and constraints. These examples in a demonstrate that prescriptive aspects can be a powerful tool in real-time embedded system design.

1) Security: 

a) for all pilot to ground communication encrypt it with RSA;

b) for all data of type X encrypt with technique Y; 

c) for security level of any data of type X change to Y;

d) move all data with security levels above X to physical store Y;

2) Persistence: 

a) for all log data in the navigation subsystem make it persistent;

b) for all data of type X make it persistent;

c) for all objects of type X make the save rate Y;

3) Redundancy: 

a) make X copies of all data of type Y; 

b) update all backups for data X with rate Y;  

4) Locking:

a) for data of type X lock all/fields of data; 

b) for all data of type X change to spin lock;

5) Events:

a) for threads of priority higher than X modify the conditions under                                               which to fire events;

b) for all events of a type X make them also wait for condition Y;

c) for all components that are critical have them fire a new event called X whenever they execute);

d) for all components that filter their own events make change to remove that filter and use event channel filter;

All the above examples and more can be specified with VPAL. The syntax of VPAL is specific to the VEST data structure that specifies components and their interactions. The partial BNF specification of the VPAL syntax is: 

<Prescriptive-Aspect> = 

for <Collection>

<Modify> <Component-Type><Assignment-Expression><Component-Value>

<Collection> = <Component-Type><Expression><Component-Value> |

<Component-Type><Expression><Component-Value><Logical-Operator><Collection>

<Logical-Operator> = “|” | “^”

<Component-Type> =
<ComponentType>“.”<PropertyType> | 


<ComponentType>“:”<DataType>

<Component-Value>
=
<CompenentName>“.”<PropertyName> |


<ComponentName>“:”<DataType>

<Expression> = <Boolean-Operator> | <Variable>  

<Modify> = “change” | “move”

<Assignment-Expression> = <Assignment-Operator><Variable>

<Boolean-Operator> = “=” | “>” | “<”  | “!=” |  “>=” | “<=”  

<Assignment-Operator> = “=”| “+=” | “-=”| “*=”| “/=”

<Variable> = Numeric-Constant | String-Constant

In the above syntax <Collection> describes the components that should be modified by the prescriptive aspect. <Modify> specify the kind of modification to the design. “Change” changes the values of some particular reflective information of each component in the <Collection>. “Move” changes the persistence store of the components in the <Collection>. This is specific to the persistence service in Bold Stroke. More modifications can be added to <Modify> depending the types of modification that an application domain requires. For example, the prescriptive aspect “for all Pilot-to-Ground Communication encrypt with technique RSA” is specified as:

for *.“PilotGroundCommunication”

change *.“encryption” = *.“RSA”.

The prescriptive aspect interpreter will search for all components with type “PilotGroudCommunication” and set their encryption methods to RSA. 

Applying Prescriptive Aspects 

The developer can apply a prescriptive aspect to a design by running a VPAL interpreter on its specification. The interpreter modifies the reflective information of design components. Since the code would no longer reflect the new design change upon a design change via the prescriptive aspects, the interpreter marks the actual source code associated with that change as "inconsistent and needing changes" to meet the new design. Currently VEST does not support automatic code generation/modification, and the developer need to implement the code change manually according to the new design given by VEST. Once the new code is created and linked to the component then the inconsistency indication is removed. 

Prescriptive Aspect Library

Prescriptive aspects should be general enough to be used in different products. VEST supports reusing prescriptive aspects by organizing them into the prescriptive aspect library. Prescriptive aspects will not be permitted into the prescriptive aspect library unless it meets with the approval of the system administrator. The requirements include sufficiently general, parameterized, complete English description, meaningful constraints specified, and relating to non-functional properties.
In some cases it may be necessary to apply to a design a set of “unrelated” aspects in some order. To support this feature, the developer has the capability to describe precedence constraints among the aspects. More importantly, the same mechanisms can be applied to create a “related” set of changes to effect a global change to the system. In order to make high level changes to a design (e.g., in regard to security, fault tolerance, reliability, performance, etc.) it is usually necessary to make a set of “related” and more specific changes. For example, there can be a group of advice in the prescriptive library that supports a secure avionics system. This advice may encompass a collection of changes that includes encrypting certain types of communication, adding intrusion detection changes, adding modifications that prevent or minimize denial of service, etc. The mechanisms in VEST support this type of design where the root of the hierarchy can imply changes needed for security, and the rest of the tree contains the specific modifications required. Future work will exploit this novel view supported by VEST.

The Value of Prescriptive Aspects

What is the value of prescriptive aspects? First, by using prescriptive aspects a developer is encouraged to design in a functional manner and then to apply non-functional updates to the design. This separation of concerns makes design easier. Second, prescriptive aspects can be thought of as general advice for changing a design in a global manner. The advice is domain specific. In this case a developer can walk through all the library advice categories and determine if they are appropriate. For example, after designing a functional avionics product a developer may proceed through prescriptive aspects for security, real-time performance, fault tolerance, persistence, etc. For each category they can determine if any of the advice should be applied. This browsing can aid in producing a more complete and tailored design and when specific advice is already in the library it is easy to apply it. Third, advice can be grouped in such a way to support implementing a wide reaching concept, such as improved computer security. Under this general advice notion there might exist a group of prescriptive changes that relate to denial of service, encryption, and authentication. Applying the high level advice, applies the entire group. Fourth, prescriptive aspects support a widespread global change in the design by simply defining new advice or using pre-declared advice and applying it to your design. This prevents bugs where changes required are only made in some of the requisite places. Also implied by this advantage is that re-applying different advice can be done simply and dependency checks and schedulability analysis can be re-run automatically. This facilitates looking at competing design options and making modifications easy. 

3.2. Aspect Checking

One goal of VEST is to provide support for various types of dependency checking among components during the composition process. Dependency checks are invoked to establish certain properties of the composed system. This is a critical part of real-time embedded system design and implementation. Some dependency checks are simple and have been understood for a long time. We call these intra- and inter-component dependency checks. Other dependencies are very difficult and even insidious. We refer to these as crosscutting dependencies or aspect checks. Aspect checking is an explicit check across components that exist in the current product configuration. We have identified many aspect checks that would help a developer avoid difficult to find errors when composing embedded systems from components. To illustrate this concept we discuss three examples. 

Suppose a given system has only periodic tasks and a change is made to add aperiodic tasks. A particular aspect check is to identify all those components that had previously assumed that no aperiodic tasks would exist. This check would also detect that the scheduling algorithm also has to change (assuming that the original real-time scheduling algorithm only addressed periodic tasks). Developers are presented with the information and then must make the proper changes to the design using prescriptive aspects described in the next subsection. They can then re-run the check to insure that the problem no longer exists.

Another example involves a current system design that has no KILL primitive. Adding a KILL primitive imposes a key requirement on all other tasks, i.e., they cannot be killed while they are in the middle of a critical section. This aspect check would find all components where critical sections exist and could potentially be affected by the addition of the KILL primitive.

Another example is a buffer size check. Here the check browses through a system, for each buffer, adds up its total buffer consumption based on the rate of execution of its consumers. Then it browses through the system, for each buffer, adds up its total buffer production based on its rate of execution of its suppliers. The aspect check then compares each buffer's total production with its total consumption. If its total production is larger than total consumption, messages might be lost. The developer is informed.

VEST implement a set of aspect checks. Developers can invoke checks on the current product from the GUI environment. In general, it is our belief that aspects (both aspect checks and prescriptive aspects) include an open ended set of issues. Therefore, we cannot hope to be complete, rather we need to identify key aspects for embedded systems and create the specification and tools to address as many of these issues as possible. The more aspect checks that can be performed, the more confidence in the resulting composed system we will have. However, by no means do we claim that the system is correct, only that certain specific checked errors are not present.
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Figure 2. Schedulability analysis in VEST

4. Real-Time Scheduling Tool

An important check for real-time embedded systems is the schedulability analysis that validates whether all tasks can make their deadlines. While many different schedulability analysis techniques exist, they differ in their assumptions on the task set and none of the existing analysis is applicable to all real-time embedded systems. To handle different types of embedded systems, VEST provides a flexible and extensible scheduling tool that takes advantage of the wealth of existing schedulability analyses. This tool (shown in Figure 2) is composed of a set of schedulability analysis routines, an assumption table, and a reflective information collector. The assumption table lists the assumptions of each schedulability analysis routine. The current list of assumptions includes: 

· Periodic: are all the tasks periodic?

· Distributed:  are any of the tasks distributed on multiple processors?

· Importance: are important tasks protected in overload conditions? 

· Blocking: can low priority tasks block high priority tasks?

· Precedence: are there precedence constraints among tasks?

For example, the assumptions of the Rate Monotonic analysis [19] are all tasks are periodic. The Rate Monotonic with Priority Ceiling protocol’s assumptions are (periodic, blocking). The VEST scheduling tool is extensible and new scheduling techniques can be added to the tool together with their assumptions.

Developers can assess the schedulability of the current design by running the scheduling tool from the GUI. The reflective information collector scans the software and hardware components of the design and produces a platform/task set information file that includes a list of the characteristics and the timing information of the task set. The tool selects an analysis whose assumptions match the characteristics of the system. This ensures that proper analysis and scheduling policy (e.g., in CORBA scheduling service) is applied. For example, for a system with all independent periodic tasks on a single processor, the Rate Monotonic check will be applied to the system. However, if the same task set is designed on a distributed platform, the deadline monotonic with offset analysis described below will be applied. 

4.1. Deadline Monotonic Scheduling with Phase Offset

Currently the VEST scheduling tool implements the basic Rate Monotonic check [19], and a more sophisticated analysis for distributed systems. In applying the tool to Boeing’s avionics we found that the RMA was not sufficient because such systems often run on a distributed platform. Avionics based on real-time CORBA (e.g., Bold Stroke and TAO) requires support for the following distributed scheduling problem.

A periodic task Ti consists of multiple subtasks {Tij} on different processors. The set of subtasks have the same period Pi, and the task deadline Di = Pi. Figure 3 shows a task T1 having three subtasks connected by arrows (consider these T11, T12 T13 not labeled in the figure). After completion of the first subtask T11, an event is pushed to the second subtask T12, and similarly for the third subtask T13. The set of three subtasks of T1 has a single deadline and period P1=D1. In this example, this task T1 is physically placed on three distinct processors connected via a bus or a LAN. This example explains a single task. The system is then composed of multiple such tasks, each task Ti composed of one or more subtasks placed on one or more physical processors, and with communications proceeding in possibly “different” directions among the processors. 
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Figure 3. Schedulability Analysis for Deadline Monotonic with Phase Offset

To provide scheduling support for the above distributed scheduling problem, VEST implements a scheduling analysis that we call Deadline Monotonic with phase Offset (DM/Offset). The assumptions of DM/Offset are (periodic, distributed). The reflective information collector sweeps across the system design and creates a description of the task set for each processor. If the design matches the its assumptions, DM/Offset assigns intermediate deadlines {Dij} (e.g., D11, D12 and D13 in Figure 3) for the subtasks {Tij} of each task Ti, and accounts for the worst-case network delay tc. The first subtask Ti1 has a start time at the beginning of its period and a deadline less than its period; the subsequent components have a static phased offset equal to the deadline of its previous component plus tc. (The static offset requires delaying the release of a subtask Tij if its predecessor Tij-1 finishes earlier than its deadline.) The deadline of the last subtask equals the deadline of the whole task. If every subtask Tij meets its intermediate deadline, the whole task meets its deadline Di. Consequently, the distributed schedulability analysis is reduced to the analysis of each node independently with phased offset. To do this we employ Audsley’s priority assignment and analysis algorithm found in [1]. The Audsley algorithm provides an optimal priority assignment and feasibility test algorithm for static priority tasks with arbitrary start times (phase offsets) on a single node. It is different from Rate Monotonic and Deadline Monotonic priority assignment schemes, which assumes that tasks must be released simultaneously, i.e., without considering the start times (phase offsets). We now present the pseudo code of the DM/Offset analysis implemented in VEST:

DM-Offset()

begin

for each task Ti /* with deadline Di = period Pi, and Ni subtasks */

for (j=0; j<Ni; j++)

if (j==0) 

offsetij = 0;

else 

offsetij = Dij-1 + tc; /* offset of subtask */

endif

Dij = (j+1)/Ni*Pi;
/* intermediate deadline of subtask */

endfor

endfor

for each processor in the system

apply Audsley algorithm to assign priorities to subtasks and assess the schedulability of the processor;

endfor

end

The Pseudo Code of DM/Offset Analysis

The current DM/Offset analysis takes a simple approach that evenly divides the deadline of each task as the intermediate deadlines of its subtasks. While the current DM/Offset provide a scheduling solution for representative distributed avionics systems on Bold Stroke, more sophisticated deadline assignment algorithm may lead to better utilization of the processors. The extensible architecture of our scheduling tool allows us to incorporate existing schedulability analysis techniques that handle static and/or dynamic offset (e.g., [30]
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[41]) in distributed real-time systems.

5. Simple Dependency Checks

In addition to the above aspect checks and scheduling check, VEST also support simpler intra- and inter-component dependency checks.

The simplest component dependency check is called the intra-component dependency check. These checks can be accomplished by investigating a component property by itself or in conjunction with other components in a simple fashion and where there are no functional dependencies among those attributes of the components. An intra-component dependency check can include using this information across all the components in a configuration if there are no dependencies. For example, one check might involve determining if there are any components that require non-preemption. This is a simple component by component check. Another check may add up the memory requirements of each component and checking if they can fit in memory. A memory requirement of one component is not dependent on the memory requirement of another component. If there were a dependency then this would be a cross cutting dependency and it would not be a simple intra-component check. 

Inter-component dependencies refer to pair-wise component checks. This includes:

· dependency (call or event) graphs 

· interface requirements including parameters and types of those parameters 

· exclusion requirements 

· version compatibility 

· software to hardware requirements 

· this component is included in another.

The above list is extensible. Given a set of components configured for some purpose the inter-component checks also tend to be easy. For example, that modules conform to interface definitions can easily be checked. That correct versions are being used together and that no two components that must exclude each other are in fact included, also can be easily checked. The greater the number of intra and inter-component dependency requirements that are checked, the more likely that simple mistakes are avoided.

6. Implementation

VEST 1.0 has been implemented using the GME (Generic Modeling Environment) on Windows 2000. GME [18] is a meta-modeling environment with an extensible collection of model editing tools supporting a Model-Based Development approach to system/software engineering. GME provides the underlying support for the graphics and modeling support found in VEST. The system design developed in VEST can be exported as XML files, which make it possible to import the design to other related tools. All dependency checks and the prescriptive aspect interpreters are implemented as interpreters that can be invoked through the buttons from the VEST GUI. All interpreters are implemented in C++ and can access the internal data structures that represent the component-based embedded system design.

VEST 1.0 is mainly targeted at avionics on top of Boeing’s Bold Stroke middleware similar Real-Time CORBA. Application components are modeled as CORBA components, and the interactions between application components are through asynchronous events [13]. 

Each component has factual (reflective) information about itself including:

· WCET (worst case execution time) 

· memory footprint 

· data requirements 

· interface assumptions 

· importance 

· initialization requirements

· environment requirements such as

· must be able to disable interrupts 

· requires virtual memory 

· cannot block the code itself

· preemption vs non-preemption

· power requirements (if a hardware component)
· buffer rate
The above list is extensible depending on the application area. Currently the middleware components of VEST models the persistence service and the scheduling service. VEST provides three views to its user, namely abstract, actual and reference.  The three views reflect the system from different angles.  An developer first constructs a system using abstract components. Attributed associated with the abstract components record system requirements.  Then he can either choose off-the-shelf actual components from the library and possibly reconfigures them (if needed), or implements a new component if no appropriate one exists. An developer specifies the relationship (e.g., event graphs) among components in the reference views.  
On the VEST tool bar there is a GME interpreter called the prescriptive aspect interpreter, which can be invoked from a button on the GUI.  When invoked the interpreter scans any active aspect components and parses the aspect syntax by a Perl parser. The parser parses the input and forms relevant data structures, which is, in turn, passed back to the prescriptive interpreter. The interpreter reads the data structure, browses the model, and makes the relevant modifications. The developer is informed of any changes. When applying a set of prescriptive aspects, VEST maintains a list of all the changes in a separate file. This list can be used to determine various things such as (i) two or more changes conflict with each other, (ii) no changes were made for a particular prescriptive aspect, (iii) informing the user about what was changed, and (iv) support for a general undo operation. Each dependency check (aspect checks and simple checks) is implemented as a GME interpreter and can be invoked with its corresponding button on the GUI.
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Figure 4. UML Diagram of a Pilot Control Subsystem

7. Case Study 

The purpose of this case study is to demonstrate the effectiveness of the ideas incorporated in VEST.  To do this we applied VEST to the design and composition of a portion of an avionics system that is based on the Bold Stroke middleware. In this avionics system, a pilot control component measures coordinate data periodically, then sends its coordinate data to a waypoint control component.  Upon receiving coordinate data, the waypoint control component calculates a new route for the plan, updates its database, and sends that new route to a display component. This avionic control system is a typical example of a distributed real-time embedded system with many cross-cutting concerns.  In fact, this example is posted by Boeing as a product scenario for evaluating design and analysis tools. Figure 4 shows the UML diagram of the avionic system’s software architecture.

To better understand the case study additional details about the application are provided: The system is composed of four first level components: pilotControl, waypointProxy, waypoint, and fltPlanDisplay.  They run on the Bold Stroke middleware. The pilotControl component is an event supplier.  It supplies coordinate data to the waypointProxy component at a specified frequency.  WaypointProxy is a proxy representing the waypoint component and it runs on another processor.  Communication is supported by the middleware service known as an event channel. Via the event channel, data originating in the pilotControl component is forwarded to the waypoint component.  Likewise, the waypoint component sends the newly calculated route back to waypointProxy.  Finally, the fltPlanDisplay component gets the new route information and displays it.

7.1. Design the Pilot Control Subsystem

In this case study, the developer first creates the system using abstract components. After the abstract specification has been performed, the system design might look as shown  in the following figure. 

[image: image4.jpg]Eile Bdit Yier findow Help

[ || ERX] 2 T 408 HesmmEn | [conponents: | €

3=

o 1 Hon: Foftvars Fotorare spectSHnbstr actCoz] Base: IR Aegrecate |Labori tance | Hta |

= S =
- —
. - s T

o T hspect

hepectfmistr

actCo [ Base: [i7R

e e
Merhory

2] HadwarsFolder
T Hardware
2] M adLenareFolder
0 EventServicalli ddlensrs
0 FeultTolersncell ddLewar.
Persistencallidilevare
T PersistancaSpeci fica.
£] Securi tylliddlevare
2] OSFelder
ER
T PilotControlThread
T WarPointThread
B8] SoftwareFolder
B T Software
B T fLtFLadispley
) T pilotContral
B Tas
T Gethata
T Measure
T Push
R waypointProxyd
T SiTiner

ols | & Twaroint
UM T vampointeroy
e

. Iy

i ]| [reeiuces [rreterences|
o
o F

SoftwareComponent — f -
S e e

ooz 1 e 6312 o1




Figure 5. VEST model of a pilot control system

In the above diagram shows there are two layers that are shown in detail in the diagram. One is the software layer that shows (in the top panel of the figure) the basic four components, pilot control, waypointProxy, waypoint and fltPlanDisplay and their high-level interaction (the dashed lines). By high-level interaction we mean that if there is any event propagation from one component to another then these components are connected by a directed graph.  Direction of a connection shows the flow of events.  A second canvas in the picture shows the hardware layer. The system is deployed in a distributed environment. It contains two processors: a pilot processor and a waypoint processor. They are connected via a bus interconnect. Also, the system has two non-volatile memory units and one volatile memory unit. What are not shown in the diagram are the OS, Aspect, and middleware layers. The components of these layers can be viewed from the browser menu shown on the right-hand side figure. In the OS layer, we have two threads: a Waypoint thread and a PilotControl thread. The waypoint thread is mapped to the waypoint processor and the pilot control thread is mapped to the pilot control processor.  The components that run on the waypoint thread are Pilot Control, WaypointProxy and fltPlanDisplay. 

The middleware layer contains persistence, event channels, security, and fault-tolerance services.  The persistence service is one focus of this case study.  In the persistence service, there are persistence adapters and auxiliary components.  For every application component that needs to maintain some persistent data there is a persistence adapter associated with it. The persistence adapter contains the follow attributes: save_rate, is_double buffered, and track_dirtiness. The save rate specifies the frequency of the persistence thread. Is_double_buffered identifies whether the state should be buffered twice or not. Track_dirtiness is a boolean variable; if true, this parameter causes the state to only be persistent if the persistent object is dirty. 

On double clicking on the software components we can view the methods and member variables modeled in this component. An event graph is specified at this view (VEST models systems at the method level). The specification of the method-calling graph helps in completely characterizing the systems execution and thereby provides needed data for VEST to perform interface checking and schedulability analysis. After performing these operations the developers chooses actual components from the libraries and maps them to these abstract components. After modeling, the VEST developer makes various checks to boost his confidence in the correctness of the system.  

7.2. Memory Footprint Check

The first checks performed are intra-component checks.  For instance, enough memory is vital for the system’s performance.  A memory footprint check is available in VEST.  The first part of the memory footprint check is concerned with main memory.  It sums the memory needed by all the components in the system, and all the available physical memory (RAM) provided by the hardware, and check if there is enough physical memory in the system.  In the case study, the developer initially specified the system as follows: 

	
	PilotControl
	WaypointProxy
	Waypoint
	fltPlanDisplay

	max memory footprint
	50M
	100M
	300M
	100M


However, the hardware memory is only of size 500M.  Considering the system overhead, the memory check informs the developer of insufficient memory.  The developer either adds more memory, or reduces memory consumption by modifying application components.  

The second part of the memory check deals with NVRAM (e.g., EEPROM). Bold Stroke allows application programs to specify a set of data in some components to be persistent, so that important data in the system survives power failures. For the system to function correctly, sufficient NVRAM for persistent components should be provided. Our check assures the developer when there is enough non-volatile memory to meet the system’s requirement, or gives warning when not enough NVRAM is provided.  In this case study, the system has two NVRAMs with a total capacity of 300 MB. The sum of the persistent objects’ size is 200 MB. The persistent object is originally configured as double-buffered, which doubles the needed capacity of NVRAM to 400 MB. When invoked, the memory footprint check warns that there is insufficient NVRAM. In this case study, the designer now reconfigures the persistence adapter to single-buffered mode, and the memory check returns successful confirmation.

7.3. Buffer Rate Check

The developer then proceeds to perform a buffer rate check, which checks the rate of the event supplier/consumer pairs as well as their buffer size.  Since this system uses events for inter-component communication, buffer overflow is a critical problem to be avoided.  In the initial specification of the system, the pilotControl component produces data for component waypointProxy.  However, pilotControl is producing data at a frequency of 50 Hz, while waypointProxy can only consume the data at 40 Hz.  When the developer runs the buffer check, it provides warning of a potential buffer overflow, and marks the two components that cause the problem.  Using this feedback from VEST, the developer changes the configuration of the consumer/producer pair to avoid buffer overflow. While such a check does not prove correctness, it does increase confidence in the correct behavior of the system.

7.4. Schedulability Check

The developer may then proceed to make additional checks that are more sophisticated. VEST provides an automatic schedulability analysis. After the designer completes the design of the model, he runs the schedulability analysis to check the model. This analysis requires the DM/Offset analysis because the software components are mapped to multiple interconnected processors in the model. However, the output of the schedulability analysis shows that the model is not schedulable, as depicted in the following. The beginning of the output is a method list including the period and WCET of the methods in the CORBA components. Based on the event graph, multiple interacting methods on a same processor are grouped into a subtask, which is mapped to a thread. The second part of the output is the subtask list on each processor and its schedulability analysis results. The subtask list includes the period, WCET, and the intermediate deadline and offset of each subtask. For the initial design with a period 400 ms, the analysis shows that processor 2 is schedulable, but processor 1 is not. Therefore the design should be changed.

List of methods

MethodName
MesureLocation
Processor Processor1
Period 400
WCET 67

MethodName
Push         
Processor Processor1    Period 400
WCET 2

MethodName
Push


Processor Processor2    Period 400
WCET 4

... ...

Subtasks on Processor2

Subtask Push Processor 2 Period 400 WCET 4 Deadline 160 Startime 81

Subtask CalculateRoute  Processor 2
Period 400 WCET 2
Deadline 320 Startime 241

Priority level 2 has been assigned to Push.

Priority level 1 has been assigned to CalculateRoute.

Schedulability test on Processor2 passed.

Subtasks on Processor1

Subtask MesureLocation+Push+GetData Processor 1
Period 400
WCET 102 Deadline 80 Startime 0

Subtask DataReadyPush+Push+GetData+Display Processor 1 Period 400
WCET 11 

 Deadline 240 Startime 161

Subtask GetData Processor 1 Period 400 WCET 2 Deadline 400
Startime 321

Couldn’t assign, try next

Priority level 3 has been assigned to DataReadyPush+Push+GetData+Display.

Couldn’t assign, try next

Priority level 2 has been assigned to GetData.

Couldn’t assign, try next

Schedulability test on Processor1 failed.

Output of the schedulability check on the original pilot control subsystem with a period of 400 ms

7.5. Prescriptive Aspects

As part of the VEST tool, the designer can use a prescriptive aspect to change the design. To make the system schedulable, the developer applies the following prescriptive aspect to relax the period of each component from 400 ms to 600 ms.

for *.Period=400

change *.Period=600

After applying the prescriptive aspect (assuming that this change is compatible with the semantics of the application), the designer runs the schedulability analysis again, which succeeds on both processors this time, as seen in the following output (only the subtask list and analysis results are shown):

Subtasks on Processor2

Subtask Push Processor 2 Period 600 WCET 4 Deadline 240 Startime 121

Subtask CalculateRoute Processor 2 Period 600 WCET 2 Deadline 480 Startime 361

Priority level 2 has been assigned to Push.

Priority level 1 has been assigned to CalculateRoute.

Schedulability test on Processor2 passed.

Subtasks on Processor1

Subtask MesureLocation+Push+GetData Processor 1 Period 600 WCET 102 Deadline 120    

Startime 0

Subtask DataReadyPush+Push+GetData+Display Processor 1 Period 600 

 WCET 11 Deadline 360 Startime 241

Subtask GetData Processor 1 Period 600 WCET 2 Deadline 600 Startime 481

Priority level 3 has been assigned to MesureLocation+Push+GetData.

Priority level 2 has been assigned to DataReadyPush+Push+GetData+Display.

Priority level 1 has been assigned to GetData.

Schedulability test on Processor1 passed.

Output of the schedulability check on the pilot control subsystem after applying a prescriptive aspect

Every component has a notion of importance, whose value is  [high, medium, low].  For the sake of fault tolerance, the developer would like to make as many important components be double buffered as possible. In order to do that, he uses a prescriptive aspect.  The developer drags a prescriptive aspect into the system.

for SoftwareComponent.importance=*.[medium,high] 

change PersistanceAdapter.isdoublebuffered=true

Applying the above prescriptive aspect initiates a search for all software components. In the list of components, the prescriptive aspect interpreter looks for a property of type importance. Now after further filtering of the component the interpreter tries to match the importance to either medium or high, and if there is a success then it changes the persistent adapter associated with that component’s property is_double_buffered to true. 

Obviously this prescriptive aspect crosscuts multiple facets of the system. The developer wants to make sure that this aspect does not violate other specification for the system.  He runs the interpreter to execute the prescriptive aspect, and the changes are made to related components.  Then he runs the memory footprint check.  It turns out that there are two persistent components of high importance (each has a size of 50M), and one persistence component of medium importance (which as a size of 100M).  If all of these are double buffered then the memory requirements are now 400M. The physical non-volatile memory in the system is only 300M, so there is not enough non-persistent memory to meet the requirement of the prescriptive aspect he enabled.  Upon receiving a warning from VEST concerning the lack of memory availability, the developer changes the prescriptive aspect to only double buffer the highly important components. 

for Software.importance=high

change PersistanceAdapter.isdoublebuffered=true

The above syntax is similar to the previous one except that the range is of components to change is now narrower limiting itself to only high importance components. The developer then re-executes the prescriptive aspect, and applies the non-volatile memory check again.  The check passes successfully, since the changes in the software and middleware layers are in harmony with the hardware layer of the system.

While only part of the full case study is presented here, the case study shows that VEST has many advantages. First, it provides a way to speed up code-test-debug cycle through various checks it implements. Second, it makes components more reusable across multiple projects, because it allows configurablility within components (at middleware layer and software layer) so that they are easily reusable, and it provides a library for a user to navigate and choose components. Third, VEST also gives users a higher confidence in the correctness of system operation.  Checks such as buffer sizing, memory sizing, and schedulability analysis reduce a user’s effort to achieve confidence. Fourth, the use of prescriptive aspects in a system makes it easy to extend/contract a system’s capabilities with global wide changes being performed automatically, avoiding errors of forgetting to change one of more locations.

8. State of the Art 

The software engineering field has worked on component based solutions for a long time. Systems such as CORBA [36], COM [22], DCOM [23], and Jini [1] exist to facilitate object or component composition. These systems have many advantages including reusability of software and higher reliability since the components are written by domain experts. However, none of these systems have adequate crosscutting analysis capabilities. Also, the generality and large size of component libraries makes these general solutions difficult to use. However, using components in more focused domains such as found in many embedded system applications seems promising. Often a high degree of tailorability is needed to make a product successful in the marketplace. This tailorability may be required in the application code, the middleware (if any) and the OS.

A promising line of research is Aspects Oriented Language [17]. This work attempts to address complex crosscutting dependencies at the source code level. As mentioned above, we are extending this work to design time.

KNIT [33] is an interesting composition tool for general purpose operating systems. This system is addressing a number of cross cutting concerns in composing operating systems. For example, they consider linking, initialization, and a few other dependencies. To date, it has not focused on real-time and embedded system concerns.

For embedded systems we do find some work on component based OSs. These include: MMLite [14], Pebble [11], Pure [3], eCOS [7], and icWorkshop [16]. However, these might be considered first generation systems and have focused on building the components themselves with a substantial and fixed infrastructure. These systems offer very little or no analysis tools and, for the most part, minimal configuration support. For more details on these systems see [10].

Using components in focused domains has been successful. For example, there are tools and components for building avionics systems. There are also systems for creating network protocols such as Coyote [4], the click modular router [24], and Ensemble/Nuprl [20]. The success of these systems lies in the ability to focus on a specific area. This permits better control over problems such as understanding dependencies and avoiding the explosion of the numbers and variants of components.

To date, the closest system to match our goals is the MetaH [42] system. This system consists of a collection of tools for the layout of the architecture of an embedded system and its reliability and real-time analysis. The main differences from our work include MetaH begins with active tasks as the components, assumes an underlying real-time OS, and has limited dependency checking. In contrast we propose to first create passive components, then map those onto runtime structures, and we also focus on adding key dependency checks to address cross cutting dependencies among composed code

9. Conclusion 

When building embedded systems from components, those components must interoperate, satisfy various dependencies, and meet non-functional requirements. The VEST toolkit can substantially improve the development, implementation and evaluation of these systems. The toolkit focuses on using language independent notions of aspects to deal with non-functional properties, and is geared to embedded system issues that include application domain specific code, middleware (if any), the OS, prescriptive aspects, and the hardware platform. The VEST tool has been implemented and used on a case study. The case study qualitatively demonstrates the benefits of our tool. Many improvements and extensions to VEST are planned.
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