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Abstract. A variety of applications employ ensemble learning models,
using a collection of decision trees, to quickly and accurately classify
an input based on its vector of features. In this paper, we discuss the
implementation of such a method, namely Random Forests, as the first
machine learning algorithm to be executed on the Automata Processor
(AP). The AP is an upcoming reconfigurable co-processor accelerator
which supports the execution of numerous automata in parallel against
a single input data-flow. Owing to this execution model, our approach
is fundamentally di↵erent, translating Random Forest models from ex-
isting memory-bound tree-traversal algorithms to pipelined designs that
use multiple automata to check all of the required thresholds indepen-
dently and in parallel. We also describe techniques to handle floating-
point feature values which are not supported in the native hardware,
pipelining of the execution stages, and compression of automata for the
fastest execution times. The net result is a solution which when evalu-
ated using two applications, namely handwritten digit recognition and
sentiment analysis, produce up to 63 and 93 times speed-up respectively
over single-core state-of-the-art CPU-based solutions. We foresee these
algorithmic techniques to be useful not only in the acceleration of other
applications employing Random Forests, but also in the implementation
of other machine learning methods on this novel architecture.
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1 Introduction

Recent research has shown that tree-based ensemble models, in particular Ran-
dom Forests [3], are fast and accurate models of classification for a wide range

? Both authors contributed equally to this work.



1. INTRODUCTION

of applications including bioinformatics [11], computer vision [4], and sentiment
analysis [19]. As data rates climb, accelerating the classification rate of these
models is critical, but also presents a variety of challenges. While the non-
uniform memory access patterns of tree traversal algorithms result in memory-
bound CPU-based implementations, execution divergence while traversing di↵er-
ent paths in the tree(s) prevents multiple threads on Single Instruction Multiple
Data (SIMD) accelerators such as GPGPUs from executing in parallel.

Although parallelization on contemporary Multiple Instruction Multiple Data
(MIMD) machines like CPU clusters is possible due to the independent com-
putability of the individual trees, achieving good load balancing remains a chal-
lenge owing to di↵erent tree depths, deepest of which determines the overall
runtime. Additionally, broadcasting a feature vector for every input to all the
processors often makes the execution communication bound.

In spite of the above mentioned challenges, the classification rate is an im-
portant design metric for Random Forest-based applications. As the training
and optimization is typically completed o✏ine, the rate of classification deter-
mines the actual runtime performance of the algorithm. For example, the web
search engine described by Asadi et al. [2] uses Random Forests in its innermost
loop. Therefore, accelerating this loop for a search engine that processes billions
of queries per day has a significant e↵ect on the perceived latency experienced
by the user. Similarly, a more e�cient implementation leads to reduced power,
infrastructure and cooling costs for the service providers.

The Automata Processor (AP) is a new non-Von Neumann processor based
on the Multiple Instruction, Single Data (MISD) architectural taxonomy. It can
compute thousands of user-defined Nondeterministic Finite Automata (NFAs)
against a single data stream, in hardware and in parallel. We assert that this is
an ideal architecture for accelerating Random Forests, because the values from
a single feature vector (representing an input sample), need to be evaluated
against the threshold conditions captured by the root-to-leaf paths in the deci-
sion trees. By creating a separate automaton for all possible root-to-leaf paths,
and by executing thousands of such automata in parallel on the AP, significant
acceleration may be achieved.

Nonetheless, executing Random Forest models on the AP required over-
coming some fundamental challenges hitherto not addressed by previous AP
work [12, 13, 17, 20]. First, Random Forest feature values are often expressed as
floating point numbers. Unfortunately, neither floating point numbers nor op-
erations are supported on the AP. To address this limitation, we developed a
labeling technique to represent floating point numbers using the symbol-space
of the AP, and to operate on the same using the supported instruction set. Sec-
ond, since all automata on the AP consume bytes from the input in the same
order, each automaton was designed to process the feature values in a predefined
ordered sequence. This deviates from the current Random Forest implementa-
tions, wherein the order of access to the feature values is determined by the tree
traversal leading to non-uniform memory accesses.
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2. BACKGROUND

Finally, in order to fit all of the automata required for large Random Forest
models onto a single AP board, we adopted a compression technique called
Automata Folding, which combines the address spaces of multiple features into
as few State Transition Elements (STEs) as possible, reducing the automaton’s
size.

Having overcome the above mentioned challenges, we have expanded the use
of this new processor to accelerate applications employing decision tree-based
ensemble classifiers. As exemplars, we used these techniques to accelerate two
applications: 1) the classification of handwritten digits and 2) characterization
of a poster’s sentiment behind a Tweet, a 140-character long message on the
popular online social networking service Twitter. We hope that the techniques
described in this paper catalyze further research on the acceleration of other
applications using Random Forests, as well as other machine learning techniques
on the Automata Processor.

The rest of the paper is arranged as follows. In section 2, we briefly review
decision trees and Random Forests, as well as the Automata Processor. Then
in Section 3, we introduce our techniques to represent Random Forests as a
set of automata that can be executed on the AP. In Section 4, we present our
evaluation results, and finally we conclude with a discussion on avenues of future
research in Section 5.

2 Background

2.1 Random Forest

The Random Forest [3] is a supervised classification algorithm. It is an ensemble
technique, composed of multiple binary decision trees. Each tree is trained inde-
pendently by using a random subset, with replacement, of the available training
samples. A tree is built by iteratively choosing a split feature from a random sub-
set of the feature space, and determining the best threshold value to maximize
the entropy reduction per split. This threshold comparison for the split feature
is captured as a split node in the tree, whose left child corresponds to the next
state if the threshold qualification is met, and the right to the contrary. This
learning process continues until a maximum depth or minimum error threshold
has been met. Each leaf node in a tree represents a classification result. For ex-
ample, the decision tree shown in Fig.1a can be used to classify an input sample
into one of the four classes: Class 0 - Class 3 based on the values of features
f1-f4.

At runtime, a classification of the input sample, represented by a feature
vector, is calculated for each tree. Starting at the root node, a root-to-leaf path
is traversed based on the values of the features of the input sample. Since each
of the split outcomes is mutually exclusive, there is only one root-to-leaf path
per tree which can be traversed for any input feature vector. For example, the
root-to-leaf path traversed in the decision tree in Fig. 1a for the input feature
vector shown in Fig. 1b is highlighted in bold. The sample is therefore classified
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f1 < 0.2

f4 >= 0.75 f3 >= 0.7

f1 >= 0.1f2 < 0.8 f1 < 0.5 f2 < 0.8

Class 1Class 0 Class 2 Class 0 Class 3 Class 1 Class 2 Class 0

(a) A decision tree.

0.30.1 0.0 0.5 0.75 0.25

      f0                 f1                 f2                f3                 f4               f5

(b) feature-vector

Fig. 1: Classification using a decision tree in the Random Forest.

as belonging to Class 2 by this tree. The net classification of the Random Forest
is the mode of the results from all trees.

Like most machine learning algorithms, Random Forests are trained o✏ine
and then optimized for fast runtime classification. Current state of the art imple-
mentations run in super-linear time with decision tree depth. This non-linearity
arises from the limited locality of the memory access pattern. Computation at
each node requires non-uniform access to both the feature vector and the Ran-
dom Forest model. This is because the split node features are unpredictable, and
so are the traversals of the root-to-leaf path for the trees. This unpredictability
makes current Random Forest implementations memory-bound, hampering the
scalability of the models.

Previous Work The decision trees in Random Forest models are often non-
uniform in shape and significant in depth. This makes it impossible to fit an
entire decision tree as well as feature vector in the cache memory of modern
processors. Therefore, optimizing the traversal algorithm to maximize the spatial
and temporal locality has been widely studied.

Essen et al. [16] compare multi-core CPU, GPGPU and FPGA Random
Forest implementations for the highest classification rate, performance-to-power
and performance-to-cost ratios. They augmented the Compact Random Forest
(CRF) design [10] to improve the pipelinability of Random Forests on CPUs,
GPUS and FPGAs, and reported improvements in the classification rate by
clumping similar trees. Their results show that CRFs computed on FPGAs o↵er
the highest level of performance per watt, GP-GPUs to o↵er the best perfor-
mance per dollar, and CPUs to o↵er the simplest, but lowest performing solu-
tion.
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Researchers have also used ideas from modern compiler and database de-
sign to maximize the e�ciency of Random Forest models. For example, Asadi
et. al [2] use predication and vectorization to improve the net locality of deci-
sion tree traversal to maximize runtime performance. Predication is a technique
originating from compiler design to convert control dependencies into data de-
pendencies. Vectorization is a technique originating from database research and
batches decision tree computation to mask the cache misses that a sequential
algorithm would incur. Although these techniques have shown considerable im-
provement over existing tree-based solutions, they are only incremental improve-
ments on an algorithm that fundamentally lacks the data-locality necessary for
high performance throughput on a von-Neumann architecture.

In [7], Lucchese et. al use an entirely di↵erent approach to accelerating ad-
ditive ensembles of regression trees or a learn-to-rank model by representing
tree traversals using bit vectors. Their algorithm, QuickScorer, uses the com-
mutative property of the boolean AND operation to compute out-of-order tree
traversals. We use a similar approach, ordering all feature thresholds to be used
for simultaneous comparisons, but we pipeline the thresholding, e↵ectively re-
ducing the size of the resulting model, and simplifying the memory footprint.
The authors report the fastest run-times to date by reducing the rates of control
hazards and branch mispredictions over the previous state-of-the-art VPRED
implementation [2].

2.2 Automata Processor

Micron’s Automata Processor (AP) [5] is a re-configurable fabric of automata
elements. The AP contains State Transition Elements (STEs) and boolean ele-

ments that can be configured to compute a set of Nondeterministic Finite Au-
tomata (NFA) in hardware. The AP also contains counter elements that give it
more power than that available from pure NFAs. The programmer designs their
application as automata, which are then compiled and loaded onto the processor.

Automata representation NFAs are represented as homogeneous automata
on the AP with STEs and activation edges. STEs represent states and their
corresponding state transition conditions; activation edges describe activation
(transition-enabling) relationships between STEs. STEs with incoming edges
from the start state are marked as Start STEs, and STEs with final states are
marked as Reporting STEs. Start STEs can be configured as start-of-data STEs
which process only the first symbol of the input data stream, or all-input-start

STEs which process every symbol in the input data stream.
At runtime, all of the automata are loaded onto the processor, and the input

data is streamed in as a data flow. This data flow broadcasts one symbol per
cycle to all of the AP-chips in an AP Rank. On the first clock cycle, only the
Start STEs are active which then match the input symbol against the character
class of those STEs. If a match occurs, the matched STE activates all STEs
connected to its outgoing connections. This process continues on the next cycle.
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The counter elements and boolean elements may be used to provide additional
logic to these activation signals. If in a cycle one or more reporting STEs are
matched, then an output is reported identifying the reporting STE(s) and the
o↵set in the data flow where the match(es) occurred.

Programming resources and throughput A single AP chip contains 49, 152
STEs, 2304 boolean elements and 768 counter elements. An AP board contains
32 such chips, arranged in 4 ranks of 8 chips each. This cumulatively amounts to
over 1.57 million STEs, 73, 728 boolean elements and 24, 576 counter elements.
All of the chips in one rank can receive a broadcast from a single data flow or can
be organized into two logical cores of 4 chips each. Each logical core processes the
data flow at up to 1 Gbps, allowing a maximum data processing rate of 8 Gbps
per board. Currently, ongoing work is continuing to increase this throughput to
16 Gbps by allowing logical cores of 2 chips each.

Current Status The AP hardware is accompanied by a Software Development
Kit (SDK) [1] which includes design tools to define, visualize, simulate, compile,
load, and run user-defined NFAs on the AP. Using these tools, previous work
including biological motif search [13], modeling Markov Chains [15], association
rule mining [17], and Brill tagging [20] were developed. Although, these works
inspired our research, we report results on actual hardware for the first time. In
fact, the application for sentiment analysis has been showcased on hardware at
the International Supercomputing Conference 2015 (ISC-15) and the Supercom-
puting Conference 2015 (SC-15), albeit with restrictions on prototype hardware
which is currently in the validation phase.

3 Methodology

3.1 Overview

Fig.2 shows an overview of the execution pipeline. The classification process
consists of three pipelined stages: labeling, model execution, and voting. In the
first labeling stage, the floating point feature vector is converted into 8-bit labels.
The labels corresponding to the feature values are concatenated to form a label

vector delimited by the # symbol. The label vectors of the inputs serve as the
input data flow.

In the second model execution stage, the automata loaded on the AP process
this data flow in parallel to identify classifications for each tree in the model.
Finally, in the voting stage, the classifications from all of the trees are combined
to generate the final classification using a simple majority-consensus model for
each input sample.

Currently, the labeling and voting stages are computed on the CPU and
contribute to the overall runtimes. In the future, these will be computed on the
FPGA present on the AP board. After porting labeling and voting to the FPGA,
the tree-classification stage is estimated to become the rate-determining stage
of the pipeline, hiding the runtimes of the other stages.
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Fig. 2: Three stage execution pipeline

3.2 Automata Design

Given the AP’s execution model, the most expeditious implementation of the
Random Forest algorithm is obtained by representing each decision tree with one
or more automata processing the same data flow in parallel. In order to achieve
this we represent each root-to-leaf path in every decision tree in the Random
Forest as a chain automaton, and execute all of the chain automata concur-
rently. In this section, we describe our techniques to generate such automata by
overcoming three fundamental challenges. First, the feature vector values across
all of the automata must be accessed on the same clock cycle(s). Secondly, a
method to handle floating point numbers for feature values and split thresholds
must be devised as no native support is present in the hardware. And thirdly, a
compression technique must be adopted to arrest the expanded representation
of all root-to-leaf paths in the trees. Throughout the rest of the section, We have
used the decision tree shown in Fig.1a as our running example to illustrate our
techniques.

3.3 Enabling Parallel Execution of Decision Trees

We represent each root-to-leaf path in a decision tree as a chain of feature
evaluationnodes. Each evaluation node represents one side of the decision tree’s
split node, and all possible paths are translated into chains. Because the eval-
uations are complete and exclusive, any feature vector will result in a single
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chain being traversed from top to bottom, and that one chain will return its
associated classification. In this way, we’ve translated a tree-traversal to a set of
exact-match automata.

Note that the order of the nodes in a chain does not a↵ect the outcome of the
computation, as the boolean AND operation is commutative; for this reason, we
are free to re-order them. All automata on the AP must process feature values
in the same order. Therefore, as the second step, the nodes in all of the chains
are re-arranged in ascending order by feature id as shown in Fig.3.

f1 < v5

f2 < v4

f4 >= v2

Class 0

f1 < v5

f2 >= v4

f4 >= v2

Class 1

f1 >= v1

f1 < v5

f4 < v2

Class 2

f1 < v1

f1 < v5

f4 < v2

Class 0

f1 >= v5

f1 < v6

f3 >= v3

Class 3

f1 >= v5

f1 >= v6

f3 >= v3

Class 1

f1 >= v5

f2 < v7

f3 < v3

Class 2

f1 >= v5

f2 >= v7

f3 < v3

Class 0

Fig. 3: Reordered chains representation of decision tree shown in Fig.1a.

Next, the nodes representing identical features are combined, and new satisfy-

on-any-value nodes are introduced for features that are not considered in a
chain. The resultant chains are shown in Fig.4. The satisfy-on-any-value nodes
are depicted with a ⇤ symbol. Notice that, in the resultant chains, all of the
features are checked serially and in the same order, and hence these chains can
be converted into automata executed in parallel on the AP. However, evaluating
the thresholds for floating point numbers still remains a challenge; we discuss
our solution next.

Class 0 Class 1 Class 2 Class 0 Class 3 Class 1 Class 2 Class 0

f1 < v5

f2 < v4

*

f1 < v5

f2 >= v4

*

v1 <= f1 
< v5

*

*

f1 < v1

*

*

v5 <= f1 
< v6

*

f3 >= v3

f1 >= v6

*

f3 >= v3

f1 >= v5

f2 < v7

f3 < v3

f1 >= v5

f2 >= v7

f3 < v3

f4 >= v2 f4 >= v2 *f4 < v2 f4 < v2 * * *

Fig. 4: Completed chains representation of decision tree shown in Fig.1a.
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3.4 Handling Floating Point Features and Threshold Values

Floating point feature values cannot be directly expressed on the AP, as there is
no native support. Scaling down these feature values to the 1-byte symbol space
of an STE (or a few STEs) is easy to achieve, but may lead to an unacceptable
loss of precision. We formulated an alternate approach by observing that the
feature values are only used by the Random Forest to determine which side of
a split threshold that value lies. Therefore, it is only necessary to know between
which two of the Forest’s thresholds a feature value resides. For each feature,
we express the address space of floating point numbers as a set of intervals
demarcated by split thresholds used for the feature in all the trees in the forest.
Each interval is then assigned a label. In our case studies, the number of intervals
for each feature was always less than 255, and hence a 1-byte label could be used.
In cases where this is not true, multi-byte labeling is utilized.

This labeling technique is easy to compute, and leads to a simple automaton
design without any loss of precision. Fig.5 shows the labels selected for features
f1 � f4 of our running example. The address space of feature f1 is split using
the values v1, v5 and v6. Therefore, the intervals (�1, v1), [v1, v5), [v5, v6)
and [v6,1) are labeled using 1-byte labels 0x0, 0x1, 0x2 and 0x3, respectively.
Similarly, the address-space for feature f2 can be labeled as 0x4, 0x5, 0x6; f3 as
0x7, 0x8; and f4 as 0x9, 0xa. A later section on Automata Folding will clarify
the need for disjoint feature address spaces. Care is taken to avoid labeling
an interval with the delimiter symbol 0xff. Notice that, given a feature value,
its corresponding label can be computed in logarithmic time of the number of
intervals associated with that feature. This binary-search look up operation is
to be implemented on the on-board FPGA in the future.

Feature 2 Address SpaceFeature 1 Address Space

f1 < v1 v1 <= f1 < v5 v5 <= f1 < v6 f1 >= v6 f2 < v4 v4 <= f2 < v7 f2 >= v7

0x0 0x1 0x2 0x3 0x4 0x5 0x6

Feature 3 Address Space

f3 < v3 f3 >= v3

0x7 0x8

Feature 4 Address Space

f4 < v2 f4 >= v2

0x9 0xa

Fig. 5: Feature Address Space

Finally, these chains are ready to be converted into automata that can be
executed concurrently on the AP. The resultant automata are shown in Fig.6.
The STEs in the automata are depicted using circles with labels placed inside.
A Start STE is demarcated using a solid triangle on the top-left corner. The 1
sign inside the triangle marks the STE as an all-input-start STE. The reporting
STEs are outlined using double lines. STEs representing satisfy-on-any-value
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nodes are labeled to match any label for that feature. For example, for feature
f2, the STEs are labeled as 0x4-0x6, f3 as 0x7-0x8 and f4 as 0x7-0x8.
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Fig. 6: Chains represented as automata executable on the Automata Processor

For any input sample, the processing of all automata begins at the top Start
STE. Because this STE is an all-input-start STE which is active on every clock
cycle, it processes the end-delimiter 0xff, shown as #, at the end of the label
vector of the previous input sample and activates the second STE to check the
value of feature f1 in the next cycle. If the check is successful, the next STE
is activated to check the value of feature f2, and so on. If the checks for all
feature values are successful, then a report is generated by the reporting STE
on encountering the delimiter at the end of the label vector.

The report contains the id of the reporting STE, which has an associated
classification value. The report also contains the o↵set in the data flow where
the report was generated which is used to determine the input sample associated
with the classification. A simple majority of the classifications from all of the
trees for an input sample is then declared as its final classification. These simple
post-processing steps are scheduled to be migrated to the on-board FPGA.

3.5 Optimizing Automata for higher parallelism

The use of one STE per feature per automaton leads to significant resource
requirements, even for moderately sized Random Forests. By realizing that the
symbol space of an STE is typically much larger than the number of intervals as-
sociated with a feature, we used a compression technique calledAutomataFolding

to e↵ectively combine features in a single STE. We did this by folding a chain
into a loop.
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Fig 7 shows the folded automata for our running example. The features in
a typical Random Forest model have di↵ering numbers of intervals associated
with them. In general, the more relevant a feature is to determining the bound-
ary between classifications, the more split nodes for that feature will exist in
the forest, and the more intervals assigned to that feature. Assuming that the
maximum number of thresholds used by a single feature is less than 255, it is
possible to represent multiple features with a single STE!

Automata Folding works by solving the following optimization problem:

minn : 8i 2 [1, n],

bm/ncX

j=0

fnj+i  C (1)

Where n is the number of STEs used in the automaton, i is the index of the
current STE, fnj+i is the number of intervals assigned to feature nj+ i, m is the
total number of features, and C is the capacity of the STE, 255. This optimization
function returns the minimum number of STEs required to represent m features,
where the STEs are chained to form a loop. In a simple case where two STEs
are required, STE1 checks feature 1. STE2 then checks feature 2. STE1 checks
feature 3, STE2 checks feature 4, and so forth.

Since the total number of labels for all of the features is less than 2551, we
need a single STE to check the labels of all of the features. This STE checks
the first symbol of the label vector against the possible labels for feature f1.
If a match occurs, it activates itself to check the second symbol in the label
vector against the possible labels for f2 and so on. This is possible because the
labels for di↵erent features are processed on separate clock cycles and the labels
assigned to each feature are disjoint.

∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

Fig. 7: Combining features into STEs.

1 the symbol space of an STE minus one symbol reserved for the delimiter
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4 Experimental Analysis

We implemented our automata-based Random Forest design on the AP as a proof
of concept. We then compared our AP implementation against a state of the art
Random Forest CPU implementation using two di↵erent models trained with
di↵ering data sets. The first data set, the MNIST handwritten digits database
[6], contains labeled images of handwritten digits, where the classification for
each image reflects the representative digit’s value from 0 to 9. Each sample
is represented by a 28x28 pixel 2-d array representing the image after being
centered and scaled. Although we were able to successfully run our design on
the AP hardware, because this is a prototype version, we were not able achieve
the max performance expected from the hardware.

The second data set, the Sanders Twitter Sentiment Corpus [14], contains
one large data set of Twitter messages with their associated sentiments. Three
sentiments were considered in the set. The positive, neutral and negative clas-
sifications indicate the author’s sentiment, while the irrelevant classification is
reserved for Tweets in a di↵erent language, or those that have no meaning.

These two application data sets were used to train diverse Random Forest
models using version 0.16.1 of the Scikit-Learn [9] machine learning framework,
with di↵ering tree counts, tree depths, and feature counts. We then took the
generated models and converted them into our pipelined automata design to run
on the AP. We chose to naively represent the handwritten digits with a 784-wide
feature vector, one value per pixel. For the Tweet data, we used TF-IDF (Term
Frequency, Inverse Document Frequency) vectorization with an experimentally-
determined 1600 feature size.

The Random Forest models from both application were converted into space-
e�cient chain models that we loaded onto the AP. Knowing the number of STEs
per chain, the feature vector size, and the number of trees in the ensemble,
we could calculate the throughput of our models on future releases of the AP
development board. There are 16 rows of STEs per block, 192 blocks per AP
chip, 8 chips per rank, and 4 ranks per AP development board. The input symbol
rate is 133 MegaSymbols per second. If the Random Forest model fits on a single
rank, we can use inter-rank multiplexing to increase our throughput to 4x that.
If the model is small enough to fit into two of chips in a rank, we can use rank
logic core multiplexing and achieve an addition 4x speedup, with an e↵ective
throughput of 2.128 GigaSymbols per second!

The CPU throughput values were experimentally determined by using Scikit-
Learn’s Random Forest implementation (Scikit-Learn version 0.16.1) using the
same Random Forest models we discussed above.

While benchmarking CPU performance using multi-cores, we found that the
performance varies depending on the hardware configuration and the algorithm’s
parallel e�ciency. In our analysis, Scikit-Learns performance did not scale well
with core count. For example, with 16 cores, a speedup of no more than 3x was
observed. Therefore, in order to provide a more reliable and stable comparison,
we chose to use a single thread of the Intel Xeon CPU E5-2630 v3 @ 2.40 GHz
processor for benchmarking CPU performance.
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4.1 Results and Discussion

Random Forests Model Parameters and Accuracy Before comparing the
AP and CPU implementations for the Twitter data set, we did a parameter
exploration on the number of trees and number of leaves per tree and their
impact on the sentiment model’s accuracy. The goal was to find the elbow in
the graph that maximized accuracy, while reducing the number of trees in the
ensemble, and the number of leaves, which relates to the number of split nodes
per feature. The experimental results on Twitter data show that the classification
accuracy increases as the leaves per tree increases. We found that the maximum
accuracy for our model saturated at 72% with 800 leaves per tree. We also found
the classification accuracy to increase from 5 to 40 trees, but no more significant
increase of accuracy with more than 40 trees.

We performed the same parameter space exploration for the MNIST data
set models. Our results show that increasing the number of leaves per tree in
the ensemble has a similar e↵ect as with the Twitter data, and we found our
elbow with around 1000 leaf nodes per tree. Unlike the other data set, Twitter
data models had a significant increase in accuracy when increasing the number
of trees in the ensemble from 5 to 160 trees. Our highest experimental accuracy
was calculated to be 97.1% and was determined with 160 trees and 4500 leaves
per tree (Figure 8) .

Throughput vs. Accuracy Generally, there is a trade-o↵ between through-
put and model accuracy for classification models. Random Forest models with
fewer and shallower trees can achieve higher throughput, but at lower accuracy.
Adding additional trees and training them to be deeper increases the accuracy
to the model’s saturation; adding any additional resources beyond this point just
reduces the e�ciency of the model and can yield over-fitting. The goal of model
optimization is to find the trade-o↵ between these parameters that maximizes
throughput, while still achieving the required level of accuracy. This is often
accomplished with design space exploration.

AP vs. CPU Figure 9 and Figure 10 show that throughput is significantly
a↵ected by the number of trees in the Random Forest ensemble. As we discussed
above, we saturate our accuracy with 40 decision trees, and therefore adding
any more is unnecessary. With the same number of trees per model, the AP
consistently performs with higher throughput than a single-threaded CPU on
Twitter data. Figure 10 shows that, on MNIST data, the AP outperforms the
CPU in most of the cases. With the number of trees greater than 20, and a large
leaf number per tree (over 4000 leaves per tree), the throughput matches.

The AP architecture allows up to 16x multiplexing if the Random Forest
model fits into two chips. As the model size increases, this multiplexing factor is
reduced by factors of two (Table 1, Table 2) . The steps in the graph indicate the
model dimensions where the hardware cannot sustain the multiplexing factor.
Future generations of the hardware will be able to fit larger models, therefore
flattening the throughput curve.
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4. EXPERIMENTAL ANALYSIS

Fig. 8: MNIST Handwritten Digits Random Forests Throughput on AP vs. Ac-
curacy

Table 1: Key data points of Twitter Results

Trees Leaves Accuracy

AP Throughput

(k Pred/Sec)

CPU Throughput

(k Pred/Sec)

AP Speed Up

5 40 66.9% 14400 154 93
10 40 67.5% 8130 129 63
20 40 67.7% 5360 93.4 57
40 40 68.0% 3750 58.5 64
5 600 70.4% 2010 118 17

10 600 71.4% 1530 86.4 18
20 700 71.7% 385 51.5 7
40 700 71.9% 194 32.4 6

For the Twitter models, the Random Forest implementations on the AP
achieve from 2 times to 93 times the prediction throughput of a single CPU. For
MNIST, the AP can achieve up to 63 times speed up over the CPU. The speed
ups achievable using the AP are more significant with models that have fewer
leaves per trees and fewer trees per forest.

The AP is a massively parallel device. With smaller Random Forests models,
especially for models with lower numbers of leaves per tree, the AP’s advantage
of massive parallelism can be greatly taken as it can process hundreds of trees
simultaneously. For the smaller models, we were able to achieve results with up to
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4. EXPERIMENTAL ANALYSIS

Fig. 9: Twitter Sentiment Random Forests Throughput on AP

Table 2: Key data points of MNIST Results

Trees Leaves Accuracy

AP Throughput

(k Pred/Sec)

CPU Throughput

(k Pred/Sec)

AP Speed Up

5 50 82.2% 13200 337 39
10 50 86.1% 5980 242 25
20 50 87.8% 4170 150 28
40 50 88.7% 3350 86.5 39
80 50 89.2% 2940 46.4 63

160 50 89.6% 1350 25.0 54
10 500 93.3% 2480 205 12
20 500 94.3% 1160 125 9
40 750 95.2% 420 68.0 6
80 1250 96.0% 111 34.3 3
20 4000 96.1% 129 98.9 1.3
40 4750 96.7% 55.0 51.5 1.1
80 5000 96.9% 25.0 26.6 0.9

160 5000 97.1% 12.2 13.5 0.9

The final publication is available at Springer via
http://dx.doi.org/10.1007/978-3-319-41321-1 11



5. FUTURE WORK

Fig. 10: MNIST Handwritten Digits Random Forests Throughput on AP

93 times speedup against a single CPU thread. The AP’s advantage decreases as
the number of leaves per tree increase. With significantly decreased parallelism,
a higher frequency CPU can reach similar performance as the AP.

With these properties in mind, it’s important to focus on compacting ensem-
ble models on the AP to maximize performance. Future applications of Random
Forest-like models on the AP should focus on models that require smaller trees,
but with large number of trees. As the AP scales with process nodes, we expect
the hardware to achieve better scaling.

5 Future Work

5.1 Further Optimizations

Our first generation design addresses many important aspects of computing ma-
chine learning applications as automata on specialized hardware. Further op-
timizations include improving the performance by means of modifying the en-
semble models and the automata algorithm. For example, reducing the size of
the ensemble algorithms by using Compact Random Forest (CRF) [10] tech-
niques would result in smaller trees utilizing fewer feature values, but achieving
similar accuracies. Whereas Essen et al. constrain their CRFs to 6 levels to fit
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6. CONCLUSIONS

FPGAs, the AP allows us additional flexibility to choose larger tree depths and
tree counts that may provide higher accuracy.

There are also potential algorithmic improvements that can be made. A
denser binning technique could reduce the number of STEs used per tree, signif-
icantly increasing the size of forests that could be supported by one AP board.
By potentially further combining feature address spaces, fewer symbols would
need to be streamed per feature, improving the throughput of the system.

5.2 Accelerating Other Models

The techniques that we presented in this paper are not limited to Random
Forests. Any decision-tree based ensemble technique can be ported to our au-
tomata design with little e↵ort by a similar transformation. Some examples
of models that could be accelerated include Boosted Trees [18] and Random
Ferns [8]. These models are fundamentally similar in their tree traversal tech-
nique, but with emphasis on reducing the depth of trees or applying specialized
learning techniques.

5.3 Automata on Other Hardware

Our automata design e↵ectively reduces the run time complexity of the Random
Forest algorithm by splitting the algorithm into floating point labeling and model
computation. Splitting the critical path allows for the algorithm to be pipelined,
accelerating the model.

This design could also work well on other hardware platforms including
CPUs, GPGPUs and FPGAs. By considerably reducing the size of the Ran-
dom Forest model, we could increase the cache utilization on a CPU or GPU.
The thresholding operation could be computed in parallel on a subset of the
available cores, while the model is executed on the remaining cores. Additional
future work would include measuring the power-e�ciency of this algorithm, and
potentially using automata computation on low-power embedded applications.
This work is left open for future research.

6 Conclusions

In this paper we present a technique for converting the Random Forest algorithm
from a tree-traversal algorithm to a series of pattern matching automata in a
pipelined system. This novel algorithm has e↵ectively introduced a new design
space for machine learning researchers. Whereby past research has focused on
creating shallower decision trees to reduce the latency for tree traversal, our
algorithm runs in linear time with the number of features, regardless of the depth
of the decision trees! This potentially opens the door for future research into
deeper trees on fewer features. We implemented our algorithm on Micron’s AP
and evaluated the runtime performance of our Random Forest implementation
on AP. The results not only showed a promising avenue of applying tree-based
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6. CONCLUSIONS

ensemble classification methods on AP, but also provide information on the
relationship between model settings and the runtime performance on the AP,
which can be used to guide future research and development of more e�cient
classification models.
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