University gVIRGINIA

Incentivized Communication for Federated Bandits

Zhepei Weił, Chuanhao Liit, Haifeng Xut, Hongning Wangi゙

TUniversity of Virginia, \#University of Chicago

Motivation

Typical Federated Bandits

For client $i=1,2, \ldots, N$
Client i takes action x_{t} from action set \mathcal{A}_{t} and
observes reward $y_{t}=f\left(x_{t}\right)+\eta_{t}$

- Communication between server and clients

Focus: efficient communication protocol design that trades off communication cost and regret.

$$
R_{T}=\sum_{t=1}^{N T} r_{t}, \text { where } r_{t}=\max _{x \in \mathcal{A}_{t}} f(x)-f\left(x_{t}\right)
$$

Unveiling the Achilles' Heel: existing protocols essentially require/assume full client engagement whenever communication is triggered, however, what if clients are reluctant to share data and opt-out?

Problem Formulation

Incentivized Federated Bandits

Incentivized Problem Setting: clients are self-interested and will not share their data with the server unless the benefits outweigh any potential loss of sharing, e.g., privacy breaches. This is characterized by

- Client decides whether to share data
- Server can motivate clients by providing incentives
Research Question: how to design an incentivized communication protocol that balances multiple objectives, i.e., achieving nearly-optimal regret, with reasonable communication and incentive costs?

Payment-Free Design: Data as Incentive

Regret Bound

$$
r_{t} \leq 2 \alpha_{i, t-t-1} \sqrt{\mathbf{x}_{t}^{\top} \tilde{V}_{t-1}^{-1} \mathbf{x}_{t}} \cdot \sqrt{\frac{\operatorname{det}\left(\tilde{t}_{t-1}\right)}{\operatorname{det}\left(V_{i, t}, t-1\right)}}=O\left(\sqrt{d \log \frac{T}{\delta}}\right) \cdot\left\|\mathbf{x}_{t}\right\|_{\tilde{t}_{t-1}^{-1}} \cdot \sqrt{\frac{\operatorname{det}\left(\tilde{V}_{t-1}\right)}{\operatorname{det}\left(V_{i_{t}, t-1}\right)}}
$$

However, as this payment-free data exchange cannot force participation, it can not guarantee regret.
We proved that, to achieve near-optimal regret, it is required that the shared data at each communication round is at least above a threshold compared to all available data in the system.

Regret not Guaranteed:
Regret Guaranteed:

Payment-Efficient Design: Money as Additional Incentive

Theoretical \& Empirical Results

We prove that, the proposed payment-efficient solution achieves near-optimal regret $\mathrm{R}_{T}=O(d \sqrt{T} \log T)$, with communication cost $C_{T}=O\left(d^{3} N^{2} \log T\right)$ and incentive $\operatorname{cost} M_{T}=O\left(\max D_{p} \times P \times N-\sum_{i=1}^{N} P_{i} \times\left(\frac{\operatorname{det} \lambda I}{\operatorname{det} V_{T}}\right)^{1 / P_{i}}\right)$, where P_{i} is the number of epochs client i get paid, P is the number of epochs

Future Work

New Challenge: some adversarial clients may misreport their data sharing costs, and take advantage of the server to increase their utility.

Research Question: how can we incentivize clients in a way that encourages them to truthfully report their costs in their best interest?

Acknowledgement

This work is supported by National Science Foundation (NSF) (No. IIS-2213700).

