
CS 3250: Software Testing (Fall 2025)
Activity: Control Flow Graph (CFG) – IfYouAreHappy
(no submission)

Purpose: Create graph representation for source code; apply structural graph coverage to source
code; get ready for assignment 4; prepare for quiz 3 and the final exam
You may make a copy of a worksheet and complete this activity, or type your answers in any text editor.
You may work alone or with at most two other students in this course.

For this activity, we will create graph models representing the following Java methods. We will stop
periodically, and solve the problem one step at a time with discussion between steps.
Alternatively, you may transform the "If You're Happy and You Know It" song
[https://www.youtube.com/watch?v=Im5i7EqZE1A] into an IfYouAreHappy() method using any
program control structures and then generate a Control Flow Graph (CFG) representing the method.

Part 1: Sequential If-statements
Consider the following Java method

public static String IfYouAreHappy_v1(boolean happy, boolean know)
{
 String result = "";

 if (happy && know)
 result += "Clap-Your-Hands ";

 if (happy && know)
 result += "Stomp-Your-Feet ";

 if (happy && know)
 result += "Shout-Hooray ";
​

 return result;
}

Draw a Control Flow Graph (CFG) for the IfYouAreHappy_v1() method. Annotate all information (i.e.,
source code)

https://docs.google.com/document/d/1bC_9UA7sj-SUVPsibcFLi4mcYVDY9UUJkmMYHhIQNAU/edit?usp=sharing
https://www.youtube.com/watch?v=Im5i7EqZE1A

Part 2: For-loop and If-statement, with fixed iterations
Consider the following Java method

public static String IfYouAreHappy_v2(boolean happy, boolean know)
{
 List<String> actions = new ArrayList<>(Arrays.asList("Clap-Your-Hands",

 "Stomp-Your-Feet",
 "Shout-Hooray"));

 String result = "";

 for (int i=0; i<actions.size(); i++)
 {
 if (happy && know)
 result += actions.get(i) + " ";
 }

 return result;
}

Draw a Control Flow Graph (CFG) for the IfYouAreHappy_v2() method. Annotate all information (i.e.,
source code)

Part 3: For-loop and If-statement
Consider the following Java method

public static String IfYouAreHappy_v3(boolean happy, boolean know,
List<String> actions)

{
 String result = "";

 for (int i=0; i<actions.size(); i++)
 {
 if (happy && know)
 result += actions.get(i) + " ";
 }

 return result;
}

Draw a Control Flow Graph (CFG) for the IfYouAreHappy_v3() method. Annotate all information (i.e.,
source code)

Part 4: Reflect on the graphs

Consider the graphs from parts 1, 2, and 3. Reflect on how the graphs are generated for the different
program structures and how the graphs represent the execution flows of the programs.

1.​ How do you decide on the code associated with nodes?

2.​ How do you decide on the code associated with edges?

3.​ How do you decide on the initial nodes and the final nodes?

4.​ How do you avoid an infinite loop?

5.​ [Thought question] What might the test paths look like?

[Optional] Additional practice (do at least one of your graphs) – (Part 3: V3)
1.​ Apply Node Coverage (NC) to design tests

Test requirements Test paths Test cases (input values and expected output)

{1, 2, 3, 4, 5, 6}

[1,2,3,4,5,2,6] Input: happy=true, know=true, actions[“Clap”]
Expected output: “Clap ”

2.​ Apply Edge Coverage (EC) to design tests

Test requirements Test paths Test cases (input values and expected output)

{ (1,2),
(2,3), (2,6),
(3,4), (3,5),
(4,5),
(5,2) }

[1,2,3,4,5,2,6]

[1,2,3,5,2,6]

Input: happy=true, know=true, actions[“Clap”]
Expected output: “Clap ”

Input: happy=true, know=false, actions[“Clap”]
Expected output: “”

3.​ Apply Edge-Pair Coverage (EPC) to design tests

Test requirements Test paths Test cases (input values and expected output)

{ (1,2,3), (1,2,6),
(2,3,4), (2,3,5),
(3,4,5), (3,5,2),
(4,5,2),
(5,2,3), (5,2,6) }

[1,2,3,4,5,2,6]

[1,2,3,5,2,3,5,2,6]

[1,2,6]

Input: happy=true, know=true, actions[“Clap”]
Expected output: “Clap ”

Input: happy=true, know=false, actions[“Clap”, “Stomp”]
Expected output: “”

Input: happy=true, know=false, actions[]
Expected output: “”

4.​ Apply Prime Path Coverage (PPC) to design tests

Test requirements Test paths Test cases (input values and expected output)

{ [1,2,3,4,5], ​
[2,3,4,5,2],
[3,4,5,2,3],
[3,4,5,2,6],
[4,5,2,3,4],
[5,2,3,4,5],
[1,2,3,5],
[2,3,5,2],
[3,5,2,3],
[3,5,2,6],
[5,2,3,5],
[1,2,6] }

[1,2,3,4,5,2,3,5,2,6]

[1,2,3,5,2,3,4,5,2,6]

[1,2,3,4,5,2,3,4,5,2,6]

[1,2,3,5,2,3,5,2,6]

[1,2,6]

infeasible

infeasible

Input: happy=true, know=true, actions[“Clap”, “Stomp”]
Expected output: “Clap Stomp”

Input: happy=true, know=false, actions[“Clap”, “Stomp”]
Expected output: “”

Input: happy=true, know=false, actions[]
Expected output: “”

Copyright © 2025 Upsorn Praphamontripong

Released under the CC-BY-NC-SA 4.0 license.
Last updated 2025-10-03 10:12

http://creativecommons.org/licenses/by-nc-sa/4.0/

	Activity: Control Flow Graph (CFG) – IfYouAreHappy
	Part 1: Sequential If-statements
	Part 2: For-loop and If-statement, with fixed iterations
	Part 3: For-loop and If-statement
	Part 4: Reflect on the graphs
	[Optional] Additional practice (do at least one of your graphs) – (Part 3: V3)

