CS 3250: Software Testing (Fall 2025)

Activity: Graph coverage for design element
(no submission)

Purpose: Understand and apply graph coverage to test various parts of the software design; get ready
for assignment 4; prepare for the final exam

You may make a copy of a worksheet and complete this activity, or type your answers in any text editor.
You may work alone or with at most two other students in this course.

Consider the trashgraph class

// Modified from
// https://www.albany.edu/faculty/offutt/softwaretest/java/TrashAndTakeOut.java

1. public class trashgraph
2 {
3 public static void trash(int x)
4 {
5. int m, n;
6 m = 0;
7 if (x > 0)
8. m = 4;
9. if (x > 5)
10. n =23 * m;
11. else
12. n =4 * m;
13. int o = takeOut(m, n);
14. System.out.println("o is: " + 0);
15. }
16.
17. public static int takeOut (int a, int Db)
18. {
19. int d, e;
20. d = 42 * a;
21. if (a > 0)
22. e =2 * b + d;
23. else
24. e = b + d;
25. return(e);
26. }

https://docs.google.com/document/d/1bC_9UA7sj-SUVPsibcFLi4mcYVDY9UUJkmMYHhIQNAU/edit?usp=sharing

// Modified from https://cs.gmu.edu/~offutt/softwaretest/java/TrashAndTakeOut. java

1 public class trashgraph

2 {

3 public static void trash(int x) (" callsite
4. {

5 int m, n;) lastdef
6 QO firstuse
7 if (x > @)

8.

9. if (x > 5)

10.

11. else

12,

13. (int o = takeOut(m, nJ)3;)

14. System.out.println("o is: " +(:);

15. }

16.

17. public static int takeOut(int a, int b)

18. {

19. int d, e;

20. d = 42 x(a)

21. if (a > 0)

22. e = 2 #(b)+ d;

23. else

24, (e =(b)+ d;

25. return(e);

26. } note: since we are considering coupling DU-pairs,
27.) def and use of d are excluded

Locate a call site between trash () and takeOut () methods. You may circle directly in the source
code.

Line 13, trash() — takeOut()

Write down all variables that are shared or passed between trash () and takeOut () methods.

m and n in trash() — a and b in takeOut()
e in takeOut() — o is trash()

Find all coupling last-defs and first-uses. Circle directly in the source code. Write down whether that
circle is for last-def or first-use.

Last defs: First uses:
m, lines 6 and 8 a, line 20
n, lines 10 and 12 b, lines 22 and 24

e, lines 22 and 24 o, line 14

4. Draw a graph representation of the trash () and takeOut () method. Be sure to include coupling
between the caller and the callee. (You may draw the graph by hand, take a screenshot of your
graph, and embed it in your write-up)

Note for def(1): Since n is created but not yet initialized, we omit n here.
trash()

- def(1)={x,m}
m, n, X
takeOut()

x>0 - 1,3)=
“erl @y x=o | el
/) a, =
AN d=42*a
use(3,4)= use(3,5)={x} use(8,9)= {a} oUse(8.10)~(a)
X>5 7 Ix<=5 =
/ \/
n=3*"m =4*m e=2"b+d }e-b+d
use(4)={m} @ e use(5)={m} | use(9)={b, d} use(10)={b, i}
def(4)={n} def(5)={n} def(9)={e} def(10)={e}
= takeOut(return(e)
use(6)= {m n} use(11)={e}
def(6)={o}

System.out.printin(o)
use(7)={o}

5. Find all the coupling DU-pairs.

Write them down as pairs of triplets. Each triplet is a method name, variable name, and node. The
pair has the last-def on the left and a first-use on the right. For example:

(methodl (), varl, nodel) — (method2(), var2, nodeZ2)

where last-def of a variable varl is in method methodl at node nodel and first-use of a variable
varl appears as a variable var2 in method method2 at node node?2.

Note: in general, if a graph is unavailable or has not been created, each triplet can be written as
(methodl (), varl, 1linel) — (method2(), varZ2, linel2)

where last-def of a variable var1 is in method methodi at line number 1ine1 and first-use of a
variable varl appears as a variable var2 in method method2 at line number 1ine?2.

If we write them as (methodl (), varl, linel) — (method2(), var2, lineZ2)

(trash(), m, 6) — (takeOut(), a, 20)

trash(), m, 8) — (takeOut(), a, 20)

trash(), n, 10) — (takeOut(), b, 22)

trash(), n, 10) — (takeOut(), b, 24)

trash(), n, 12) — (takeOut(), b, 22)
(), b, 24)
(), 0, 14)
(), 0, 14)

_—~ = = =

trash(), n, 12) — (takeOut(),
takeOut(), e, 22) — (trash(),
(takeOut(), e, 24) — (trash(),

If we write them as (methodi1 (), varl, nodel) — (method2(), var2, node?l)
(trash(), m, 1) — (takeOut(), a, 8)

(trash(), m, 2) — (takeOut(), a, 8)

(trash(), n, 4) — (takeOut(), b, 9)

(trash(), n, 4) — (takeOut(), b, 10)

(trash(), n, 5) — (takeOut(), b, 9)
()
(
(

N>R WN =
P

()

()
trash(), n, 5) — (takeOut(), b, 10)
takeOut(), e, 9) — (trash(), o, 7)
takeOut(), e, 10) — (trash(), o, 7)

N>R LN~

6. List test requirements (i.e., Coupling DU-paths for each variable) that satisfy All-Coupling-Defs
coverage

Assume we consider (methodl (), varl, nodel) — (method2(), var2, nodeZ2)

For m, need coupling du-pair 1, 2

For n, need (either 3 or 4) and (either 5 or 6); suppose we choose 3 and 5

Fore, need 7, 8

Thus, du-pairs = 1,2,3,5,7,8

The coupling du-paths are used as test requirements; list du-paths for each du-pair.

du-pairs du-paths
1 (trash(), m, 1) — (takeOut(), a, 8) [1,3,4,6,8], (infeasible)
[1,3,5,6,8] suppose we pick [1,3,5,6,8]
2 (trash(), m, 2) — (takeOut(), a, 8) [2,3,4,6,8],
[2,3,5,6,8] suppose we pick [2,3,4,6,8]
3 (trash(), n, 4) — (takeOut(), b, 9) [4,6,8,9]
5 (trash(), n, 5) — (takeOut(), b, 9) [5,6,8,9]
7 (takeOut(), e, 9) — (trash(), o, 7) [9,11,6,7]
8 (takeOut(), e, 10) — (trash(), o, 7) [10,11,6,7]

TR ={[1,3,5,6,8], [2,3,4,6,8], [4,6,8,9], [5,6,8,9], [9,11,6,7], [10,11,6,7] }
Assume we don'’t fix the infeasible DU-paths.

Note: def-clear paths

7. List test requirements (i.e., Coupling DU-paths for each variable) that satisfy All-Coupling-Uses
coverage

Assume we consider (methodl (), varl, nodel) — (method2(), var2, nodeZ2)

For m, need coupling du-pair 1, 2

For n, need 3,4, 5,6

Fore, need 7, 8

Thus, du-pairs = 1,2,3,4,5,6,7,8

The coupling du-paths are used as test requirements; list du-paths for each du-pair.

du-pairs du-paths
1 (trash(), m, 1) — (takeOut(), a, 8) [1,3,4,6,8], (infeasible)
[1,3,5,6,8] suppose we pick [1,3,5,6,8]
2 (trash(), m, 2) — (takeOut(), a, 8) [2,3,4,6,8],
[2,3,5,6,8] suppose we pick [2,3,4,6,8]
3 (trash(), n, 4) — (takeOut(), b, 9) [4,6,8,9]
4 (trash(), n, 4) — (takeOut(), b, 10) [4,6,8,10] (infeasible)
5 (trash(), n, 5) — (takeOut(), b, 9) [5,6,8,9]
6 (trash(), n, 5) — (takeOut(), b, 10) [5,6,8,10]
7 (takeOut(), e, 9) — (trash(), o, 7) [9,11,6,7]
8 (takeOut(), e, 10) — (trash(), o, 7) [10,11,6,7]

TR={[1,3,5,6,8], [2,3,4,6,8], [4,6,8,9],14:6:8:+61, [5,6,8,9], [5,6,8,10], [9,11,6,7], [10,11,6,7] }
Assume we don'’t fix the infeasible DU-paths.
[4,6,8,10] is infeasible. Thus the coverage level will never reach 100%.

Note: def-clear paths

8. List test requirements (i.e., Coupling DU-paths for each variable) that satisfy All-Coupling-DU-Paths

coverage

Assume we consider (methodl (),

For m, need coupling du-pair 1, 2

For n, need 3,4, 5,6
Fore,need 7, 8
Thus, du-pairs = 1,2,3,4,5,6,7,8

varl, nodel) — (method2(), var2, nodeZ2)

The coupling du-paths are used as test requirements; list du-paths for each du-pair.

du-pairs

1 (trash(), m, 1) — (takeOut(), a, 8)

2 (trash(), m, 2) — (takeOut(), a, 8)

3 (trash(), n, 4) — (takeOut(), b, 9)
4 (trash(), n, 4) — (takeOut(), b, 10)
5 (trash(), n, 5) — (takeOut(), b, 9)
6 (trash(), n, 5) — (takeOut(), b, 10)
7 (takeOut(), e, 9) — (trash(), o, 7)

8 (takeOut(), e, 10) — (trash(), o, 7)

du-paths
[1,3,4,6,8], (infeasible)
[1,3,5,6,8],
[1,2,3,5,6,8], (not def-clear, m def at node 1 is
redefined at node 2)
[1,2,3,4,6,8] (notdef-clear, m def at node 1 is
redefined at node 2)

[273’416’8]1
[273’516’8]

[4,6,8,9]
[4,6,8,10] (infeasible)
[5,6,8,9]
[5,6,8,10]
[9,11,6,7]

[10,11,6,7]

TR = { F53:4:6:81, [1,3,5,6,8], 1-2:3:6:6:8}, 1:2:3:4-6:81, [2,3,4,6,8], [2,3,5,6,8], [4,6,8,9]14-6-8:461,

5,6,8,9], [5,6,8,10], [9,11,6,7], [10,11,6,7] }

Assume we don'’t fix the infeasible DU-paths.

[1,3,4,6,8] and [4,6,8,10] are infeasible. Thus the coverage level will never reach 100%.

Note: def-clear paths

9. Provide test inputs that satisfy All-Coupling-Uses (note that trash() only has one input)

[refer to question 7]

du-pairs du-paths
1 (trash(), m, 1) — (takeOut(), a, 8) [1,3,4,6,8], (infeasible)
[1,3,5,6,8] suppose we pick [1,3,5,6,8]
2 (trash(), m, 2) — (takeOut(), a, 8) [2,3,4,6,8],
[2,3,5,6,8] suppose we pick [2,3,4,6,8]
3 (trash(), n, 4) — (takeOut(), b, 9) [4,6,8,9]
4 (trash(), n, 4) — (takeOut(), b, 10) [4,6,8,10] (infeasible)
5 (trash(), n, 5) — (takeOut(), b, 9) [5,6,8,9]
6 (trash(), n, 5) — (takeOut(), b, 10) [5,6,8,10]
7 (takeOut(), e, 9) — (trash(), o, 7) [9,11,6,7]
8 (takeOut(), e, 10) — (trash(), o, 7) [10,11,6,7]

TR ={[1,3,5,6,8], [2,3,4,6,8], [4,6,8,9],44:6:8-464, [5,6,8,9], [5,6,8,10], [9,11,6,7], [10,11,6,7] }

The trash() method takes only one input, which is X.

X = 0 satisfies 1, 6, 8
X =1 satisfies 2, 5, 7
X = 6 satisfies 2, 3, 7

Cannot satisfy du-pair #4 (i.e., du-path [4,6,8,10]). This is because

To reach node 4, x must be > 5.

If trash has x > 5, (reach node 6) m =4, and n = 12.

Then (reach node 8) m becomes a in takeOut, which will have a > 0.
Since a > 0, node 10 will never be reached.

Thus, def of n at node 4 (line 10) does not reach use at node 19 (line 24).

[optional]
For more hands-on experience, take the test inputs you provided to satisfy All-Coupling-Uses, construct
a set of test cases, and then automate your test set (in JUnit) and run it against the trashgraph class.

Copyright © 2025 Upsorn Praphamontripong

Released under the £l CC-BY-NC-SA 4.0 license.
Last updated 2025-10-06 14:46

http://creativecommons.org/licenses/by-nc-sa/4.0/

	Activity: Graph coverage for design element

