
CS 3250: Software Testing (Fall 2025)
POTD 4: Graph for source code (Structural) – LCM
Due 9-Oct-2025, 11:00am EST

Purpose: Create graph representation for source code; apply structural graph coverage to source
code; get ready for assignment 4; prepare for quiz 3 and the final exam
You may make a copy of a worksheet and complete this activity, or type your answers in any text editor.
You may work alone or with at most two other students in this course.

Consider the following Java method
// Calculate_LCM takes two numbers and return LCM of the two numbers
// Examples: LCM of 12 and 15 = 2 * 2 * 3 * 5 = 60
// LCM of 12 and 18 = 2 * 2 * 3 * 3 = 36
// LCM of 15 and 18 = 2 * 3 * 3 * 5 = 90

public static int Calculate_LCM(int n1, int n2) {
 int result = 1;
 int i = 2;
 if (n1 > n2)
 result = n1;
 else
 result = n2;
​
 int temp = result;
 while (result % n1 != 0 || result % n2 != 0) {
 result = temp * i;
 i++;
 }
 return result;
}

1.​ Draw a Control Flow Graph for the Calculate_LCM method (You may draw the graph by hand,
take a picture of your graph, and embed it in your write-up)

https://docs.google.com/document/d/1bC_9UA7sj-SUVPsibcFLi4mcYVDY9UUJkmMYHhIQNAU/edit?usp=sharing

1.​ Apply Node Coverage (NC) to design tests

Test requirements Test paths Test cases (input values and
expected output)

{1, 2, 3, 4, 5, 6, 7} { [1,2,4,5,7], [1,3,4,5,6,5,7] } For test path [1,2,4,5,7]
Input: n1=4, n2=2
Expect: 4

For test path [1,3,4,5,6,5,7]
Input: n1=10, n2=15
Expect: 30

2.​ Apply Edge Coverage (EC) to design tests

Test requirements Test paths Test cases (input values and
expected output)

{ (1,2), (1,3), (2,4), (3,4), (4,5),
(5,6), (5,7), (6,5) }

{ [1,2,4,5,7], [1,3,4,5,6,5,7] } For test path [1,2,4,5,7]
Input: n1=4, n2=2
Expect: 4

For test path [1,3,4,5,6,5,7]
Input: n1=10, n2=15
Expect: 30

3.​ Apply Edge-Pair Coverage (EPC) to design tests

Test requirements Test paths Test cases (input values and
expected output)

{ (1,2,4), (1,3,4), (2,4,5),
(3,4,5), (4,5,6), (4,5,7),
(5,6,5), (6,5,6), (6,5,7) }

{ [1,2,4,5,7], [1,3,4,5,7],
[1,3,4,5,6,5,6,5,7] }

[1,2,4,5,7] directly tours (1,2,4),
(2,4,5), (4,5,7)

[1,3,4,5,7] directly tours (1,3,4),
(3,4,5), (4,5,7)

[1,3,4,5,6,5,6,5,7] directly tour
(1,3,4), (3,4,5), (4,5,6), (5,6,5),
(6,5,6), (6,5,7) -- also tours
(3,4,5), (4,5,6), (5,6,5), 6,5,7)
with sidetrip

For test path [1,2,4,5,7]
Input: n1=4, n2=2
Expect: 4

For test path [1,3,4,5,7]
Input: n1=2, n2=4
Expect: 4

For test path [1,3,4,5,6,5,6,5,7]
Input: n1=3, n2=14
Expect: 42

4.​ Derive prime paths

[1]
[2]
[3]
[4]
[5]
[6]
[7]!

[1,2]
[1,3]
[2,4]
[3,4]
[4,5]
[5,6]
[5,7]!
[6,5]

[1,2,4]
[1,3,4]
[2,4,5]
[3,4,5]
[4,5,6]!
[5,6,5]*
[6,5,6]*
[6,5,7]!

[1,2,4,5]
[1,3,4,5]
[2,4,5,6]!
[2,4,5,7]!
[3,4,5,6]!
[3,4,5,7]!

[1,2,4,5,6]!
[1,2,4,5,7]!
[1,3,4,5,6]!
[1,3,4,5,7]!

Expanding [4,5,6], [2,4,5,6], [3,4,5,6], [1,2,4,5,6] will result in internal loop (i.e., no longer simple paths)
Reminder: prime path is a simple path that is not a subpath of any other paths.

5.​ Apply Prime Path Coverage (PPC) to design tests

Test requirements Test paths Test cases (input values and
expected output)

{ (1,2,4,5,7), (1,2,4,5,6),
(1,3,4,5,6), (1,3,4,5,7),
(5,6,5), (6,5,6), (6,5,7) }

{ [1,2,4,5,7], [1,2,4,5,6,5,7]
[1,3,4,5,7], [1,3,4,5,6,5,6,5,7] }

[1,2,4,5,7] tours (1,2,4,5,7)
directly

[1,2,4,5,6,5,7] tours (1,2,4,5,6),
(5,6,5), (6,5,7) directly -- also
tours (1,2,4,5,7) with sidetrip

[1,3,4,5,7] tours (1,3,4,5,7)
directly

[1,3,4,5,6,5,6,5,7] tours
(1,3,4,5,6), (5,6,5), (6,5,6),
(6,5,7) directly -- also tours
(1,3,4,5,6), (5,6,5), (6,5,6) with
sidetrip

For test path [1,2,4,5,7]
Input: n1=4, n2=2
Expect: 4

For test path [1,2,4,5,6,5,7]
Input: n1=15, n2=10
Expect: 30

For test path [1,3,4,5,7]
Input: n1=2, n2=4
Expect: 4

For test path [1,3,4,5,6,5,6,5,7]
Input: n1=3, n2=14
Expect: 42

Grading rubric
[Total: 10 points]: Done (or provide evidence of your attempt, full or reasonable effort)

●​ (5 points) — Providing evidence of your attempt, minimal effort
(-2.5 points) for 24 hours late (submitted after 9-Oct-2025 11am EST, by 10-Oct-2025 11am EST)​
(-5 points) for 48 hours late (submitted after 10-Oct-2025 11am EST, by 11-Oct-2025 11am EST)

Submission

●​ Save your report as a .pdf file
●​ Upload your report (.pdf) to POTD 4 on Gradescope.
●​ Connect your partner to your group on Gradescope so that everyone receives credit
●​ Each team submits only one copy

Making your submission available to instructor and course staff is your responsibility; if we cannot access
or open your file, you will not get credit. Be sure to test access to your file before the due date.

Copyright © 2025 Upsorn Praphamontripong

Released under the CC-BY-NC-SA 4.0 license.
Last updated 2025-09-28 16:46

http://creativecommons.org/licenses/by-nc-sa/4.0/

	POTD 4: Graph for source code (Structural) – LCM
	Grading rubric
	Submission

