
CS 3250: Software Testing (Fall 2025)
POTD 5: Graph for source code (Data flow) – fizzBuzz – solution
Due 16-Oct-2025, 11:00am EST

Purpose: Create graph representation for source code; apply data flow graph coverage to source code;
get ready for assignment 4; prepare for quiz 3 and the final exam
You may make a copy of a worksheet and complete this activity, or type your answers in any text editor.
You may work alone or with another student in this course (max team size=2).

Consider the following Java method

 public static List<String> fizzBuzz(int n)
 {
 var answer = new ArrayList();
 for (int i = 1; i <= n; i++)
 {
 if (i % 2 == 0 && i % 3 == 0)
 answer.add("FizzBuzz");
 else if (i % 2 == 0)
 answer.add("Fizz");
 else if (i % 3 == 0)
 answer.add("Buzz");
 else
 answer.add(Integer.toString(i));
 }
 return answer;
 }

1.​ Draw a Control Flow Graph for the fizzBuzz method. Annotate all information (i.e., source code,

defs and uses).

https://docs.google.com/document/d/1bC_9UA7sj-SUVPsibcFLi4mcYVDY9UUJkmMYHhIQNAU/edit?usp=sharing

2.​ List all du-pairs, then derive du-paths (the du-paths then can be used as test requirements)

DU-pairs DU-paths

Variable n

[1, (2,3)]
[1, (2,4)]

[1, 2, 3]
[1, 2, 4]

Variable answer

[1, 3] empty answer

[1, 5]

[1, 7]

[1, 9]

[1, 10]

[5, 3]

[5, 5] use before def

[5, 7]

[5, 9]

[5, 10]

[7, 3]

[7, 5]

[7, 7] use before def

[7, 9]

[7, 10]

[9, 3]

[9, 5]

[9, 7]

[9, 9] use before def

[9, 10]

[10, 3]

[1, 2, 3]

[1, 2, 4, 5] semantically unreachable – i is initialized to 1. The
first iteration results in [1,2,4,6,8,10] because i=1.
Do not include [1,2,4,5,11,2,4,5] – no def-clear path.

[1, 2, 4, 6, 7] semantically unreachable – i is initialized to 1. The
first iteration results in [1,2,4,6,8,10] because i=1.

[1, 2, 4, 6, 8, 9] semantically unreachable – i is initialized to 1.
The first iteration results in [1,2,4,6,8,10] because i=1.

[1, 2, 4, 6, 8, 10]

[5, 11, 2, 3]

[5, 11, 2, 4, 5] semantically unreachable – due to i++

[5, 11, 2, 4, 6, 7] semantically unreachable – due to i++

[5, 11, 2, 4, 6, 8, 9] semantically unreachable – due to i++

[5, 11, 2, 4, 6, 8, 10]

[7, 11, 2, 3]

[7, 11, 2, 4, 5] semantically unreachable – due to i++

[7, 11, 2, 4, 6, 7] semantically unreachable – due to i++

[7, 11, 2, 4, 6, 8, 9]

[7, 11, 2, 4, 6, 8, 10]

[9, 11, 2, 3]

[9, 11, 2, 4, 5] semantically unreachable – due to i++

[9, 11, 2, 4, 6, 7]

[9, 11, 2, 4, 6, 8, 9] semantically unreachable – due to i++

[9, 11, 2, 4, 6, 8, 10] semantically unreachable – due to i++

[10, 11, 2, 3]

[10, 5]

[10, 7]

[10, 9]

[10, 10] use before def

[10, 11, 2, 4, 5]

[10, 11, 2, 4, 6, 7]

[10, 11, 2, 4, 6, 8, 9] semantically unreachable – due to i++

[10, 11, 2, 4, 6, 8, 10] semantically unreachable – due to i++

Variable i

[1, (2,3)]

[1, (2,4)]

[1, (4,5)]

[1, (4,6)]

[1, (6,7)]

[1, (6,8)]

[1, (8,9)]

[1, (8,10)]

[1, 10]

[1, 11]

[11, (2,3)]
[11, (2,4)]
[11, (4,5)]
[11, (4,6)]
[11, (6,7)]
[11, (6,8)]
[11, (8,9)]

[11, (8,10)]
[11, 10]

[11, 11] use before def

[1, 2, 3]

[1, 2, 4]

[1, 2, 4, 5] semantically unreachable – i is initialized to 1. The
first iteration results in [1,2,4,6,8,10] because i=1.
Do not include [1,2,3,5,11,2,4,5] – no def-clear path.

[1, 2, 4, 6]

[1, 2, 4, 6, 7] semantically unreachable – i is initialized to 1. The
first iteration results in [1,2,4,6,8,10] because i=1.

[1, 2, 4, 6, 8]

[1, 2, 4, 6, 8, 9] semantically unreachable – i is initialized to 1.
The first iteration results in [1,2,4,6,8,10] because i=1.

[1, 2, 4, 6, 8, 10]

[1, 2, 4, 6, 8, 10]

[1, 2, 4, 5, 11] semantically unreachable – i is initialized to 1.
[1, 2, 4, 6, 7, 11] semantically unreachable – i is initialized to 1.
[1, 2, 4, 6, 8, 9, 11] semantically unreachable – i is initialized to 1.
[1, 2, 4, 6, 8, 10, 11]

[11, 2, 3]
[11, 2, 4]
[11, 2, 4, 5]
[11, 2, 4, 6]
[11, 2, 4, 6, 7]
[11, 2, 4, 6, 8]
[11, 2, 4, 6, 8, 9]

[11, 2, 4, 6, 8, 10]
[11, 2, 4, 6, 8, 10]

[11, 2, 4, 5, 11]
[11, 2, 4, 6, 7, 11]
[11, 2, 4, 6, 8, 9, 11]
[11, 2, 4, 6, 8, 10, 11]

3.​ Apply All-Defs to design tests — some test paths tour multiple test requirements

variable Test
requirements

Test paths Test cases (input values and
expected output)

n [1,2,3] [1,2,3] input: n=0,
expected: answer=[]

answer [1,2,3]

[5,11,2,3]

[7,11,2,3]

[9,11,2,3]

[10,11,2,3]

[1,2,3]

[1,2, 4,6,8,10,11, 2,4,6,7,11,
2,4,6,8,9,11, 2,4,6,7,11,
2,4,6,8,10,11, 2,4,5,11, 2,3]

[1,2, 4,6,8,10,11, 2,4,6,7,11,
2,3]

[1,2, 4,6,8,10,11, 2,4,6,7,11,
2,4,6,8,9,11, 2,3]

[1,2, 4,6,8,10,11, 2,3]

input: n=0,
expected: answer=[]

input: n=6,
expected:
answer=[1,Fizz,Buzz,Fizz,5,FizzBuzz]

input: n=2,
expected: answer=[1,Fizz]

input: n=3,
expected: answer=[1,Fizz,Buzz]

input: n=1;
expected: answer=[1]

i [1,2,3]

[11, (2,3)]

[1,2,3]

[1,2, 4,6,8,10,11, 2,3]

input: n=0,
expected: answer=[]

input: n=1,
expected: answer=[1]

4.​ Apply All-Uses to design tests

variable Test requirements Test paths Test cases (input values and
expected output)

n [1,2,3]
For du [1, (2,3)]

[1,2,4]
For du [1, (2,4)]

[1,2,3]

[1,2, 4,6,8,10,11, 2,3]

input: n=0,
expected: answer=[]

input: n=1;
expected: answer=[1]

answer [1,2,3]
For du [1,3]

[1,2,4,6,8,10]
For du [1,10]

[5,11,2,3]
For du [5,3]

[5,11,2,4,6,8,10]
For du [5,10]

[1,2,3]

[1,2, 4,6,8,10,11, 2,3]

[1,2, 4,6,8,10,11, 2,4,6,7,11,
2,4,6,8,9,11, 2,4,6,7,11,
2,4,6,8,10,11, 2,4,5,11, 2,3]

[1,2, 4,6,8,10,11, 2,4,6,7,11,
2,4,6,8,9,11, 2,4,6,7,11,
2,4,6,8,10,11, 2,4,5,11,
2,4,6,8,10,11, 2,3]

input: n=0,
expected: answer=[]

input: n=1;
expected: answer=[1]

input: n=6,
expected:
answer=[1,Fizz,Buzz,Fizz,5,FizzBuzz]

input: n=7,
expected:
answer=[1,Fizz,Buzz,Fizz,5,FizzBuzz,7]

[7,11,2,3]
For du [7,3]

[7,11,2,4,6,8,9]
For du [7,9]

[7,11,2,4,6,8,10]
For du [7,10]

[9,11,2,3]
For du [9,3]

[9,11,2,4,6,7]
For du [9,7]

[10,11,2,3]
For du [10,3]

[10,11,2,4,5]
For du [10,5]

[10,11,2,4,6,7]
For du [10,7]

[1,2, 4,6,8,10,11, 2,4,6,7,11,
2,3]

[1,2, 4,6,8,10,11, 2,4,6,7,11,
2,4,6,8,9,11, 2,3]

[1,2, 4,6,8,10,11, 2,4,6,7,11,
2,4,6,8,9,11, 2,4,6,7,11,
2,4,6,8,10,11, 2,3]

[1,2, 4,6,8,10,11, 2,4,6,7,11,
2,4,6,8,9,11, 2,3]

[1,2, 4,6,8,10,11, 2,4,6,7,11,
2,4,6,8,9,11, 2,4,6,7,11,
2,4,6,8,10,11, 2,3]

[1,2, 4,6,8,10,11, 2,3]

[1,2, 4,6,8,10,11, 2,4,6,7,11,
2,4,6,8,9,11, 2,4,6,7,11,
2,4,6,8,10,11, 2,4,5,11, 2,3]

[1,2, 4,6,8,10,11, 2,4,6,7,11,
2,4,6,8,9,11, 2,4,6,7,11,
2,4,6,8,10,11, 2,4,5,11, 2,3]

input: n=2;
expected: answer=[1,Fizz]

input: n=3,
expected: answer=[1,Fizz,Buzz]

input: n=5,
expected: answer=[1,Fizz,Buzz,Fizz,5]

input: n=3,
expected: answer=[1,Fizz,Buzz]

input: n=5, (or n=4, we reuse test n=5)
expected: answer=[1,Fizz,Buzz,Fizz,5]

input: n=1;
expected: answer=[1]

input: n=6,
expected:
answer=[1,Fizz,Buzz,Fizz,5,FizzBuzz]

input: n=6, (or n=2, we reuse test n=6)
expected:
answer=[1,Fizz,Buzz,Fizz,5,FizzBuzz]

i [1,2,3]
For du [1,(2,3)]

[1,2,4]
For du [1,(2,4)]

[1,2,4,6]
For du [1,(4,6)]

[1,2,4,6,8]
For du [1,(6,8)]

[1,2,4,6,8,10]
For du [1, (8,10)]
and [1,10]

[1,2,4,6,8,10,11]
For du [1,11]

[11,2,3]
For du [11,(2,3)]

[11,2,4]
For du [11,(2,4)]

[1,2,3]

[1,2, 4,6,8,10,11, 2,3]

[1,2, 4,6,8,10,11, 2,3]

[1,2, 4,6,8,10,11, 2,3]

[1,2, 4,6,8,10,11, 2,3]

[1,2, 4,6,8,10,11, 2,3]

[1,2, 4,6,8,10,11, 2,3]

[1,2, 4,6,8,10,11, 2,4,6,7,11,
2,4,6,8,9,11, 2,4,6,7,11,
2,4,6,8,10,11, 2,4,5,11, 2,3]

input: n=0,
expected: answer=[]

input: n=1,
expected: answer=[1]

input: n=1,
expected: answer=[1]

input: n=1,
expected: answer=[1]

input: n=1,
expected: answer=[1]

input: n=1,
expected: answer=[1]

input: n=1,
expected: answer=[1]

input: n=6,
expected:
answer=[1,Fizz,Buzz,Fizz,5,FizzBuzz]

[11,2,4,5]
For du [11,(4,5)]

[11,2,4,6]
For du [11,(4,6)]

[11,2,4,6,7]
For du [11,(6,7)]

[11,2,4,6,8]
For du [11,(6,8)]

[11,2,4,6,8,9]
For du [11,(8,9)]

[11,2,4,6,8,10]
For du [11,(8,10)]
and [11,10]

[11,2,4,6,8,10,11]
For du [11,11]

[1,2, 4,6,8,10,11, 2,4,6,7,11,
2,4,6,8,9,11, 2,4,6,7,11,
2,4,6,8,10,11, 2,4,5,11, 2,3]

[1,2, 4,6,8,10,11, 2,4,6,7,11,
2,4,6,8,9,11, 2,4,6,7,11,
2,4,6,8,10,11, 2,4,5,11, 2,3]

[1,2, 4,6,8,10,11, 2,4,6,7,11,
2,4,6,8,9,11, 2,4,6,7,11,
2,4,6,8,10,11, 2,4,5,11, 2,3]

[1,2, 4,6,8,10,11, 2,4,6,7,11,
2,4,6,8,9,11, 2,4,6,7,11,
2,4,6,8,10,11, 2,4,5,11, 2,3]

[1,2, 4,6,8,10,11, 2,4,6,7,11,
2,4,6,8,9,11, 2,4,6,7,11,
2,4,6,8,10,11, 2,4,5,11, 2,3]

[1,2, 4,6,8,10,11, 2,4,6,7,11,
2,4,6,8,9,11, 2,4,6,7,11,
2,4,6,8,10,11, 2,4,5,11, 2,3]

[1,2, 4,6,8,10,11, 2,4,6,7,11,
2,4,6,8,9,11, 2,4,6,7,11,
2,4,6,8,10,11, 2,4,5,11, 2,3]

input: n=6,
expected:
answer=[1,Fizz,Buzz,Fizz,5,FizzBuzz]

input: n=6,
expected:
answer=[1,Fizz,Buzz,Fizz,5,FizzBuzz]

input: n=6,
expected:
answer=[1,Fizz,Buzz,Fizz,5,FizzBuzz]

input: n=6,
expected:
answer=[1,Fizz,Buzz,Fizz,5,FizzBuzz]

input: n=6,
expected:
answer=[1,Fizz,Buzz,Fizz,5,FizzBuzz]

input: n=6,
expected:
answer=[1,Fizz,Buzz,Fizz,5,FizzBuzz]

input: n=6,
expected:
answer=[1,Fizz,Buzz,Fizz,5,FizzBuzz]

5.​ Apply All-DU-Paths to design tests

variable Test
requirements

Test paths Test cases (input values and
expected output)

n 1,2,3]
For du [1, (2,3)]

[1,2,4]
For du [1, (2,4)]

[1,2,3]

[1,2, 4,6,8,10,11, 2,3]

input: n=0,
expected: answer=[]

input: n=1;
expected: answer=[1]

answer [1,2,3]
For du [1,3]

[1,2,4,6,8,10]
For du [1,10]

[5,11,2,3]
For du [5,3]

[5,11,2,4,6,8,10]
For du [5,10]

[1,2,3]

[1,2, 4,6,8,10,11, 2,3]

[1,2, 4,6,8,10,11, 2,4,6,7,11,
2,4,6,8,9,11, 2,4,6,7,11,
2,4,6,8,10,11, 2,4,5,11, 2,3]

[1,2, 4,6,8,10,11, 2,4,6,7,11,
2,4,6,8,9,11, 2,4,6,7,11,
2,4,6,8,10,11, 2,4,5,11,
2,4,6,8,10,11, 2,3]

input: n=0,
expected: answer=[]

input: n=1;
expected: answer=[1]

input: n=6,
expected:
answer=[1,Fizz,Buzz,Fizz,5,FizzBuzz]

input: n=7,
expected:
answer=[1,Fizz,Buzz,Fizz,5,FizzBuzz,7]

[7,11,2,3]
For du [7,3]

[7,11,2,4,6,8,9]
For du [7,9]

[7,11,2,4,6,8,10]
For du [7,10]

[9,11,2,3]
For du [9,3]

[9,11,2,4,6,7]
For du [9,7]

[10,11,2,3]
For du [10,3]

[10,11,2,4,5]
For du [10,5]

[10,11,2,4,6,7]
For du [10,7]

[1,2, 4,6,8,10,11, 2,4,6,7,11,
2,3]

[1,2, 4,6,8,10,11, 2,4,6,7,11,
2,4,6,8,9,11, 2,3]

[1,2, 4,6,8,10,11, 2,4,6,7,11,
2,4,6,8,9,11, 2,4,6,7,11,
2,4,6,8,10,11, 2,3]

[1,2, 4,6,8,10,11, 2,4,6,7,11,
2,4,6,8,9,11, 2,3]

[1,2, 4,6,8,10,11, 2,4,6,7,11,
2,4,6,8,9,11, 2,4,6,7,11,
2,4,6,8,10,11, 2,3]

[1,2, 4,6,8,10,11, 2,3]

[1,2, 4,6,8,10,11, 2,4,6,7,11,
2,4,6,8,9,11, 2,4,6,7,11,
2,4,6,8,10,11, 2,4,5,11, 2,3]

[1,2, 4,6,8,10,11, 2,4,6,7,11,
2,4,6,8,9,11, 2,4,6,7,11,
2,4,6,8,10,11, 2,4,5,11, 2,3]

input: n=2;
expected: answer=[1,Fizz]

input: n=3,
expected: answer=[1,Fizz,Buzz]

input: n=5,
expected: answer=[1,Fizz,Buzz,Fizz,5]

input: n=3,
expected: answer=[1,Fizz,Buzz]

input: n=5,
expected: answer=[1,Fizz,Buzz,Fizz,5]

input: n=1;
expected: answer=[1]

input: n=6,
expected:
answer=[1,Fizz,Buzz,Fizz,5,FizzBuzz]

input: n=6,
expected:
answer=[1,Fizz,Buzz,Fizz,5,FizzBuzz]

i [1,2,3]
For du [1,(2,3)]

[1,2,4]
For du [1,(2,4)]

[1,2,4,6]
For du [1,(4,6)]

[1,2,4,6,8]
For du [1,(6,8)]

[1,2,4,6,8,10]
For du [1, (8,10)]
and [1,10]

[1,2,4,6,8,10,11]
For du [1,11]

[11,2,3]
For du [11,(2,3)]

[11,2,4]
For du [11,(2,4)]

[1,2,3]

[1,2, 4,6,8,10,11, 2,3]

[1,2, 4,6,8,10,11, 2,3]

[1,2, 4,6,8,10,11, 2,3]

[1,2, 4,6,8,10,11, 2,3]

[1,2, 4,6,8,10,11, 2,3]

[1,2, 4,6,8,10,11, 2,3]

[1,2, 4,6,8,10,11, 2,4,6,7,11,
2,4,6,8,9,11, 2,4,6,7,11,
2,4,6,8,10,11, 2,4,5,11, 2,3]

input: n=0,
expected: answer=[]

input: n=1,
expected: answer=[1]

input: n=1,
expected: answer=[1]

input: n=1,
expected: answer=[1]

input: n=1,
expected: answer=[1]

input: n=1,
expected: answer=[1]

input: n=1,
expected: answer=[1]

input: n=6,
expected:
answer=[1,Fizz,Buzz,Fizz,5,FizzBuzz]

[11,2,4,5]
For du [11,(4,5)]

[11,2,4,6]
For du [11,(4,6)]

[11,2,4,6,7]
For du [11,(6,7)]

[11,2,4,6,8]
For du [11,(6,8)]

[11,2,4,6,8,9]
For du [11,(8,9)]

[11,2,4,6,8,10]
For du [11,(8,10)]
and [11,10]

[11,2,4,5,11]
For du [11,11]

[11,2,4,6,7,11]
For du [11,11]

[11,2,4,6,8,9,11]
For du [11,11]

[11,2,4,6,8,10,11]
For du [11,11]

[1,2, 4,6,8,10,11, 2,4,6,7,11,
2,4,6,8,9,11, 2,4,6,7,11,
2,4,6,8,10,11, 2,4,5,11, 2,3]

[1,2, 4,6,8,10,11, 2,4,6,7,11,
2,4,6,8,9,11, 2,4,6,7,11,
2,4,6,8,10,11, 2,4,5,11, 2,3]

[1,2, 4,6,8,10,11, 2,4,6,7,11,
2,4,6,8,9,11, 2,4,6,7,11,
2,4,6,8,10,11, 2,4,5,11, 2,3]

[1,2, 4,6,8,10,11, 2,4,6,7,11,
2,4,6,8,9,11, 2,4,6,7,11,
2,4,6,8,10,11, 2,4,5,11, 2,3]

[1,2, 4,6,8,10,11, 2,4,6,7,11,
2,4,6,8,9,11, 2,4,6,7,11,
2,4,6,8,10,11, 2,4,5,11, 2,3]

[1,2, 4,6,8,10,11, 2,4,6,7,11,
2,4,6,8,9,11, 2,4,6,7,11,
2,4,6,8,10,11, 2,4,5,11, 2,3]

[1,2, 4,6,8,10,11, 2,4,6,7,11,
2,4,6,8,9,11, 2,4,6,7,11,
2,4,6,8,10,11, 2,4,5,11, 2,3]

[1,2, 4,6,8,10,11, 2,4,6,7,11,
2,4,6,8,9,11, 2,4,6,7,11,
2,4,6,8,10,11, 2,4,5,11, 2,3]

[1,2, 4,6,8,10,11, 2,4,6,7,11,
2,4,6,8,9,11, 2,4,6,7,11,
2,4,6,8,10,11, 2,4,5,11, 2,3]

[1,2, 4,6,8,10,11, 2,4,6,7,11,
2,4,6,8,9,11, 2,4,6,7,11,
2,4,6,8,10,11, 2,4,5,11, 2,3]

input: n=6,
expected:
answer=[1,Fizz,Buzz,Fizz,5,FizzBuzz]

input: n=6,
expected:
answer=[1,Fizz,Buzz,Fizz,5,FizzBuzz]

input: n=6,
expected:
answer=[1,Fizz,Buzz,Fizz,5,FizzBuzz]

input: n=6,
expected:
answer=[1,Fizz,Buzz,Fizz,5,FizzBuzz]

input: n=6,
expected:
answer=[1,Fizz,Buzz,Fizz,5,FizzBuzz]

input: n=6,
expected:
answer=[1,Fizz,Buzz,Fizz,5,FizzBuzz]

input: n=6,
expected:
answer=[1,Fizz,Buzz,Fizz,5,FizzBuzz]

input: n=6,
expected:
answer=[1,Fizz,Buzz,Fizz,5,FizzBuzz]

input: n=6,
expected:
answer=[1,Fizz,Buzz,Fizz,5,FizzBuzz]

input: n=6,
expected:
answer=[1,Fizz,Buzz,Fizz,5,FizzBuzz]

Grading rubric
[Total: 10 points]: Done (or provide evidence of your attempt, full or reasonable effort)

●​ (5 points) — Providing evidence of your attempt, minimal effort
(-2.5 points) for 24 hours late (submitted after 16-Oct-2025 11am EST, by 17-Oct-2025 11am EST)​
(-5 points) for 48 hours late (submitted after 17-Oct-2025 11am EST, by 18-Oct-2025 11am EST)

Submission

●​ Save your report as a .pdf file
●​ Upload your report (.pdf) to POTD 5 on Gradescope.
●​ Connect your partner to your group on Gradescope so that everyone receives credit
●​ Each team submits only one copy

Making your submission available to instructor and course staff is your responsibility; if we cannot access
or open your file, you will not get credit. Be sure to test access to your file before the due date.

Copyright © 2025 Upsorn Praphamontripong

Released under the CC-BY-NC-SA 4.0 license.
Last updated 2025-10-05 9:18

http://creativecommons.org/licenses/by-nc-sa/4.0/

	POTD 5: Graph for source code (Data flow) – fizzBuzz – solution
	Grading rubric
	Submission

