CS 3250: Software Testing (Fall 2025)

POTD 5: Graph for source code (Data flow) — fizzBuzz — solution
Due 16-Oct-2025, 11:00am EST

Purpose: Create graph representation for source code; apply data flow graph coverage to source code;
get ready for assignment 4; prepare for quiz 3 and the final exam

You may make a copy of a worksheet and complete this activity, or type your answers in any text editor.
You may work alone or with another student in this course (max team size=2).

Consider the following Java method

public static List<String> fizzBuzz (int n)
{

var answer = new ArrayList();
for (int i = 1; 1 <= n; 1i++)

{

if (1 $ 2 ==0 && 1 % == 0)
answer.add ("FizzBuzz");
else if (i $ 2 == 0)

answer.add ("Fizz") ;
else if (1 % 3 == 0)
answer.add ("Buzz") ;
else
answer.add (Integer.toString(i));

}

return answer;

}

1. Draw a Control Flow Graph for the fizzBuzz method. Annotate all information (i.e., source code,
defs and uses).

def(1)={n, answer, i} n is a forwarded parameter
var answer = new ArrayList()

o inti=1

2
use(2,3)=A{i,n} use(2,4)={i,n}
i>n i<=n
return answer o use(4,5)=A{i} °)
use(3)={answer} i%2==0 && use(4,6)={i}
i%3==0 1(i%2==0 &&
i%3==0)
answer.add(“FizzBuzz”) use(6,7)={i} e e
use(5)={answer?} use(7)={answer} i%2==0 |LE|S(50(26,=8=)6){I}
def(5)={answer} def(7)={answer} \

answer.add(“Fizz")

° use(8,9)={i}

g use(8,10)={i}

1(i%3==0)
answer.add(*Buzz”)

use(9)={answer}
def(9)={answer}

answer.add(Integer.toString(i))
use(10)={answer, i}
def(10)={answer}

use(11)={i} 4+
def(11)={i} | @

https://docs.google.com/document/d/1bC_9UA7sj-SUVPsibcFLi4mcYVDY9UUJkmMYHhIQNAU/edit?usp=sharing

2. List all du-pairs, then derive du-paths (the du-paths then can be used as test requirements)

DU-pairs DU-paths
Variable n
[1, (2,3)] [1,2,3]
[1, (2,4)] [1, 2, 4]
Variable answer
[1,3] empty answer 1,2, 3]

[1.9]

[1.7]

[1.9]

[1, 10]

[5, 3]

[5,5] use before def
[5, 7]

[5, 9]

[5, 10]

[7, 3]

[7, 3]

[7.7] use before def
[7,9]

[7, 10]

[9, 3]

[9, 3]

[9, 7]

[9,9] use before def
[9, 10]

[10, 3]

H+24-6}1 semantically unreachable — i is initialized to 1. The
first iteration results in [1,2,4,6,8,10] because i=1.
Do not include [1,2,4,5,11,2,4,5] — no def-clear path.

2464 semantically unreachable — i is initialized to 1. The
first iteration results in [1,2,4,6,8,10] because i=1.

H24-6-8:91 semantically unreachable — i is initialized to 1.
The first iteration results in [1,2,4,6,8,10] because i=1.

[1,2, 4,6, 8, 10]
[5, 11, 2, 3]
—H—=24; semantically unreachable — due to j++
—44-—24-6- semantically unreachable — due to j++
224655 semantically unreachable — due to j++
[5, 11, 2, 4, 6, 8, 10]
[7, 11, 2, 3]
—H—=24; semantically unreachable — due to j++
—44-—24-6- semantically unreachable — due to j++
[7,11,2,4,86,8,9]
[7,11, 2,4, 6,8, 10]
[9, 11, 2, 3]
—H—=24; semantically unreachable — due to j++
[9,11,2,4,6,7]
24655 semantically unreachable — due to j++
4675 semantically unreachable — due to j++

[10, 11, 2, 3]

[10, 5]

[10, 11, 2, 4, 5]

[10, 7] [10,11,2,4,6, 7]

[10, 9] 24685 semantically unreachable — due to i++

[10, 10] use before def 24685 semantically unreachable — due to i++

Variable i

[1, (2,3)] [1,2,3]

[1, (2,4)] [1,2,4]

[1, (4,5)] 2451 semantically unreachable — i is initialized to 1. The
first iteration results in [1,2,4,6,8,10] because i=1.
Do not include [1,2,3,5,11,2,4,5] — no def-clear path.

[1, (4,6)] [1,2,4,6]

[1,(6,7)] 246" semantically unreachable — i is initialized to 1. The
first iteration results in [1,2,4,6,8,10] because i=1.

[1, (6,8)] [1,2,4,6,8]

[1,(8,9)] 246891 semantically unreachable — i is initialized to 1.

[1, (8,10)]
[1, 10]

[1, 11]

[11,(2,3)]
[11, (2,4)]
[11, (4,5)]
[11, (4,6)]
[11,(6,7)]
[11, (6,8)]
[11, (8,9)]

[11, (8,10)]
[11, 10]

[11,11] use before def

The first iteration results in [1,2,4,6,8,10] because i=1.
[1,2,4,6,8,10]

[1,2,4,6,8,10]

B24-54F semantically unreachable — i is initialized to 1.
H24-6—+%+1 semantically unreachable — i is initialized to 1.

B246:-8-9-41F semantically unreachable — i is initialized to 1.
[1,2,4,86,8, 10, 11]

3. Apply All-Defs to design tests — some test paths tour multiple test requirements

variable

answer

Test
requirements
[1,2,3]

[1,2,3]

15,11,2,3]

[7,11,2,3]

[9,11,2,3]

[10,11,2,3]

[1,2,3]

[11, (2,3)]

Test paths

[1,2,3]

[1,2,3]

[1,2, 46.,8.10.11, 2,46.7.11,
2468911, 24.6,7.11,
24681011, 24,511, 2,3]

[1,2, 4,6,8,10,11, 2,4,6,7.11,
2,3]

[1,2, 46.,8,10.11, 2,46.7.11,
2468911, 2,3]

[1,2, 4,6.,8.10.11, 2,3]
[1,2,3]

[1,2, 46.8.1011, 2,3]

4. Apply All-Uses to design tests

variable | Test requirements

answer

[1,2,3]
For du [1, (2,3)]

[1,2,4]
Fordu [1, (2,4)]

[1,2,3]
For du [1,3]

[1,2,4,6,8,10]
For du [1,10]

[5,11,2,3]
For du [5,3]

15,11,2,4,6,8,10]
For du [5,10]

Test paths

[1,2,3]

[1,2, 46.8.1011, 2,3]

[1,2,3]

[1,2, 46.8.10.11, 2,3]

[1,2, 46.81011, 24.6.7.11,
2468911, 24.6.7.11,
24681011, 24511, 2,3]

[1,2, 46.81011, 24.6.7.11,
2468911, 24.6.7. 11,
24681011, 24511,
246.810.11, 2,3]

Test cases (input values and
expected output)

input: n=0,
expected: answer=[]

input: n=0,
expected: answer=[]

input: n=6,
expected:
answer=[1,Fizz,Buzz,Fizz,5,FizzBuzz]

input: n=2,
expected: answer=[1,Fizz]

input: n=3,
expected: answer=[1,Fizz,Buzz]

input: n=1;
expected: answer=[1]

input: n=0,
expected: answer=[]

input: n=1,
expected: answer=[1]

Test cases (input values and
expected output)

input: n=0,
expected: answer=[]

input: n=1;
expected: answer=[1]

input: n=0,
expected: answer=[]

input: n=1;
expected: answer=[1]

input: n=6,
expected:
answer=[1,Fizz,Buzz,Fizz,5,FizzBuzz]

input: n=7,
expected:
answer=[1,Fizz,Buzz,Fizz,5,FizzBuzz,7]

[7,11,2,3]
For du [7,3]

[7,11,2,4,6,8,9]
For du [7,9]

[7,11,2,4,6,8,10]
Fordu [7,10]
[9,11,2,3]

For du [9,3]
[9,11,2,4,6,7]
For du [9,7]
[10,11,2,3]

For du [10,3]
[10,11,2,4,5]
For du [10,5]

[10,11,2,4,6,7]
Fordu [10,7]

[1,2,3]
For du [1,(2,3)]

[1,2,4]
For du [1,(2,4)]

[1,2,4,6]
For du [1,(4,6)]

[1,2,4,6,8]
For du [1,(6,8)]

[1,2,4,6,8,10]

Fordu [1, (8,10)]

and [1,10]

[1,2,4,6,8,10,11]
For du [1,11]

[11,2,3]
For du [11,(2,3)]

[11,2,4]
For du [11,(2,4)]

1,2, 46.8.10.11, 2.4.6.7.11,
2,3]

(1,2, 4681011, 24.6.7.11,
2468911, 2,3]

(1,2, 4681011, 24.6.7.11,
2468911, 246711,
24.6.8.10.11, 2,3]

[1,2, 4681011, 2.46.7.11,
2468911, 23]

[1,2, 4681011, 2.46.7.11,
2468911, 2467.11,
24681011, 23]

[1,2, 4.6.8.10.11, 2,3]

[1,2, 4681011, 2.46.7.11,
2468911, 246711,
24681011, 24511, 2,3]
[1,2, 4681011, 2.46.7.11,
2468911, 24.6.7.11,
24681011, 24511, 23]

[1,2,3]

[1.2, 46.8.10.11, 2,3]

[1.2, 46.8.10.11, 2,3]

[1.2, 46.8.10.11, 2,3]

(12, 4681011, 23]

1,2, 46.8.10.11, 2,3]

(12, 4681011, 23]

[1,2, 46.81011, 24.6.7.11
24 11, 24.6.7.11,
24681011, 24,511, 2,3]

input: n=2;
expected: answer=[1,Fizz]

input: n=3,
expected: answer=[1,Fizz,Buzz]

input: n=5,
expected: answer=[1,Fizz,Buzz,Fizz,5]

input: n=3,
expected: answer=[1,Fizz,Buzz]

input: n=5, (or n=4, we reuse test n=5)
expected: answer=[1,Fizz,Buzz,Fizz,5]

input: n=1;
expected: answer=[1]

input: n=6,
expected:
answer=[1,Fizz,Buzz,Fizz,5,FizzBuzz]

input: n=6, (or n=2, we reuse test n=6)
expected:
answer=[1,Fizz,Buzz,Fizz,5,FizzBuzz]

input: n=0,
expected: answer=[]

input: n=1,
expected: answer=[1]

input: n=1,
expected: answer=[1]

input: n=1,
expected: answer=[1]

input: n=1,
expected: answer=[1]

input: n=1,
expected: answer=[1]

input: n=1,
expected: answer=[1]

input: n=6,
expected:
answer=[1,Fizz,Buzz,Fizz,5,FizzBuzz]

[11,2,4,5]
For du [11,(4,5)]

[11,2,4,6]
For du [11,(4,6)]

[11,2,4,6,7]
For du [11,(6,7)]

[11,2,4,6,8]
For du [11,(6,8)]

[11,2,4,6,8,9]
For du [11,(8,9)]

[11,2,4,6,8,10]
For du [11,(8,10)]
and [11,10]

[11,2,4,6,8,10,11]
For du [11,11]

(1,2, 4681011, 24.6.7.11,
2468911, 24.6.7.11,
24681011, 24,511, 2,3]

(1,2, 4681011, 24.6.7.11,
2468911, 24.6.7.11,
24681011, 24.511, 2,3]

(1,2, 4681011, 24.6.7.11,
2468911, 24.6.7.11,
24681011, 24,511, 2,3]

(1,2, 4681011, 24.6.7.11,
2468911, 24.6.7.11,
24681011, 24,511, 2,3]

(1,2, 4681011, 24.6.7.11,
2468911, 24.6.7.11,
24681011, 24.511, 2,3]

(1,2, 4681011, 24.6.7.11,
2468911, 24.6.7.11,
24681011, 24.511, 2,3]

(1,2, 4681011, 24.6.7.11,
2468911, 24.6.7.11,
24681011, 24.511, 2,3]

5. Apply All-DU-Paths to design tests

variable

answer

Test
requirements

1,2,3]
Fordu [1, (2,3)]

[1,2,4]
Fordu [1, (2,4)]

[1,2,3]
For du [1,3]

[1,2,4,6,8,10]
Fordu [1,10]

[5,11,2,3]
For du [5,3]

[5,11,2,4,6,8,10]
For du [5,10]

Test paths

[1,2,3]

[1,2, 46.8.10.11, 2,3]

[1,2,3]

[1,2, 4681011, 23]

[1,2, 4681011, 24.6.7.11,
2468911, 24.6.711,
24681011, 24511, 2,3]

[1,2, 4681011, 24.6.7.11,
2468911, 24.6.711,
24681011, 24511,
246.8.10.11, 2,3]

input: n=6,
expected:
answer=[1,Fizz,Buzz,Fizz,5,FizzBuzz]

input: n=6,
expected:
answer=[1,Fizz,Buzz,Fizz,5,FizzBuzz]

input: n=6,
expected:
answer=[1,Fizz,Buzz,Fizz,5,FizzBuzz]

input: n=6,
expected:
answer=[1,Fizz,Buzz,Fizz,5,FizzBuzz]

input: n=6,
expected:
answer=[1,Fizz,Buzz,Fizz,5,FizzBuzz]

input: n=6,
expected:
answer=[1,Fizz,Buzz,Fizz,5,FizzBuzz]

input: n=6,
expected:
answer=[1,Fizz,Buzz,Fizz,5,FizzBuzz]

Test cases (input values and
expected output)

input: n=0,
expected: answer=[]

input: n=1;
expected: answer=[1]

input: n=0,
expected: answer=[]

input: n=1;
expected: answer=[1]

input: n=6,
expected:
answer=[1,Fizz,Buzz,Fizz,5,FizzBuzz]

input: n=7,
expected:
answer=[1,Fizz,Buzz,Fizz,5,FizzBuzz,7]

[7,11,2,3]
For du [7,3]

[7,11,2,4,6,8,9]
For du [7,9]

[7,11,2,4,6,8,10]
Fordu [7,10]

[9,11,2,3]
For du [9,3]

[9,11,2,4,6,7]
For du [9,7]

[10,11,2,3]
For du [10,3]

[10,11,2,4,5]
For du [10,5]

[10,11,2,4,6,7]
Fordu [10,7]

[1,2,3]
For du [1,(2,3)]

[1,2,4]
Fordu [1,(2,4)]

[1,2,4,6]
For du [1,(4,6)]

[1,2,4,6,8]
For du [1,(6,8)]

[1,2,4,6,8,10]
Fordu [1, (8,10)]
and [1,10]

[1,2,4,6,8,10,11]
For du [1,11]

[11,2,3]
For du [11,(2,3)]

[11,2,4]
For du [11,(2,4)]

[1,2, 4681011, 24.6.7.11,

2,3]

[1,2, 4681011, 24.6.7.11,

2468911, 2,3]

[1,2, 4681011, 24.6.7.11,
2468911, 246711,
24681011, 2,3]

[1,2, 4681011, 24.6.7.11,

2468911, 2,3]

[1,2, 4681011, 24.6.7.11,
2468911, 24.6.7.11,
24681011, 2,3]

[1,2, 4.6.810.11,

[1,2, 4681011, 24.6.7.11,
2468911, 24.6.711,
24681011, 24511, 2,3]

[1,2, 4681011, 24.6.7.11,
2468911, 24.6.711,
24681011, 24511, 2,3]

[1,2,3]

[1,2, 1011,
[1,2, 1011,
[1,2, 1011,
(1,2, 46.8.10.11,
(1,2, 46.8.10.11,
(1.2, 46.8.10.11,

[1,2, 46.81011, 24.6.7.11

2,3]

2,3]

2,3]

2,3]

2,3]

2,3]

2,3]

24 11, 24.6.711,
24681011, 24511, 2,3]

input: n=2;
expected: answer=[1,Fizz]

input: n=3,
expected: answer=[1,Fizz,Buzz]

input: n=5,
expected: answer=[1,Fizz,Buzz,Fizz,5]

input: n=3,
expected: answer=[1,Fizz,Buzz]

input: n=5,
expected: answer=[1,Fizz,Buzz,Fizz,5]

input: n=1;
expected: answer=[1]

input: n=6,
expected:
answer=[1,Fizz,Buzz,Fizz,5,FizzBuzz]

input: n=6,
expected:
answer=[1,Fizz,Buzz,Fizz,5,FizzBuzz]

input: n=0,
expected: answer=[]

input: n=1,
expected: answer=[1]

input: n=1,
expected: answer=[1]

input: n=1,
expected: answer=[1]

input: n=1,
expected: answer=[1]

input: n=1,
expected: answer=[1]

input: n=1,
expected: answer=[1]

input: n=6,
expected:
answer=[1,Fizz,Buzz,Fizz,5,FizzBuzz]

[11,2,4,5] [1,2, 46,810,111, 24.6.7.11, | input: n=6,
For du [11,(4,5)] 2468911, 246.7.11, expected:
2.46.8.10.11, 2.4.5.11, 2,3] | answer=[1,Fizz,Buzz,Fizz,5,FizzBuzz]

[11,2,4,6] [1,2, 46,810,111, 24.6.7.11, | input: n=6,
For du [11,(4,6)] 2468911, 246.7.11, expected:

2.46.8.10.11, 2.4.5.11, 2,3] | answer=[1,Fizz,Buzz,Fizz,5,FizzBuzz]
[11,2,4,6,7] [1,2, 46,810,111, 24.6.7.11, | input: n=6,
For du [11,(6,7)] 2468911, 246.7.11, expected:

2.46.8.10.11, 2.4.5.11, 2,3] | answer=[1,Fizz,Buzz,Fizz,5,FizzBuzz]
[11,2,4,6,8] [1,2, 46,810,111, 24.6.7.11, | input: n=6,
For du [11,(6,8)] 2468911, 246.7.11, expected:

2.46.8.10.11, 2.4.5.11, 2,3] | answer=[1,Fizz,Buzz,Fizz,5,FizzBuzz]
[11,2,4,6,8,9] [1,2, 46,810,111, 24.6.7.11, | input: n=6,
For du [11,(8,9)] 2468911, 246.7.11, expected:

2.46.8.10.11, 2.4.5.11, 2,3] | answer=[1,Fizz,Buzz,Fizz,5,FizzBuzz]
[11,2,4,6,8,10] [1,2, 46,810,111, 24.6.7.11, | input: n=6,
Fordu [11,(8,10)] | 2.4.6.89.11, 2.4.6.7.11, expected:
and [11,10] 2.46.8.10.11, 2.4.5.11, 2,3] | answer=[1,Fizz,Buzz,Fizz,5,FizzBuzz]
[11,2,4,5,11] [1,2, 46,810,111, 24.6.7.11, | input: n=6,
For du [11,11] 2468911, 246.7.11, expected:

2.46.8.10.11, 2.4.5.11, 2,3] | answer=[1,Fizz,Buzz,Fizz,5,FizzBuzz]
[11,2,4,6,7,11] [1,2, 46,810,111, 24.6.7.11, | input: n=6,
For du [11,11] 2468911, 246.7.11, expected:

2.46.8.10.11, 2.4.5.11, 2,3] | answer=[1,Fizz,Buzz,Fizz,5,FizzBuzz]

[11,2,4,6,8,9,11] [1,2, 46,810,111, 24.6.7.11, | input: n=6,
For du [11,11] 2468911, 246.7.11, expected:
2.46.8.10.11, 2.4.5.11, 2,3] | answer=[1,Fizz,Buzz,Fizz,5,FizzBuzz]

[11,2,4,6,8,10,11] |[1,2, 4.6.8.10.11, 2.4.6.7.11, | input: n=6,
For du [11,11] 2468911, 246.7.11, expected:
2.46.8.10.11, 2.4.5.11, 2,3] | answer=[1,Fizz,Buzz,Fizz,5,FizzBuzz]

Grading rubric

[Total: 10 points]: Done (or provide evidence of your attempt, full or reasonable effort)

e (5 points) — Providing evidence of your attempt, minimal effort
(-2.5 points) for 24 hours late (submitted after 16-Oct-2025 11am EST, by 17-Oct-2025 11am EST)
(-5 points) for 48 hours late (submitted after 17-Oct-2025 11am EST, by 18-Oct-2025 11am EST)

Submission

e Save your report as a .pdf file

e Upload your report (.pdf) to POTD 5 on Gradescope.

e Connect your partner to your group on Gradescope so that everyone receives credit

e Each team submits only one copy
Making your submission available to instructor and course staff is your responsibility; if we cannot access
or open your file, you will not get credit. Be sure to test access to your file before the due date.

Copyright © 2025 Upsorn Praphamontripong

Released under the a8 CC-BY-NC-SA 4.0 license.
Last updated 2025-10-05 9:18

http://creativecommons.org/licenses/by-nc-sa/4.0/

	POTD 5: Graph for source code (Data flow) – fizzBuzz – solution
	Grading rubric
	Submission

