Boolean Algebra
Negation Laws
¬(¬a) = a
¬a ∨ a = true
¬a ∧ a = false
a ∨ ¬a ∧ b = a ∨ b
AND Identify Laws
false ∧ a = false
true ∧ a = a
a ∧ a = a
a ∧ ¬a = false
OR Identify Laws
false ∨ a = a
true ∨ a = true
a ∨ a = a
a ∨ ¬a = true
XOR Identify Laws
false ⊕ a = a
true ⊕ a = ¬a
a ⊕ a = false
a ⊕ ¬a = true
XOR Equivalence Laws
a ⊕ b = (a ∧ ¬b) ∨ (¬a ∧ b)
a ⊕ b = (a ∨ b) ∧ (¬a ∨ ¬b)
a ⊕ a = (a ∨ b) ∧ ¬(a ∧ b)
Commutativity Laws
a ∨ b = b ∨ a
a ∧ b = b ∧ a
a ⊕ b = b ⊕ a
Associativity Laws
(a ∨ b) ∨ c = a ∨ (b ∨ c)
(a ∧ b) ∧ c = a ∧ (b ∧ c)
(a ⊕ b) ⊕ c = a ⊕ (b ⊕ c)
Implication Laws
a → b = ¬a ∨ b
a → b = ¬b → ¬a
true → a = a
false → a = true
Distributive Laws
a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)
a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c)
DeMorgan's Laws
¬(a ∨ b) = ¬a ∧ ¬b
¬(a ∧ b) = ¬a ∨ ¬b
Copyright © 2025 Upsorn Praphamontripong
Released under the
CC-BY-NC-SA 4.0 license.
Last updated 2025-10-07 21:41