
Summer 2022 – University of Virginia 1© Praphamontripong

User-Centered Design
Data Entry

CS 4640 
Programming Languages 

for Web Applications

[The Design of Everyday Things, Don Norman, Ch 7] 



Summer 2022 – University of Virginia 2© Praphamontripong

Seven Principles for Making 
Hard Things Easy

1. Use knowledge in the world and knowledge in the head

2. Simplify task structure

3. Make things visible
4. Get the mappings right

5. Exploit the power of constraints

6. Design for error
7. When all else fails, standardize



Summer 2022 – University of Virginia 3© Praphamontripong

1. Use Knowledge in the World
• New users do better if everything they need to know is in 
the UI

• Experienced users can be faster by having knowledge in 
their heads

• All users are more effective if the implementation model 
matches their mental model

• Avoid depending on user manuals
� A very inconvenient part of the world



Summer 2022 – University of Virginia 4© Praphamontripong

2. Simplify Task Structure
• Simplify tasks by considering the users’:

� Psychology
� Short term memory
� Long term memory
� Concentration

• New technology should make tasks simpler
� Same task with mental aids
� Increase visibility
� Same task with simple steps automated
� Change the nature or structure of the task



Summer 2022 – University of Virginia 5© Praphamontripong

3. Make Things Visible
• Users should quickly see

� What they can do
� How they can do it
� What will happen

• The possible actions should satisfy user’s goal
� Revenue, not excise

• System state should always be obvious

• Examples
� Collab needs to show state: semester



Summer 2022 – University of Virginia 6© Praphamontripong

4. Get the Mappings Right
• Intentions (what users want) to actions (what they can do)

• Actions and effects on the software

• System state and what is visible

• Perceived system state and the users needs

• Graphics, icons and pictures are easier to understand
� But designing graphics is hard!
� Not a common skill among programmers



Summer 2022 – University of Virginia 7© Praphamontripong

5. Exploit Power of Constraints
• Constraints stop users from entering wrong data

� Ignore dashes in phone & credit card numbers
� Advanced controls like the dates in travel web sites
� Selections, as in radio boxes and dropdown lists

• Think of this as strong typing for UIs …



Summer 2022 – University of Virginia 8© Praphamontripong

6. Design for Error
• Users are not perfect and will enter invalid data

• Design for invalid inputs!
� Use constraints to avoid invalid inputs
� Correct invalid inputs automatically
� Make it simple and convenient for users to correct invalid inputs
� Allow users to postpone invalid input corrections
� Make it easy to undo



Summer 2022 – University of Virginia 9© Praphamontripong

7. Standardize
• The controls are all the same—consistent

• A last resort approach because it forces knowledge to be in 
the head

• Notice anything funny … ?

• Standardize early or it will be too late

• Standardization only has to be learned once



Summer 2022 – University of Virginia 10© Praphamontripong

Improving Data Entry
• Data Integrity

� The state of the program depends on correct, valid input data

• Input data validation means
� Checking before sending to software
� Rejecting if it does not conform

• Makes users feel like suspects and treats typos like malicious 
behavior

• Sometimes invalid data is reasonable
� We don’t have the complete data
� We mis-typed something
� It doesn’t matter – the rules are too restrictive



Summer 2022 – University of Virginia 11© Praphamontripong

Data Immunity
• Don’t use data validation to ensure integrity

• Make the software immune from invalid data

• Four types of immunization
1. Repairing automatically
2. Masking out invalid data
3. Flexible rule enforcement
4. Auditing instead of editing

Most invalid data can be made valid
by the software !



Summer 2022 – University of Virginia 12© Praphamontripong

1. Auto-Repair
• If you search for “thomas jfferson,” google will say: “Showing 

results for thomas jefferson”

� Plus a link that matches the original string 

• Auto-fixing examples:
� Convert word to numbers (“five” to “5”)
� Look for relationships (“Charlottesville, BA” to “Charlottesville, VA”)

• Let the programmers be creative!

It saves money to have programmers work more 
and users work less



Summer 2022 – University of Virginia 13© Praphamontripong

2. Mask Invalid Data
• The UI can often prevent invalid data from being entered

� Do not allow “five” for a number – use masking to ignore all 
non-numeric characters

� Fill in dashes automatically, so it doesn’t matter if the users 
entered “123-45-6789” or “123456789”

� Use radio buttons or dropdowns when possible



Summer 2022 – University of Virginia 14© Praphamontripong

3. Flexible Rule Enforcement
• Defining good rules is hard – defining perfect rules is 

impossible!

• Three levels of rules:
1. The restrictions we really want (intent)
2. The restrictions we describe (specifications)
3. The restrictions we implement (law)

• The three never match perfectly, and considerate people 
consider the intent instead of the law

• Allow some rules to be bent

� Keep a log to check later



Summer 2022 – University of Virginia 15© Praphamontripong

4. Audit Don’t Edit

• Missing data is not a data integrity error

� Missing data can sometimes be entered later

� Missing data can often be inferred from existing data
� The programmers have to work

• Mistakes can often be fixed later

� Spelling mistakes, TurboTax’s audit phase

� Tell users about mistakes with modeless feedback
� Modeless: feedback they do not have to respond to

If it can’t be fixed … 
Do we have to bother the useres right now?



Summer 2022 – University of Virginia 16© Praphamontripong

Selecting Events
Keep events close together

Bad Better Good



Summer 2022 – University of Virginia 17© Praphamontripong

Selection
• GUI operations have two parts:

� Operation (verb)
� Operands (objects)

• Command lines often use natural speaking style: verb-
object

• GUIs should usually let the user select an object, then 
apply an operation: object-verb
� Example: date selection

• This makes selection very important



Summer 2022 – University of Virginia 18© Praphamontripong

Discrete and Contiguous Selection
• Discrete data: Objects are independent and need to be 
selected independently
� Picture elements in a drawing tool

• Contiguous data: Objects are ordered in lists or matrices
� Spreadsheet cells and words in word processors

• Whether data is discrete or contiguous sometimes depends 
on user needs



Summer 2022 – University of Virginia 19© Praphamontripong

Summary
• Make it easy to decide what actions are possible

• Make things visible
� Controls, choices, and the conceptual model

• Make it easy to see the state

• Use natural mappings
� Intentions à actions
� Actions à effect
� Visible information à actual state

• Protect the users from mistakes

• Don’t prevent them from doing their jobs

• Users must always know what was selected before choosing 
an operation


