
Summer 2022– University of Virginia 1© Praphamontripong

XML
(eXtensible Markup Language)

CS 4640
Programming Languages

for Web Applications

[Robert W. Sebesta, “Programming the World Wide Web]
[http://www.w3.org/XML/]

http://www.w3.org/XML/

Summer 2022– University of Virginia 2© Praphamontripong

Overview
1. What is XML?

2. Why XML?

3. How does XML work?

4. Syntax of XML documents

Summer 2022– University of Virginia 3© Praphamontripong

What is XML?
• eXtensibleMarkup Language

• Markup languages insert “tags” into text files to describe
presentation or other information
• Human- and machine-readable

• SGML: Standard Generalized Markup Language
• HTML: visual presentation
• Latex: document formatting
• XML: data description

• Structure, store, and transport data over the Internet

• W3C standard: http://www.w3.org/XML/

http://www.w3.org/XML/

Summer 2022– University of Virginia 4© Praphamontripong

Why XML?
• Parsing data from one software component to another has always

been difficult

• The two components must agree on format, types, and
organization

• Web apps have unique requirements for data passing
• Very loose coupling

• Dynamic integration

• XML provides a way to separate data from the format

Summer 2022– University of Virginia 5© Praphamontripong

Why XML? – 5 Basic Reasons
• Simplicity

• User-defined tags, easy to understand

• Organization
• Organize data in one resource and formatting rules in another resource

• Accessibility
• Save time and easy to change data (because of the separation)

• Standardization
• XML is an international standard – easy to distribute data over the Internet

• Multiple applications
• XML data resource can easily be reused to generate different views

(promoting MVC)

Summer 2022– University of Virginia 6© Praphamontripong

Passing Data with XML
• Data are passed directly between components
• XML allows for self-documenting data

Schema

P1 P2 P3

Parser

XML
File

• P1, P2 and P3 can see the format, contents, and
structure of the data

• Free parsers are available to put XML messages
into a standard format

• Information about type and format is readily
available

<customer>
<number>12345</number>
<name>Mary Kay</name>
<address>…..</address>

…
</customer>

<cust>
<custname>Duh Huh</custname>
<custID>12345</custID>
<addr>…..</addr>

…
</customer>

Summer 2022– University of Virginia 7© Praphamontripong

How does XML work?
• Programmers can create their own tags

• Tags have been designed for mathematics, formal specifications,
resumes, recipes, addresses, …

• Pizza Markup Language (PML):

• Event Markup Language (EML) ?

• Invitation Markup Language (IML) ?

• Pirate Markup Language (PiML) ?

<pizza>
<topping extracheese="yes">Pepperoni</topping>
<price> 13.00 </price>
<size> large </size>

</pizza>

Summer 2022– University of Virginia 8© Praphamontripong

Markup Languages – Type setting
• Documents were marked-up to represent how they would be

printed

• For example, words can be Bold, italicized, or underlined

• Typesetting only effects the printing of specific phrases or
words, and not categories of phrases or words

Summer 2022– University of Virginia 9© Praphamontripong

Markup Languages – Semantic Tags
• Markup languages can be used to logically organize the

contents of a document

• For example, a document representing a book can contain the
following organizational tags:
• Title
• Chapter headings
• Section headings

Summer 2022– University of Virginia 10© Praphamontripong

Markup Languages – Semantic Tags
• A markup language can also provide semantic information

(meta-data) about the text in a document
• Examples : First name, Last name, Phone number

• Semantic tags can improve the accuracy of document queries
• Documents can be searched using their tag assignments rather than the

plain-text contents

Summer 2022– University of Virginia 11© Praphamontripong

Markup Languages – Semantic Tags
• Use semantic tags to define the hierarchical structure of the

document

• Author
• First name
• Last name

• Publisher
• Name
• Address

Summer 2022– University of Virginia 12© Praphamontripong

Markup Languages – Examples
• Typesetting tags

<bold> Chapter 1 </bold>
<italic> Background </italic>
<underline> Important text </underline>

• Semantic tags
<first name> Upsorn </first name>
<last name> Praphamontripong </last name>
<phone number> 434-123-1234 </phone number>

Summer 2022– University of Virginia 13© Praphamontripong

SGML (Standard Generalized
Markup Language)

• Set up by the ISO in 1986

• Super set of all markup languages
• Includes all the features of every markup language derived from it

• Allows a document to be annotated with text that describes
the semantic meanings of portions of the document

• Separates the structure of the document from the content
• The structure denotes the purpose of the document’s data

• Use grammars (schemas and DTDs) to define the syntax of the
annotations used in a document

• Captures meta-data for a document by marking up the content

Summer 2022– University of Virginia 14© Praphamontripong

Characteristics of XML
1. XML is extensible

• Tags have been designed for mathematics, format specification, resumes,
recipes, addresses, pizza, …

2. XML has a strict structure

3. XML is validating

• Grammars (schemas and DTDs) define XML languages

• Documents can be checked against the grammar

• Allows programs to assume the data is formatted correctly, reducing
the amount of checking the program must do

Summer 2022– University of Virginia 15© Praphamontripong

XML Provides Data Independence
• Allows data to be used by any application

• Requires every document to be in a clear and specific format

• Fosters information sharing better than other markup
languages

Summer 2022– University of Virginia 16© Praphamontripong

XML Simplifies Data Sharing
• Plain text

• Create and edit files with any editor
• Easy to debug
• Scalability : suitable for both small and large scaled data

• Data identification
• Once different parts of the information have been identified, they can

be used in different ways by different applications

• Data transference
• Very easy to move between XML and form parameters
• Very easy to move between XML and databases

Summer 2022– University of Virginia 17© Praphamontripong

XML Example: Message

<message>
<to> you@yourAddress.com </to>
<from> me@myAddress.com </from>
<subject> XML Is Really Cool </subject>
<text>

How many ways is XML cool? Let me count the ways ...
</text>

</message>

Summer 2022– University of Virginia 18© Praphamontripong

Another Example: Software Library
<library>

<component>
<cname> simple_list </cname>
<method>

<mname> create </mname>
<paramNo> 1 </paramNo>
<param>

<pname> L </pname>
<ptype> list </ptype>

</param>
<postcond>

<operator> exist </operator>
<right> L </right>
<and>

<subcond>
<left> L </left>
<operator> is </operator>
<right> empty </right>

</subcond>
</and>

</postcond>
<return> none </return>

</method>

<method>
<mname> clear </mname>
<paramNo> 1 </paramNo>
<param>

<pname> L </pname>
<ptype> list </ptype>

</param>
<precond>

<operator> exist </operator>
<right> L </right>

</precond>
<postcond>

<left> L </left>
<operator> is </operator>
<right> empty </right>

</postcond>
<return> none </return>

</method>

…
</library>

Summer 2022– University of Virginia 19© Praphamontripong

Another Example: Component Spec

To enhance the retrieval performance, we construct three additional

characteristics of a component specification by extending supplementary elements to a

basic structure shown in figures 4 and 5, named a Boolean-conditions, a multi-level-

conditions, and an is-a components.

 51

method1

cname

method2 …

methodn

paramNo
mname

param1

paramn

…

precond1

precondn

return1

returnn

…

ptype
pname

psize

subcond1

and/or subcond2

output
information

input
information

behavior
…

left
operator
right
left
operator
right

subcond1

and/or subcond2

left
operator
right

and/or subcond3

…
postcondn

postcond1

left
operator
right
left
operator
right

left
operator
right

and/or subcond3

component

Figure 6: A hierarchical view of an XML-based software component specification with Boolean conditions

The structure of a component with a Boolean condition is illustrated in figure 6,

equivalent to a textual view shown in figure 7. Applying Boolean operator to a pre-

condition or a post-condition of a method leads to a more specific pre-condition or post-

condition. The input and output information are represented in the same manner as the

basic one, illustrated in figures 4 and 5. The behavior, expressed in a pre-condition or a

post-condition, is specified with a subcond element followed by an and or or element.

[XML-based software component retrieval, U. Praphamontripong and H. Gongzhu]

Summer 2022– University of Virginia 20© Praphamontripong

 58

component information: input, output, pre-condition, and post-condition where total

weights of these four parts are 100. To do so, the users are allowed to specify weight

values at the query interface.

 <component>
 <cname> component_name </cname>
 <method>
 <mname> method_name1 </mname>
 <paramNo> no_of_parameter </paramNo>
 <param>
 <pname> parameter_name1 </pname>
 <ptype> parameter_type1 </ptype>
 <psize> parameter_size1 </psize>
 </param>
 …
 <precond>
 <weight> weight1 </weight>
 <left> left_operand1 </left>
 <operator> operator1 </operator>
 <right> right_operand1 </right>
 </precond>
 <precond>
 <weight> weight2 </weight>
 <left> left_operand2 </left>
 <operator> operator2 </operator>
 <right> right_operand2 </right>
 </precond>
 …
 <postcond>
 <weight> weight1 </weight>
 <left> left_operand1 </left>
 <operator> operator1 </operator>
 <right> right_operand1 </right>
 </postcond>
 <postcond>
 <weight> weight2 </weight>
 <left> left_operand2 </left>
 <operator> operator2 </operator>
 <right> right_operand2 </right>
 </postcond>
 …
 <return> return_type </return>
 </method>
 …
 </component>

Figure 14: A textual view of an XML-based software component specification with weight elements

Another Example: Component Spec

[XML-based software component retrieval, U. Praphamontripong and H. Gongzhu]

Summer 2022– University of Virginia 21© Praphamontripong

XML Structure
• Containment: Tags can be contained in other tags

• Tag names should be meaningful

• All tags must have an end tag
• Note that HTML does not (i.e., HTML is not fully SGML-compliant)

Summer 2022– University of Virginia 22© Praphamontripong

XML Can Easily Be Validated
• XML messages are described in grammars

• Two ways to describe an XML language
• Schemas : Grammar plus types and facets
• Document Type Definitions (DTD) : Older, easier to read and understand,

but somewhat limited

• Documents can be checked against the grammar

• Grammar can specify that certain fields are required

• Allows programs to assume the data is formatted correctly,
reducing the amount of checking the program must do

Summer 2022– University of Virginia 23© Praphamontripong

Syntax of XML
• XML syntax is defined at two levels

• General syntax : defines syntax on all XML documents
• Correct documents said to be “well formed”

• Specific syntax : defines syntax on a specific group of
documents
• Correct documents said to be “valid”

• Statements in an XML document
• XML declaration – which version of XML

• Data elements – the primary contents of the document

• Markup declarations – instructions to XML parser

• Processing instructions – instructions to the program

Well formed
à adheres to

the XML
standard
(syntax)

Valid
à adhere to a

DTD or
schema
(semantics)

Summer 2022– University of Virginia 24© Praphamontripong

XML Declaration
<?xml version="1.0" encoding="ISO-8859-1" standalone="yes" ?>

• version
• Identifies the version of the XML markup language used in the data
• This attribute is required

• encoding
• Identifies the character set used to encode the data
• "ISO-8859-1" is "Latin-1" the Western European and English language

character set
• Default is compressed Unicode: UTF-8

• standalone
• Tells whether or not this document references an external entity or an

external data type specification
• If there are no external references, use “yes”

optionalrequired

Summer 2022– University of Virginia 25© Praphamontripong

XML Data Element (or Tag) Names
• Must start with a letter or underscore, and can include digits,

hyphens, and periods

• XML names are case sensitive
• lastName, lastname, LASTNAME are all different

Summer 2022– University of Virginia 26© Praphamontripong

XML General Syntax Rules
“Well-formed”

• Every XML document has a single root element
• Opening tag must be first line of XML
• All other elements are nested inside the root element

• XML tags are surrounded by pointy brackets “< >”

• Every XML tag must have a closing tag
• If no content: <empty/>

• XML elements must be properly nested
• <I> … </I> is not well formed XML

• All attribute values must be enclosed in quotes

Summer 2022– University of Virginia 27© Praphamontripong

XML Example
Pizza Markup Language (PML)

<pizza>
<topping extracheese=“yes”>Pepperoni</topping>
<price>13.00</price>
<size>large</size>

</pizza>

root
element attribute data

value

Summer 2022– University of Virginia 28© Praphamontripong

Attributes vs. Nested Tags
• In PML, “extraCheese” could have been defined as attribute or

a nested tag

• Images can only be attributes

• It is easier to add new tags than attributes

• Attributes cannot define structure

<… name=“Yao Ming”> <name>
<familyName>Ming</familyName>
<givenName>Yao</givenName>

</name>

Attribute Nested Tags

Summer 2022– University of Virginia 29© Praphamontripong

Attributes vs. Nested Tags (2)
• Attributes are necessary when:
• Identifying numbers or names of elements
• Values are selected from a finite set

• Attributes should be used when:
• No substructure
• Attribute describes information about the element

Summer 2022– University of Virginia 30© Praphamontripong

XML Entity References (Variables)
• Entities are usually used to embed special characters into XML

messages

• Document Entity : The file that represents the document

• Other entities have names

• Entity names start with letters, dash, colon
• Can also contain digits, periods, underscores

• References to entities surround name with &;
• &entityName;

• Some built-in XML entities: < > & " '

• Use entities to avoid malformed XML
<pred> X < Y </pred> … <pred> X < Y </pred>

Summer 2022– University of Virginia 31© Praphamontripong

XML vs. HTML
• Unlike HTML, XML tags tell you what the data means, rather

than how to display it

• XML elements must be strictly nested, XML can represent data
in any level of complexity

• Both XML and HTML allow empty tags; in XML an empty tag
must be followed by a forward slash: <emptyTag />

• XML attribute values must be surrounded by single or double
quotes but HTML does not require quotes for single values

• XML tags are case sensitive but HTML tags are not

Summer 2022– University of Virginia 32© Praphamontripong

Summary
• XML gives software engineers an incredibly flexible, simple, and powerful

way to represent data
• Works with all sorts of data
• Maps naturally to tables, spreadsheets and databases

• Grammatical rules can be defined

• Well formed XML may not be valid

• Valid XML is well formed XML

• Human readable

• Performance costs
• Plain text files use more space on disk
• Takes time to read, write, and reformat XML to and from internal representations
• This cost is seldom important and almost never within web applications

