
Spring 2024 – University of Virginia 1© Praphamontripong© Praphamontripong

SQL – Subqueries

CS 4750
Database Systems

[A. Silberschatz, H. F. Korth, S. Sudarshan, Database System Concepts, Ch.5.3]



Spring 2024 – University of Virginia 2© Praphamontripong

Subqueries: Core Idea

The smaller the problem, the simpler to solve, the easier to debug

Split your problem into sub-problems

Solve them separately

Compose them



Spring 2024 – University of Virginia 3© Praphamontripong

Subqueries
• Subquery = a query that is part of another query

• A subquery can have subqueries

Usage: 

• Return a single constant that can be used to compute an 
associated value in a SELECT clause

• Return a single constant that can be compared to another value 
in a WHERE clause

• Return a relation that can be compared or evaluated in a WHERE
clause

• Return a relation that can be used as input for another query, in 
a FORM clause



Spring 2024 – University of Virginia 4© Praphamontripong

Equivalent Query Example

SELECT job, AVG(sal) 
FROM practice_emp
GROUP BY job

empno ename job sal
7369 Smith Clerk 1200
7499 Allen Salesman 2000
7521 Ward Salesman 1650
7566 Jones Manager 3375
7654 Martin Salesman 1650
7698 Blake Manager 3250
7782 Clark Manager 2850
7788 Scott Analyst 3500
7839 King President 6500
7844 Turner Salesman 1900
7876 Adams Clerk 1500
7900 James Clerk 1350
7902 Ford Analyst 3500
7934 Miller Clerk 1700

Find the average salary for each job

job AvgSal
Analyst 3500.0000
Clerk 1437.5000
Manager 3158.3333
President 6500.0000
Salesman 1800.0000

Idea (self join):
1. Self-join practice_emp
2. Use one copy to aggregate, group by job
3. Use one copy to keep the original job

SELECT E1.job, AVG(E2.sal) AS AvgSal
FROM practice_emp E1, practice_emp E2
WHERE E1.job = E2.job
GROUP BY E1.job

practice_emp



Spring 2024 – University of Virginia 5© Praphamontripong

(Equivalent) Subquery (SELECT)

Idea:
1. Group by job
2. For each tuple, compute aggregate

job AvgSal
Analyst 3500.0000
Clerk 1437.5000
Manager 3158.3333
President 6500.0000
Salesman 1800.0000

SELECT E1.job, 
(SELECT AVG(E2.sal)
FROM practice_emp AS E2
WHERE E1.job = E2.job) AS AvgSal

FROM practice_emp E1
GROUP BY E1.job

“Correlated” query
Recomputed for each tuple
(can’t be run independently 

of the outer query)

Find the average salary for each job

empno ename job sal
7369 Smith Clerk 1200
7499 Allen Salesman 2000
7521 Ward Salesman 1650
7566 Jones Manager 3375
7654 Martin Salesman 1650
7698 Blake Manager 3250
7782 Clark Manager 2850
7788 Scott Analyst 3500
7839 King President 6500
7844 Turner Salesman 1900
7876 Adams Clerk 1500
7900 James Clerk 1350
7902 Ford Analyst 3500
7934 Miller Clerk 1700

practice_emp

A subquery in SELECT returns a single value – used to 
compute an associated value



Spring 2024 – University of Virginia 6© Praphamontripong

(Equivalent) Subquery (FROM)

SELECT E1.job, AvgSal
FROM practice_emp E1, 

(SELECT job, AVG(sal) AS AvgSal
FROM practice_emp
GROUP BY job) AS E2

WHERE E1.job = E2.job    
GROUP BY E1.job

Idea:
1. Compute aggregate for each job
2. Join the original practice_emp

Find the average salary for each job

job AvgSal
Analyst 3500.0000
Clerk 1437.5000
Manager 3158.3333
President 6500.0000
Salesman 1800.0000

“Uncorrelated” query
Independent of outer query

empno ename job sal
7369 Smith Clerk 1200
7499 Allen Salesman 2000
7521 Ward Salesman 1650
7566 Jones Manager 3375
7654 Martin Salesman 1650
7698 Blake Manager 3250
7782 Clark Manager 2850
7788 Scott Analyst 3500
7839 King President 6500
7844 Turner Salesman 1900
7876 Adams Clerk 1500
7900 James Clerk 1350
7902 Ford Analyst 3500
7934 Miller Clerk 1700

practice_emp

A subquery in FROM returns a relation – used as input for 
another query



Spring 2024 – University of Virginia 7© Praphamontripong

Subqueries in WHERE

empno ename job sal
7369 Smith Clerk 1200
7499 Allen Salesman 2000
7521 Ward Salesman 1650
7566 Jones Manager 3375
7654 Martin Salesman 1650
7698 Blake Manager 3250
7782 Clark Manager 2850
7788 Scott Analyst 3500
7839 King President 6500
7844 Turner Salesman 1900
7876 Adams Clerk 1500
7900 James Clerk 1350
7902 Ford Analyst 3500
7934 Miller Clerk 1700

SELECT E1.ename
FROM practice_emp E1
WHERE E1.sal = 

(SELECT MAX(E2.sal)
FROM practice_emp AS E2
WHERE E1.job = E2.job)

Find employee name (or names) who earns the highest salary 
for each job

[more subqueries in WHERE later]

“Correlated”

ename
Allen
Jones
Scott
King
Ford
Miller

practice_emp

A subquery in WHERE returns a single value – to be compared 
to another value in a WHERE clause



Spring 2024 – University of Virginia 8© Praphamontripong

Subqueries in WITH

practice_emp
empno ename job sal
7369 Smith Clerk 1200
7499 Allen Salesman 2000
7521 Ward Salesman 1650
7566 Jones Manager 3375
7654 Martin Salesman 1650
7698 Blake Manager 3250
7782 Clark Manager 2850
7788 Scott Analyst 3500
7839 King President 6500
7844 Turner Salesman 1900
7876 Adams Clerk 1500
7900 James Clerk 1350
7902 Ford Analyst 3500
7934 Miller Clerk 1700

WITH temp AS 
(SELECT job, MAX(sal) AS maxSal
FROM practice_emp
GROUP BY job)

SELECT E1.ename
FROM  practice_emp AS E1, temp AS T
WHERE E1.sal = T.maxSal AND

E1.job = T.job

Find employee name (or names) who earns the highest salary 
for each job

[WITH -- not supported by MySQL 5.6, 5.7; work on MySQL 8.0 (GCP and CS server) and XAMPP MariaDB]

“Uncorrelated”

ename
Allen
Jones
Scott
King
Ford
Miller

A subquery in WITH clause returns a temporary relation that 
can be used by an associated query



Spring 2024 – University of Virginia 9© Praphamontripong

Subqueries and Set Operations
UNION

INTERSECT

EXCEPT

(sub-result1)

(sub-result2)

UNION

(sub-result1)

(sub-result2)

INTERSECT

(sub-result1)

(sub-result2)

EXCEPT

Requirements: 

• Same number of 
columns

• Same order of 
columns

• Same column 
data types

We talked about UNION and INTERSECT. Let’s consider EXCEPT

[not supported by MySQL 
5.6, 5.7; work on MySQL 
8.0 (GCP and CS server)
and local XAMPP 10.4.11-

MariaDB]

[not supported by MySQL 
5.6, 5.7; work on MySQL 
8.0 (GCP and CS server)
and local XAMPP 10.4.11-

MariaDB]



Spring 2024 – University of Virginia 10© Praphamontripong

Example: Let’s Solve A Problem
Use the following schema. Find IDs and names of all customers 
who have purchased products sold by company 7777 only. Do 
not list customers who have purchased from any other 
companies.

Product(pid, name, cid) 
-- cid is foreign key to Company.cid

Company(cid, cname, city) 
Customer(custId, name, city)
Purchase(purchase_date, pid, custId, quantity, price) 

-- pid is foreign key to Product.pid, 
-- custId is foreign key to Customer.custId

Assume each customer may purchase the same product multiple times 

How should we solve this problem?



Spring 2024 – University of Virginia 11© Praphamontripong

Set difference (–)

(sub-result1)

(sub-result2)

EXCEPT How should we solve this problem?

(Find all customers who have purchased)

(Find all customers who have purchased 
from other companies, not 7777)

EXCEPT 

2

1

Example: Let’s Solve A Problem



Spring 2024 – University of Virginia 12© Praphamontripong

(Find all customers who have purchased)

(Find all customers who have purchased 
from other companies, not 7777)

EXCEPT 

– =

Use EXCEPT to Solve the Problem

(sub-result1) (sub-result2)
(difference)

2

1



Spring 2024 – University of Virginia 13© Praphamontripong

Find which companies the customers have purchased.
Then, find the names of the customers

(Find all customers who have purchased)

SELECT T1.custId, T2.cid
FROM Purchase T1 NATURAL JOIN Product T2
GROUP BY T1.custId, T2.cid

Use EXCEPT to Solve the Problem (2)

Got all customers who 
have purchased.

Still need to find the 
names of the customers

1



Spring 2024 – University of Virginia 14© Praphamontripong

Find which companies the customers have purchased
Then, find the names of the customers

(Find all customers who have purchased)

SELECT T3.custId, T3.name
FROM (SELECT T1.custId, T2.cid

FROM Purchase T1 NATURAL JOIN Product T2
GROUP BY T1.custId, T2.cid) T 

NATURAL JOIN Customer T3

Use EXCEPT to Solve the Problem (3)
1



Spring 2024 – University of Virginia 15© Praphamontripong

Find all customers who have purchased from other companies
Then, find the names of the customers

SELECT T1.custId

FROM Purchase T1 NATURAL JOIN Product T2

WHERE T2.cid <> 7777

GROUP BY T1.custId

(Find all customers who have purchased 
from other companies, not 7777)

Use EXCEPT to Solve the Problem (4)
2

Got all customers who have 
not purchased from 7777.

Still need to find the names 
of the customers



Spring 2024 – University of Virginia 16© Praphamontripong

SELECT T3.custId, T3.name

FROM (SELECT T1.custId

FROM Purchase T1 NATURAL JOIN Product T2

WHERE T2.cid <> 7777

GROUP BY T1.custId) T 
NATURAL JOIN Customer T3

Use EXCEPT to Solve the Problem (5)

Find all customers who have purchased from other companies
Then, find the names of the customers

(Find all customers who have purchased 
from other companies, not 7777)

2



Spring 2024 – University of Virginia 17© Praphamontripong

EXCEPT 

(SELECT T3.custId, T3.name
FROM (SELECT T1.custId

FROM Purchase T1 NATURAL JOIN Product T2

WHERE T2.cid <> 7777
GROUP BY T1.custId) T 

NATURAL JOIN Customer T3) 

(SELECT T3.custId, T3.name
FROM (SELECT T1.custId, T2.cid

FROM Purchase T1 NATURAL JOIN Product T2
GROUP BY T1.custId, T2.cid) T 

NATURAL JOIN Customer T3)

–

=

Use EXCEPT to Solve the Problem (6)

2

1



Spring 2024 – University of Virginia 18© Praphamontripong

LEFT OUTER JOIN

(SELECT T3.custId, T3.name
FROM (SELECT T1.custId

FROM Purchase T1 NATURAL JOIN Product T2
WHERE T2.cid <> 7777
GROUP BY T1.custId) T 

NATURAL JOIN Customer T3) result2

(SELECT T3.custId, T3.name
FROM (SELECT T1.custId, T2.cid

FROM Purchase T1 NATURAL JOIN Product T2
GROUP BY T1.custId, T2.cid) T 

NATURAL JOIN Customer T3) result1

–

=

Workaround for EXCEPT

2

1

ON result1.custId = result2.custId
WHERE result2.custId IS NULL

SELECT result1.custId, result1.name 
FROM



Spring 2024 – University of Virginia 19© Praphamontripong

Example: UNION

UNION

(SELECT T3.custId, T3.name
FROM (SELECT T1.custId

FROM Purchase T1 NATURAL JOIN Product T2

WHERE T2.cid <> 7777
GROUP BY T1.custId) T 

NATURAL JOIN Customer T3) 

(SELECT T3.custId, T3.name
FROM (SELECT T1.custId, T2.cid

FROM Purchase T1 NATURAL JOIN Product T2
GROUP BY T1.custId, T2.cid) T 

NATURAL JOIN Customer T3)

U

=



Spring 2024 – University of Virginia 20© Praphamontripong

Example: INTERSECT

INTERSECT

(SELECT T3.custId, T3.name
FROM (SELECT T1.custId

FROM Purchase T1 NATURAL JOIN Product T2

WHERE T2.cid <> 7777
GROUP BY T1.custId) T 

NATURAL JOIN Customer T3) 

(SELECT T3.custId, T3.name
FROM (SELECT T1.custId, T2.cid

FROM Purchase T1 NATURAL JOIN Product T2
GROUP BY T1.custId, T2.cid) T 

NATURAL JOIN Customer T3)

∩

=



Spring 2024 – University of Virginia 21© Praphamontripong

Workaround for INTERSECT

∩

=

JOIN    -- inner join

(SELECT T3.custId, T3.name
FROM (SELECT T1.custId

FROM Purchase T1 NATURAL JOIN Product T2
WHERE T2.cid <> 7777
GROUP BY T1.custId) T 

NATURAL JOIN Customer T3) result2

(SELECT T3.custId, T3.name
FROM (SELECT T1.custId, T2.cid

FROM Purchase T1 NATURAL JOIN Product T2
GROUP BY T1.custId, T2.cid) T 

NATURAL JOIN Customer T3) result1

2

1

ON result1.custId = result2.custId

SELECT DISTINCT result1.custId, result1.name 
FROM



Spring 2024 – University of Virginia 22© Praphamontripong

Wrap-Up
• Subqueries in SELECT, FROM
• Abstract immediate result using WITH 
• Equivalent queries
• Intro to subqueries in WHERE
• Subqueries and set operations

Note:
• Avoid nested queries – if aiming for speed
• Be careful of semantics of nested queries

• Correlated vs. Uncorrelated

What’s next? 
• Subqueries in WHERE
• Existential and universal quantifiers
• Triggers and constraints


