
Spring 2024 – University of Virginia 1© Praphamontripong© Praphamontripong

SQL – Subqueries
in WHERE Clause
and Quantifiers

CS 4750
Database Systems

[A. Silberschatz, H. F. Korth, S. Sudarshan, Database System Concepts, Ch.5.3]

Spring 2024 – University of Virginia 2© Praphamontripong

Subqueries in WHERE
Return a single value or a relation that can be compared to
another value in a WHERE clause

Find the name(s) of the employee(s) who earn the highest salary
for each job

HW_emp(empno, ename, job, sal)

SELECT E1.ename
FROM HW_emp E1
WHERE E1.sal = (SELECT MAX(E2.sal)

FROM HW_emp E2
WHERE E1.job = E2.job);

”Correlated” query

revisit

Spring 2024 – University of Virginia 3© Praphamontripong

Subqueries in WHERE
Return a single value or a relation that can be compared to
another value in a WHERE clause

Find the name(s) of the instructor(s) who earn the highest salary

Instructor (dept_name, ID, name, salary)

SELECT name
FROM instructor
WHERE salary = (SELECT MAX(salary)

FROM instructor);

“Uncorrelated” query

Spring 2024 – University of Virginia 4© Praphamontripong

Subqueries in WHERE
Can be used to evaluate existential or universal quantifiers

SELECT … WHERE constant > ANY (subquery);

SELECT … WHERE constant > ALL (subquery);

SELECT … WHERE attribute IN (subquery);

SELECT … WHERE attribute NOT IN (subquery);

SELECT … WHERE EXISTS (subquery);

SELECT … WHERE NOT EXISTS (subquery);

ANY (∃)

ALL (∀)

IN

NOT IN

EXISTS

NOT EXISTS

At least one element All elements

Any relational operators
Values of a column

Rows

Spring 2024 – University of Virginia 5© Praphamontripong

Existential Quantifier (EXISTS)
account (account_number, branch_name, balance)
borrower (customer_name, loan_number)
branch (branch_name, branch_city, assets)
depositor (customer_name, account_number)
loan (loan_number, branch_name, amount)

Find the names of the branches that have some customers who
have both loan(s) and account(s) from the bank

SELECT T1.branch_name
FROM account T1
WHERE EXISTS

(SELECT *
FROM depositor D NATURAL JOIN borrower B
WHERE D.account_number = T1.account_number);

Correlated
tuple(s)

Spring 2024 – University of Virginia 6© Praphamontripong

Existential Quantifier (IN)

Find the names of the branches that have some customers who
have both loan(s) and account(s) from the bank

SELECT T1.branch_name
FROM account T1
WHERE T1.account_number IN

(SELECT D.account_number
FROM depositor D NATURAL JOIN borrower B);

attribute

attribute

Decorrelated

account (account_number, branch_name, balance)
borrower (customer_name, loan_number)
branch (branch_name, branch_city, assets)
depositor (customer_name, account_number)
loan (loan_number, branch_name, amount)

Spring 2024 – University of Virginia 7© Praphamontripong

IN and Set Membership

I need to know who takes the following courses:
CS-101, CS-315, or BIO-101

SELECT *
FROM takes
WHERE course_id IN

('CS-101', 'CS-315', 'BIO-101');

attribute
Set of literal values

takes (ID, course_id, sec_id, semester, year, grade)

SELECT *
FROM takes
WHERE course_id='CS-101' OR course_id='CS-315' OR

course_id='BIO-101';

Spring 2024 – University of Virginia 8© Praphamontripong

Existential Quantifier

Find the names of the customers who made some purchases that
are > $1000

SELECT DISTINCT T1.name
FROM Customer T1 NATURAL JOIN purchase T2
WHERE 1000 < T2.price

Product(pid, name, cid)
Company(cid, cname, city)
Customer(custId, name, city)
Purchase(purchase_date, pid, custId, quantity, price)

Spring 2024 – University of Virginia 9© Praphamontripong

Existential Quantifier (ANY)

Find the names of the customers who made some purchases that
are > $1000

SELECT DISTINCT T1.name
FROM Customer T1
WHERE 1000 < ANY

(SELECT price
FROM purchase T2
WHERE T1.custId = T2.custId)

Correlated

constant

Product(pid, name, cid)
Company(cid, cname, city)
Customer(custId, name, city)
Purchase(purchase_date, pid, custId, quantity, price)

Note: another way to solve (with subquery)

Spring 2024 – University of Virginia 10© Praphamontripong

Universal Quantifier

Find the names of the customers who made purchases that are
> $1000 only

Product(pid, name, cid)
Company(cid, cname, city)
Customer(custId, name, city)
Purchase(purchase_date, pid, custId, quantity, price)

Find the names of the customers such that all their purchases
are > $1000

There does not exist any purchases the customer made where
price <= $1000

Spring 2024 – University of Virginia 11© Praphamontripong

Universal Quantifier (NOT IN)

Find the names of the customers who made purchases that are
> $1000 only

Product(pid, name, cid)
Company(cid, cname, city)
Customer(custId, name, city)
Purchase(purchase_date, pid, custId, quantity, price)

Step 1: Find the customers who make some purchases <= 1000

SELECT DISTINCT T1.name
FROM Customer T1
WHERE T1.custId IN (SELECT T2.custId

FROM Purchase T2
WHERE T2.price <= 1000)

Solution #1

Spring 2024 – University of Virginia 12© Praphamontripong

Universal Quantifier (NOT IN)
Find the names of the customers who made purchases that are
> $1000 only

Step 1: Find the customers who make some purchases <= 1000

SELECT DISTINCT T1.name
FROM Customer T1
WHERE T1.custId IN (SELECT T2.custId

FROM Purchase T2
WHERE T2.price <= 1000)

Step 2: Find all customers who make purchase > 1000

SELECT DISTINCT T1.name
FROM Customer T1 NATURAL JOIN Purchase P
WHERE T1.custId NOT IN (SELECT T2.custId

FROM Purchase T2
WHERE T2.price <= 1000)

Spring 2024 – University of Virginia 13© Praphamontripong

Universal Quantifier (NOT EXISTS)

Find the names of the customers who made purchases that are
> $1000 only

Product(pid, name, cid)
Company(cid, cname, city)
Customer(custId, name, city)
Purchase(purchase_date, pid, custId, quantity, price)

SELECT DISTINCT T1.name
FROM Customer T1 NATURAL JOIN purchase
WHERE NOT EXISTS (SELECT *

FROM purchase T2
WHERE T1.custId = T2.custId AND

T2.price <= 1000)

Solution #2

Spring 2024 – University of Virginia 14© Praphamontripong

Universal Quantifier (ALL)

Find the names of the customers who made purchases that are
> $1000 only

Product(pid, name, cid)
Company(cid, cname, city)
Customer(custId, name, city)
Purchase(purchase_date, pid, custId, quantity, price)

SELECT DISTINCT T1.name
FROM Customer T1 NATURAL JOIN Purchase
WHERE 1000 < ALL (SELECT T2.price

FROM purchase T2
WHERE T1.custId = T2.custId)

Solution #3

Spring 2024 – University of Virginia 15© Praphamontripong

Let’s Try 1: NOT EXISTS

Find the name(s) of the customer(s) who has a loan but does not
have an account. Do not repeat the customer name.

SELECT DISTINCT B.customer_name
FROM borrower AS B
WHERE NOT EXISTS

(SELECT *
FROM depositor AS D
WHERE B.customer_name = D.customer_name);

Correlated

tuple(s)

account (account_number, branch_name, balance)
borrower (customer_name, loan_number)
branch (branch_name, branch_city, assets)
depositor (customer_name, account_number)
loan (loan_number, branch_name, amount)

Spring 2024 – University of Virginia 16© Praphamontripong

Find the name(s) of the customer(s) who has a loan but does not
have an account. Do not repeat the customer name.

SELECT DISTINCT B.customer_name
FROM borrower AS B
WHERE B.customer_name NOT IN

(SELECT D.customer_name
FROM depositor AS D);attribute attribute

Decorrelated

Let’s Try 2: NOT IN
account (account_number, branch_name, balance)
borrower (customer_name, loan_number)
branch (branch_name, branch_city, assets)
depositor (customer_name, account_number)
loan (loan_number, branch_name, amount)

Note: another way to solve (equivalent to previous slide)

Spring 2024 – University of Virginia 17© Praphamontripong

Wrap-Up
• Subqueries in WHERE
• Internal interpretation of nested queries
• Many ways to express queries

Note:
• Avoid nested queries – if aiming for speed
• Be careful of semantics of nested queries

• Correlated vs. Uncorrelated

What’s next?
• Advanced SQL

