Indexing

CS 4750
Database Systems

[Silberschatz, Korth, Sudarshan, “"Database System Concepts,” Ch.14]
[H. Garcia-Molina, J.D. Ullman, J. Widom, Database Systems: The Complete Book, Ch.14]

Spring 2024 — University of Virginia © Praphamontripong

Indexing in a Book

Find information about “"Google Cloud SQL" from

|
B
|
| | Google App Eng
i Eclipse, 256, 259, 270 Coogeniin: yn‘u 19
correction, 100 18Query (see BigQuery A
|| role in data-driven decisions, 4-6 time correctione ~ 5 -mbeddings, AL) R
l . o Sonh, s A e Beam/Cloud Dataflow, B S robability disthy fancH ¢ Ulient library, 74
| support from cloud computing, 6-10 using -\I’Jf"‘ e empirical p|uhahllll:lL‘llslnbul\on mnd‘u»n‘ 169 e Cloud Platform (GCp) 3
| data exploration (see interactive data explora- 101-113 end-user controls, adding in Data Studio, 86-88 benefits of, x]
5 Hoo) DA sy datasoiree 128 Evluting mode performance, 361370 bisection speeds on, 18 ".-:%
adding Big! y J i ipeline, 362 creating
data pipeline . ‘“ ““;E ::mgnms.!“ evaluation pipeline, 36! creating Cloud SQL instances, 73 ||
batch input and output, 336-338 ; E'mns e event feeds o effect on data science, 10-12 L
batching requests, 340 anaaEty building batches in Cloud Pub/Sub, 117 ingesting data into the cloud, 233 b
building with Apache Beam/Cloud Data~ h:w“l* “t 036 creating in Apache Beam, 108 interacting with, 73 L 23-62 b
5 289 chart creation, 84- Lo h
flow, 101-11 _ 289 Create New Metric option, 86 designing, 97-99 — = monitoring AP usage, 339 |
data processing portion, 338 b SRAe up, 82 publishing batches in Cloud Pub/Sub, 118 persistent drives in, 32 |
debugging, 269, 277-288, 339 it SORICosEs Spte ishing event streams, 113- eemptible machines
r;lvsﬁrflrum rocessing, 119-130, end-user controls, 86-88 publlshlnbf‘\éﬂ» ,‘m ms, 113-119 preemptible machines on, 203
i e explaining contingency tables, 93-95 eventual consistency, 46 Project creation, 20-22
S e SoncepteIniga Experiment class (TensorFlow), 299-308, 329 reference architecture, 119
S e Dl pie-charts, 88-91 exploratory data analysis (EDA) REST API actions, 74
261,) Sy benefits of dashboard creation for, 68 = CIWOrking
source code for, x data, filtering e —
challenges of, 133 support for data engineers, 6-10

Google Cloud SQL

Creating instances, 72

loading data onto, 71
streaming pipelines and, 353
Qe Cloud Storage
file handling in, 46
job speeds on, 35
removing duplicates, 285-288

defined, 257

on occurrence frequency, 165

data processing architectures using Apache B_cam, 257/ vfb()
choices for large datasets, 29-3 using Apache Pig, 208-212 goals o 132

vl Qe ey importance of, 65

Airline On-time Performance Data, 23-29 exponemial e e

Extract-Transform-Load (ETL) pipeline, 99

vs. dashboard creation, 65, 133
development of, 131

specifying input and output fil
windowing pipelines, 120, 25.

1ies to, 261

automating, 38-48
scaling up, 31-33 data processing architectures, 29-37
data science models scheduling monthly downloads, 48-61

Some book

benefits of Google Cloud Platform for, x data-driven decisions .
building initial, 78-81 role of data engincers in, 4-6 FarmHash library, 174 staging BigQuery data on, 136
continuous training of, 361 support for, 1-4 feature crossing, 314 uploading data to, 45-48
creating more complex, 292-295 Datatlow (see Cloud Dataflow) feature engineering, 235-251 Google File System (GES), 36, 184
dangers of overfitting, 292 Datalab (see Cloud Datalab) categorical variables, 248 Graphic Detail blog, 70 o
deep neural network model, 309-312 datalab.bigquery package, 157 creating held-out dataset, 238 graphics, types of, 69
deploying, 325-329 Dataproc (see Cloud Dataproc) defined, 236 (see. a’lso dnshi)oards)
developing, 166-172 debugging, 269-271 dimensionality reduction, 250
evaluating, 172-179, 212, 232, 361-370 decision hyperplanes, 330 feature selection, 239 H
goals of, 132 decision thresholds, 80 .
& (ORI Hadoop Distributed File System (HDES), 33,

decisions, making better based on data, 1-22 Bamework or.236

-
- Look for the keywords in =~ &
linear classifier, 301-329 deep neural networks, 309-312 + g 36,184
e 5 scaling and clipping features, 242
dimensionality reduction, 250 ‘ dels, 235 Hadoop ecosystem, 187
value of simpler models, head-of.line blocking, 37

logistic regression, 218-235

- MapReduce model, 33, 181-190 dimensionality, curse of, 217 Jocht 36,239
t h e I n d e X probabilistic decision making, 13-19 directed acyclic graph (DAG), 187 feature s ecu({n, 236, ~-help command, 73
probabilistic decision-making, 168, 191 distributed training federated queries, 142-144) hesbin plot, 193
two-variable Bayesian, 181-215 defined, 291 filtering data (see data, filtering) histogram equalization, 198:202
wide-and-deep models, 314-317 in the cloud, 307 Flask, 57 hwgmmmmmf vuning, 317-325,330
data streaming process of, 298 Flume, 101
- benefits of, 97 DoFn interface, 259 frequency analysis attacks, 376
[) I n e p a g e S W e re event feeds, designing, 97-99 downloads, scheduling, 48-61 ‘
e::ln(streams, publishing, 113-119 dplyr package, 134 G mde?"‘:e““ checlk. L?;;.“S
real-time stream processing, 119130, duplicates, removing, 285-288 ing lent samples,
h 342-352 d}':l:amic resource al‘l;;caﬁon, 36 Bdund consaud 2o ill:z;nnﬁd‘“mo the cloud, 23-29
€ WOords occur L o cions
388 | Index — — — ==

- Read the pages to find |
the information Sorted order

© Praphamontripong

Spring 2024 — University of Virginia

Indexing in Database

Example: Find 2" year students who have taken < 45 credits

There might be 10,000

tuples in students relation.

SELECT *
FROM students
WHERE year=2 AND credits < 45;

Get all 10,000 tuples and test the condition
of the WHERE clause on each tuple?

- Find which disk block the corresponding record resides
- Fetch the disk block

- Get the appropriate student records

Is there a way to get only the tuples from 2nd year students
and then test each of them to see if the credits match?

Spring 2024 — University of Virginia © Praphamontripong

Indexing in Database

- Indexing = data structure technique to optimize the performance
of a database by minimizing the number of disk accesses required
when query is processed

- Basic algorithm to search - linear. However, complex search
queries (especially with joins) impacts performance

- Indexing helps improve performance

Common structure used by
a typical DBMS is B+ tree

The key for the index can be any attribute or set of attributes and
need not be the key for the relation on which the index is built.

Rule of thumb: Create an index on the attribute that is used
frequently in the search

Spring 2024 — University of Virginia © Praphamontripong

Indexing in Database

- An index takes a value for some field(s) and finds records with the
matching value quickly

File containing a list of indices

value ——

index | —

Blocks :
holding . Matching
records records

Search key

Data reference

May be primary key or candidate Hold the address of the disk block
key of the table (sorted order) where the key value can be found

“Search key” (or “key”) = Field(s)
on whose values the index is based

Spring 2024 — University of Virginia

General index record (structure)

© Praphamontripong

Selection of Indexes

- An index on an attribute may speed up the execution of those
queries in which a value, or range of values, is specified for that
attribute, and may speed up joins involving that attribute.

- On the other hand, every index built for one or more attributes of

some relation makes insertions, deletions, and updates to that
relation more complex and time-consuming.

Database designers must analyze the trade-off

Spring 2024 — University of Virginia © Praphamontripong

Which Indexing Technique to Use

Aspects that must be considered:

- Access types
- Finding records with a specified attribute value (search key), or
- Finding records with attribute value based on a specified range

Access time
- Time needed to find a particular data item or set of data items

Insertion time

- Time to find the place to insert + time to insert a new data item
+ time to update the index structure

Deletion time

« Time to find the data item to be deleted + time to delete the
data + time to update the index structure

Space overhead
- Space occupied by an index structure (vs. performance)

Spring 2024 — University of Virginia © Praphamontripong

Types of File Organization Mechanism

Sequential file organization (or Ordered index)
- Indices based on sorted ordering of the values
- Generally fast
- Basic / traditional structure that most DBs use

Hash file organization (or Hash index)

« Indices based on a uniform distribution of values across a
range of buckets

- Hash function determines a value assigned to a bucket

Spring 2024 — University of Virginia © Praphamontripong

Example: Sequential File

Instructor
10101 _|Srinivasan | Comp. Sci. | 65000 | Instructor records
12121 |[Wu Finance 90000 -
15151 |Mozart | Music 40000 17 - The records are stored
22222 |Einstein | Physics 95000 .~ In SO rted cl)rder of
32343 |ElSaid | History | 60000 | 1~ instructor’s ID (used as
33456 |Gold Physics | 87000 _g a search key)
45565 |Katz Comp. Sci. | 75000 . :
58583 |Califieri | History 62000 | 1 - Search key defines the
76543 |Singh Finance 80000 1 sequential order of the
76766 | Crick Biology | 72000 | 1~ file
83821 |Brandt Comp. Sci. | 92000 -7
98345 |Kim Elec. Eng. | 80000 _7

- L

[Ref: Figure 11.1, Silberschatz, Korth, Sudarshan, “Database System Concepts,” 6th Ed., page 477]
Spring 2024 — University of Virginia © Praphamontripong

Example: Hash File

Bucket index,
B = size of the bucket

Search Hash

key function > [0.1.2,..B-1]

bucket 0
76766 —

bucket 1

; /\ 45565 | —
(key, pointer) () 76543 | -
(key, pointer) zl;czkzeztz . 76766 | Cn i
/ rick Biology 72000
' 10101 | Srinivasan Comp. Sci. 65000
(key’ pomter) \ T 45565 | Katz Comp. Sci. 75000
TR —>| 83821 | Brandt Comp. Sci. | 92000
> 98345 | Kim Elec. Eng. 80000
—> 12121 | Wu Finance 90000
bucket 4 \~> 76543 | Singh Finance 80000
—>| 32343 | El Said History 60000
w /> 58583 | Califieri | History 62000
_><—> 15151 | Mozart Music 40000
bucket 5 ’f// N>[22222 | Einstein Physics 95000
15151 | = .| 58583 | =—|| |»| 33465 | Gold Physics 87000
33456 — 98345 | |1
bucket 6
B-1 83821 |

Bucket array —
UCKE

12121 T
32343 I

[Ref: based in part on Figure 24.6, Silberschatz, Korth, Sudarshan, “Database System Concepts,” 7t Ed., page 1191]
Spring 2024 — University of Virginia © Praphamontripong

Ordered Index Structures

A file may have several indices, on different search keys

- Primary index (or clustered index)

- Search key defines the sequential order of the file

- Search key of a clustering index is often the primary key (but
not necessarily so)

- Secondary index (or unclustered index)

- Search key specifies an order different from the sequential
order of the file

- Use an extra-level of indirection to implement a secondary
index, containing pointers to all the records

Spring 2024 — University of Virginia © Praphamontripong

Example: Primary Index

Search key defines the sequential order of the file

10101

Y

12121

Y

15151

Y

22222

Y

32343

Y

33456

Y

45565

Y

58583

Y

76543

76766

Y

Fast but can result in unnecessary
indices and big space needed

10101

Srinivasan

65000

Y

83821

98345

Y

Y

Comp. Sci. =

12121 |[Wu Finance 90000 -
15151 |Mozart Music 40000 -
22222 | Einstein Physics 95000 .
32343 |El Said History 60000 .
33456 |Gold Physics 87000 ~
45565 |Katz Comp. Sci. | 75000 -
58583 |Califieri History 62000 ~
76543 |Singh Finance 80000 ~
76766 |Crick Biology 72000 =
83821 |Brandt Comp. Sci. | 92000 =
98345 |Kim Elec. Eng. | 80000 -
Instructor

[Ref: Figure 11.2, Silberschatz, Korth, Sudarshan, “Database System Concepts,” 6% Ed., page 478]
Spring 2024 — University of Virginia

© Praphamontripong

J AVAVAVAVAVAVAVAVAVAVAY,

Example: Secondary Index

Search key specifies an order different from the sequential order of
the file

Improve performance of queries on
non-primary keys but impose overhead

Comp. Sci. \ — :
S—— 10101 | Srinivasan | Comp. Sci. | 65000
_ 12121 |Wu Finance 90000
Music 15151 |Mozart | Music 40000
Physics 22222 |Einstein | Physics 95000
32343 |ElSaid History 60000
33456 |Gold Physics 87000
45565 |Katz Comp. Sci. | 75000
58583 |Califieri | History 62000
76543 |Singh Finance 80000
Need an 76766 |Crick Biology 72000
extra-level to 83821 |Brandt Comp. Sci. | 92000
implement 98345 |Kim Elec. Eng. | 80000

Instructor

v

\ 4

v

v

[based in part on Figure 11.6, Silberschatz, Korth, Sudarshan, “Database System Concepts,” 6t" Ed., page 484]
Spring 2024 — University of Virginia © Praphamontripong

Ordered Index

- Created on the basis of the key of the table
- Ordered file with fixed, two fields

Search key Data reference

May be primary key or Hold the address of the disk block
candidate key of the table where the key value can be found

(sorted order)

- Unique to each record (i.e., 1:1 mapping)

- Since primary keys are stored in sorted order, the
performance of the search operation is quite efficient

- Two types:

- Dense index
- Sparse index

Spring 2024 — University of Virginia © Praphamontripong

Dense Index

- A record is created for every search key value
- Need more space to store index records
- Example: a search key is a primary key

Find instructor

with ID “58583"

Instructor

10101 ~ 10101 |Srinivasan | Comp. Sci. | 65000 7

A primary index 12121 - 12121 |Wu Finance 90000
that is dense on a 15151 ~ 15151 |Mozart Music 40000 L
primary-key, 22222 ~| 22222 |Einstein | Physics 95000 L~
ordered table is 32343 ~| 32343 |El Said History 60000 L~
redundant 33456 ~| 33456 |Gold Physics 87000 L~
(requiring 45565 ~| 45565 |Katz Comp. Sci. | 75000 7
unnecessary 58583 | +———| 58583 |Califieri | History 62000 7
spaces) 76543 - 76543 |Singh Finance 80000 7
76766 ~| 76766 |Crick Biology 72000 L~
83821 ~ 83821 |Brandt Comp. Sci. | 92000 ;

98345 - 98345 |Kim Elec. Eng. | 80000

Instructor file is sorted by \ L
instructor’s ID

(every search key valued) Point to the real record on the disk

[Ref: Figure 11.2, Silberschatz, Korth, Sudarshan, “Database System Concepts,” 6% Ed., page 478]
Spring 2024 — University of Virginia

© Praphamontripong

Dense Index
- Support range queries

Find a history instructor
- Example: a search key is not a primary key with ID “58583”

Pointer points to the first data record with the search-value.
The rest of the records are sorted on the same search key

Biology - 76766 | Crick Biology 72000 >
Comp. Sci. ~ 10101 | Srinivasan| Comp. Sci. | 65000 >
Elec. Eng. N 45565 | Katz Comp. Sci. | 75000 .
Finance \\ 83821 | Brandt Comp. Sci. | 92000 -7
History \\ 98345 | Kim Elec. Eng. | 80000 |
Music \ 12121 | Wu Finance 90000 | |«
Physics \\\ 76543 | Singh Finance 80000 1
Instructor file is sorted \ it b S 60000 1
on the search key 58583 | Califieri | History 62000 P
dept-name 15151 | Mozart Music 40000 _7
22222 | Einstein | Physics 95000 | 1«
/ 33465 | Gold Physics 87000 <
Follow the pointer directly to the first record, Instructor —

then follow the pointer in that record to locate the next
record in search key order until the desired record is found

[Ref: Figure 11.4, Silberschatz, Korth, Sudarshan, “Database System Concepts,” 6th Ed., page 480]
Spring 2024 — University of Virginia © Praphamontripong

Dense Index: Lookup

Given a search key K, the index is scanned

- When K is found, the associated pointer to the data file recorded is
followed and the block containing the record is read in main memory

When dense indexes are used for non-primary key, the
minimum value is located first

- Consecutive blocks are loaded in main memory until a search key
greater than the maximum value is found

The index is usually kept in main memory. Thus one disk I/0O
has to be performed during lookup

Since the index is sorted, a binary search can be used.

- If there are n search keys, at most /log,n steps are required to locate
a given search key

Query-answering using dense indices is efficient

Spring 2024 — University of Virginia © Praphamontripong

Sparse Index

- Used when dense indices are too large

- One key-pointer pair per data block
- Can be used only if the relation is stored in sorted order of the

search key
Find instructor
with ID “22222"

10101 10101 |Srinivasan| Comp. Sci.| 65000

Y

32343 | N 12121 [Wu Finance 90000 -7
76766 | \ 15151 |Mozart Music 40000 ~7
22222 |Einstein | Physics 95000 -7
32343 |El Said History 60000 —7
33456 |Gold Physics 87000 —;
45565 |Katz Comp. Sci.| 75000 =
Start with search-key value D858 |Califien | Bistofy | 62000 |+,
less than or equal to the A B AL Pinancé | SON | =,
Gesired seorenvaive, | |1 fca ooy 7 |-
d2l WEElr SSEET 98345 |[Kim Elec. Eng. | 80000 _7
L
Instructor B

[Ref: Figure 11.3, Silberschatz, Korth, Sudarshan, “Database System Concepts,” 6th Ed., page 479]

Spring 2024 — University of Virginia © Praphamontripong

Sparse Index: Lookup

- Given a search key K,

- Search the sparse index for the greatest key < K, using binary
search

- Retrieve the pointed block to main memory to look for the record
with search key K (linear search vs. binary search)

- The index is usually kept in main memory. Thus one disk I/O
has to be performed during lookup

- Efficient in space but may require more computation time due
two binary searches

- Search on the sparse index
- Search on the retrieved data block

Spring 2024 — University of Virginia

© Praphamontripong

Dense Index vs. Sparse Index

A primary index that is dense on an ordered table is redundant
Thus, a primary index on an ordered table is always sparse

Dense indices are faster in general

Sparse indices require less space and impose less maintenance
for insertions and deletions

Salary | Sex

with one entry per block

|
— 1

Try to have a sparse index T N N
|

— | Alexander, Ed
Alfred, Bob

Block anchor
primary key Block Allen, Sam] ‘ | ‘ ‘
value pointer

| Aaron, Ed — | Allen, Troy

Try to keep index size small [gmwion |-

Alexander, Ed

Allen, Troy Anderson, Rob l ‘] \
Anderson, Zach 0——\—>
Arnold, Mack Anderson, Zach

Angel, Joe

Archer, Sue 1 [: l J J

—— | Arnold, Mack

Arnold, Steven

Atkins, Timothy | | [] \

[Ref: Figure 18.1, EImasri Navathe, “Fundamentals of Database Systems,” 6t Ed., page 634]

Spring 2024 — University of Virginia © Praphamontripong

More Info on Indexing

- When a primary key is created for a table, a table is ordered
based on the primary key

- At least one sparse index is created on that record to reduce
search time

- If a column (or some columns) is declared as unique, a
secondary index is created

- Every index introduces more data and more overhead (especially
when doing insert, delete, or update)

Can we create (or add) indices to just any table (or DB)? — No!

Read-heavy DBs - can index a lot (if space allows)
Write-heavy DBs - index sparingly (take a balanced approach)
Write-ONLY DBs — one or no index

Spring 2024 — University of Virginia © Praphamontripong

Multi-Level Indices

- If an index is small enough to be kept entirely in main memory,
the search time to find an entry is low

- If index is too large to be kept in main memory, index blocks
must be fetched from disk when required. One search results in
several disk-block reads

- If no overflow blocks in the index - use binary search
- If overflow blocks = use sequential search

- Solution:
- Use a sparse index on the index

Spring 2024 — University of Virginia © Praphamontripong

Example: Two-Level Sparse Index

- Use binary search on outer index

Y

| index data
« Scan index block until the "\block 0 : block 0
correct record is found .
- Scan block pointed to for desired ' jodex = dﬁf?kl
reco rd outer index .
Sorted 0 b

inner index

- For very large files, add
additional level of indexing to Levels
improve search performance

- Must update indices at all levels
when perform insertion or
deletion

[Ref: Figure 11.5, Silberschatz, Korth, Sudarshan, “Database System Concepts,” 6th Ed., page 481]
Spring 2024 — University of Virginia © Praphamontripong

Updating Indices

All associated indices must be updated when a record is inserted
into or deleted from a file

Insertion: Deletion:
- Find a place to insert - Find the record
- For dense index: - If it is the last record, delete
. Insert search key value if not that search key value from
present index
- For sparse index: - For dense index:
- No change unless a new block - Delete the search key value
is created

_ - For sparse index:
- If the first search key value
appears in the new block, - Delete the search key value
insert the search key value

into the index - Replace the key value’s entry

index with the next search key
value if not already present

Spring 2024 — University of Virginia © Praphamontripong

How to Implement: Use B+ Trees

- As the database grows (and the index file grows), performance
degrades. Reorganization is costly

« Solution: use B+ tree to maintain indices

Balance sorted tree, allowing fast
B+ Tree search and maintenance without
. A tree-like file structure overflow pages

- Links nodes with pointers

- Has exactly one root, bounded by leaves

- Has unique path from root to each leaf; all paths are equal length
- Store keys only at leaves, references in other/internal nodes

- Guides key search via the reference values, from root to leaves

- Balance - same length on every path from root to leaves

- Extensible — number of pointers (n) at any given node

Spring 2024 — University of Virginia © Praphamontripong

Example: B+ Tree

[Tozart [] - R ———— Rootiiods

[TEinstein [[Gola [T

.| Srinivasan |1| I I I]

[Kim [{ [Mozart || Singn ||

I-I-»I—-l?r-inivasan LI Wu I I

s
»| 10101 Srinivasan Comp. Sci. 65000

——| 12121 Wu Finance 90000
> 15151 Mozart Music 40000
»| 22222 | Einstein Physics 95000
> 32343 El Said History 80000
> 33456 Gold Physics 87000
»| 45565 Katz Comp. Sci. 75000
> 58583 Califieri History 60000
> 76543 Singh Finance 80000
> 76766 Crick Biology 72000
> 83821 Brandt Comp. Sci. 92000
»| 98345 Kim Elec. Eng. 80000

[Ref: Figure 14.9, Silberschatz, Korth, Sudarshan, “Database System Concepts,” 7th Ed., page 636]
Spring 2024 — University of Virginia

© Praphamontripong

B+ Tree: Node

- Nodes: root, internal node, or leaf node

- Each node is exactly one disk page ("page” and “node” are used
interchangeably)

- Contain n pointers and (n-1) key values

n=>5
root (n-1) = 4 key values
|25 |50 \75 N
<25 25<key<50 \ 75<key< ...
50<key<75
Ieavg/ / ‘
51/10 {1520} |«||25|| 30 <> 15055 (|60}|70| (75|80 ({85]|90

100% datg direct (1:1) mapping to actual data

A v \4 v v \4 v v A v v v A v

DB

Spring 2024 — University of Virginia © Praphamontripong

B+ Tree: Leaf Node

- Each entry consists of a key value and a pointer to the storage
location of data matching the key

- Leaf nodes are organized into a linked list pages, chaining the
leaf nodes

ko | | Ky [ky || ks |] Ky

- For a B+ tree with n pointers
(n—-1)
2

- A leaf node holds [} < key values < (n-1)

- Example:

4—1
- If n=4, each leaf contains at least [(2—)} = 2 key values and at
most (4-1) = 3 key values

[Ref: Silberschatz, Korth, Sudarshan, “Database System Concepts,” 7t Ed., page 635, constraints on leaf nodes]

Spring 2024 — University of Virginia © Praphamontripong

B+ Tree: Internal Node

Nonleaf nodes: a multilevel (sparse) index

Each entry consists of a reference value (key) and a pointer to
the leaf nodes

ko | | Ky |1 ko 1] Ks
/ / Z \ page pointer

For a B+ tree with n pointers

n
- An internal node holds [ﬂ < pointers = n

(thus, hold up to (n-1) key values)

Example:

4
- If n=4, each internal node contains at least [ﬂ = 2 pointers and at
most = 4 pointers

[Ref: Silberschatz, Korth, Sudarshan, “Database System Concepts,” 7t Ed., page 635, constraints on nonleaf nodes]

Spring 2024 — University of Virginia © Praphamontripong

B+ Tree: Root Node

- A root node consists of one or more reference values (keys) and
pointers to the leaf nodes (or internal nodes)

- For a B+ tree with n pointers
- A root node holds 1 < key values < (n-1)

- Must have at least two pointers if the root points to internal nodes

- Must have at least one entry if the root is the only node in the tree

- Example:

4
- If n=4, a root node can hold fewer than [E} = 2 pointers

- It must hold at least 2 pointers (unless the tree consists of only one
node)

[Ref: Silberschatz, Korth, Sudarshan, “Database System Concepts,” 7t Ed., page 636, constraints on root nodes]
Spring 2024 — University of Virginia

© Praphamontripong

B4+ Tree: # Indices

- For a n-order B+ tree with a height of h

- The maximum number of records indexed is Tyax = n — n(h-1

(-1
- The minimum number of records indexed is 'y, = 2 [ﬂ

Spring 2024 — University of Virginia © Praphamontripong

Low n vs. High n

« Small value for n -- Tall and thin B+ tree

- Advantage: Good consistent performance
- Equal depth of tree &> constant lookup time

- Disadvantage: High overhead when insert/delete
- Need to reorganize up and down the tree

- Large value for n -- Short and wide B+ tree

- Advantage: Low overhead

- Disadvantage: Performance varies

Read-heavy DB - consistent time -2 low n

Read/Write-mix DB - less overhead - high n

Spring 2024 — University of Virginia © Praphamontripong

Advantages and Disadvantages

Index-sequential files:
Disadvantage:

- Performance degrades as sequential file grows because many
overflow blocks are created

- Periodic reorganization of entire file is required

B+ Tree indices are alternatives to
index sequential files

B+ Tree index file:
Advantage:

B+ Trees are used extensively in all DBMS

- Automatically recognize itself with small, local changes (when
insert or delete data)

- Range queries on indexed attributes are fast

Disadvantage:
- Extra insertion deletion overhead, space overhead

Spring 2024 — University of Virginia © Praphamontripong

revisit

Clustered vs. Unclustered Index

Records close in index
N, /

«> > > PEN > -« > > Index entries

L d

//// ,,,,,,,,,,,,, \\\X ,, R H \\ ,,,,,,,,,,,,,,,,,,,,,,,,,,,, s

Data records

Unclustered Index IK

o
[N | /

> > > PN Index entries

Index file

Data file

Data records

Spring 2024 — University of Virginia © Praphamontripong

Cost of Disk I/0 Operations

Assume a disk block holds 4 tuples of a relation. To find tuples associated
with key values 40 - 85

Without an index, need sequential scanning

Estimated cost = # blocks scanned

dli||d2||d3 || d4

Sequential data file

Spring 2024 — University of Virginia

© Praphamontripong

Cost of Disk I/0 Operations

Assume a disk block holds 4 tuples of a relation. To find tuples associated
with key values 40 - 85

Use clustered index, index and data are sorted the same way

Estimated cost = selectivity estimate x #blocks

Index file

120

Sequential data file

Spring 2024 — University of Virginia © Praphamontripong

Cost of Disk I/0 Operations

Assume a disk block holds 4 tuples of a relation. To find tuples associated
with key values 40 - 85

Use unclustered index, index and data are sorted differently

Estimated cost = selectivity estimate x #tuples

Worse case: read a

Index file 30 different block every
time. Thus, choose
/ \ key(s) carefully
20 | | 60 120]| {140
10|15 18 203040 60 | 65 80 (112 120{135/138 140|148

|]‘\(;9 dl‘OL‘ ’_;11

Sequential data file

Spring 2024 — University of Virginia

© Praphamontripong

Another Scenario

Supposed we know the following Using an unclustered index
#blocks = 100 in the wrong scenario can

#tuples = 10000 lead to low performance

X = Selectivity estimate (~proportion of tuples matching the

selection) of a given query = 0.1
No index (full sequential scan) Unclustered index
Cost = #Dblocks Cost = X * #tuples
= 100 = 0.1 * 10000
= 1000

Full sequential scan is a better option when
« Selectivity is high (many tuples match the selection), or
» Ratio between #tuples: #blocks is high

Spring 2024 — University of Virginia © Praphamontripong

Create Indices in SQL

CREATE INDEX index name ON table name(column)

Unclusted by default

CREATE INDEX index name ON table name(columnl, column2)

Order specifies

precedence in sorting

Reorders data on disk

(fails if another clustered index exists)

CREATE CLUSTERED INDEX index name ON table name(columnl, column2)

Spring 2024 — University of Virginia © Praphamontripong

Leveraging Indices

students(ID, credits, age, ..)
enroll (ID, course, section, semester, year, ..)

What indices could we
make on students?

Expecting 1000 executions/day
SELECT *
FROM students, enroll

WHERE students.ID = enroll.ID IDs are unique.

Unclustered index would do fine.

Expecting 1000 executions/day

SELECT * : .
4 This range query would benefit

FROM students from a clustered index on credits

WHERE credits > 100

Only one
Expecting 10 executions/day can exists
SELECT *

FROM students This range query would benefit
WHERE age > 21 from a clustered index on age

Spring 2024 — University of Virginia © Praphamontripong

Leveraging Indices (2)

students(ID, credits, age, ..)
enroll(ID, course,

section, sem

Expecting 1000 executions/day
SELECT *

FROM students, enroll

WHERE students.ID = enroll.ID

Expecting 1000 executions/day
SELECT =*

FROM students

WHERE credits > 100

Expecting 10 executions/day
SELECT ~*

FROM students

WHERE age > 21

Things to consider:

- Size of the expected result
- EXxecution time

Without more info, default to clustering
on the index that will be used more
(thus, clustered index on credits)

This range query would benefit

from a clustered index on credits

Only one
can exists

This range query would benefit
from a clustered index on age

© Praphamontripong

Spring 2024 — University of Virginia

Wrap-Up

« The existence of an index on an attribute

« May speed up the execution of the queries (in which a values or
a range of values is specified for that attributes), and

« May speed up joins involving that attribute.

« Every index built for one or more attributes of some relation makes
insertions / deletions / updates to that relation more complex and

time consuming.

« When creating indices, transactions that will be executed must be
taken into account.

Read-heavy DBs - can index a lot (if space allows)
Write-heavy DBs - index sparingly (take a balanced approach)
Write-only DBs — one or no index

Create indices to match expected query workload

Spring 2024 — University of Virginia © Praphamontripong

