
Spring 2024 – University of Virginia 1© Praphamontripong© Praphamontripong

Transactions and
Concurrency Control

CS 4750
Database Systems

[Silberschatz, Korth, Sudarshan, “Database System Concepts,” Ch.17, Ch.18]

Spring 2024 – University of Virginia 2© Praphamontripong

Transactions in SQL
How do we support multiple people using a database at the
same time?

• Multiple end-users
• Multiple programmers
• Multiple analysts
• Multiple administrators

Make each person wait in line to use our database?

[ref: https://www.clipart.email/make-a-clipart]

Spring 2024 – University of Virginia 3© Praphamontripong

Disclaimer: This image is used to help us envision an airplane seat map only. No other purposes.
No association between CS 4750 and the airline.

[Image from https://www.united.com/ual/en/us/fly/travel/inflight/aircraft/777-200.html#v6]

What Could Go Wrong …
Consider an airline that provides customer a web interface where
they can choose a seat for their flight.

This interface shows a map of available seats, and the data for
this map is obtained from the airline’s database.

Spring 2024 – University of Virginia 4© Praphamontripong

What Could Go Wrong …
There may be a relation such as

Suppose there is a query to retrieve available seats such as

Flights(fltNo, fltDate, seatNo, seatStatus)

SELECT seatNo
FROM Flights
WHERE fltNo = 123 AND fltDate = ‘2022-04-13’

AND seatStatus = ‘available’;

Spring 2024 – University of Virginia 5© Praphamontripong

What Could Go Wrong …
When the customer clicks on an empty seat, say 21A, that seat is
reserved for him/her.

The database is modified by an update statement, such as

UPDATE Flights
SET seatStatus = ‘occupied’
WHERE fltNo = 123 AND fltDate = ‘2022-04-13’

AND seatNo = ‘21A’;

Spring 2024 – University of Virginia 6© Praphamontripong

Common Problem: Lost Update
However, this customer may not be the only one reserving a seat
on flight 123 on 13-Apr-2022, this exact moment.

Another customer may have asked for the seat map at the same
time, in which case they also see seat 21A empty.

Both customers believe they have been granted seat 21A

This problem is solved in SQL by the notion of a “transaction”

User1 finds
seat empty

User1 sets seat
21A occupied

User2 finds
seat empty

User2 sets seat
21A occupied

time
Write-Write Conflict

Spring 2024 – University of Virginia 7© Praphamontripong

Transaction to the Rescue !!

• The query and update would be grouped into one transaction
(running them serially, one at a time, with no overlapping)

• The importance, to the DB, is that a seat is assigned only once.

Transaction = a group of operations or sequence of operations
that need to be performed together

tr
an

sa
ct

io
n

SELECT seatNo
FROM Flights
WHERE fltNo = 123 AND fltDate = ‘2022-04-13’

AND seatStatus = ‘available’;

UPDATE Flights
SET seatStatus = ‘occupied’
WHERE fltNo = 123 AND fltDate = ‘2022-04-13’

AND seatNo = ‘21A’;

Spring 2024 – University of Virginia 8© Praphamontripong

Banking Example
Accounts(acctNo, balance)

UPDATE Accounts
SET balance = balance + 100
WHERE acctNo = 456;

Withdraw $100 from
saving account

Deposit $100 into
checking account

T = transfer $100 from saving to checking account

Begin
transaction

End
transaction

step1 step2

UPDATE Accounts
SET balance = balance - 100
WHERE acctNo = 123;

Spring 2024 – University of Virginia 9© Praphamontripong

Accounts(acctNo, balance)

UPDATE Accounts
SET balance = balance + 100
WHERE acctNo = 456;

Withdraw $100 from
saving account

Deposit $100 into
checking account

T = transfer $100 from saving to checking account

Begin
transaction

End
transaction

step1 step2

UPDATE Accounts
SET balance = balance - 100
WHERE acctNo = 123;

What happens if there is a failure after step1 but before step2?
(perhaps the server fails, or the DB connection fails)

• The DB is left in a state where money has been taken out from the
first account but not transferred into the second account

Non-atomic operation

Common Problem: Non-Atomic Op

Spring 2024 – University of Virginia 10© Praphamontripong

Solve Non-Atomic Op
Accounts(acctNo, balance)

These two updates must be done atomically
(either all operations are performed or none are)

Withdraw $100 from
saving account

Deposit $100 into
checking account

T = transfer $100 from saving to checking account

Begin
transaction

End
transaction

step1 step2

UPDATE Accounts
SET balance = balance + 100
WHERE acctNo = 456;

UPDATE Accounts
SET balance = balance - 100
WHERE acctNo = 123;

Spring 2024 – University of Virginia 11© Praphamontripong

Transaction
• Group (or sequence) of operations that need to be performed

together, forming a single logical unit of work involving data items
in a database

• Initiated by a user program (may be a complete program, a
fraction of a program, or a single SQL or a series of SQL
commands that may involve any number of processes)

Withdraw $100 from
saving account

Deposit $100 into
checking account

Transfer $100 from saving to checking account

Begin
transaction

End
transaction

A transaction is indivisible
All-or-none property – “atomicity”

Spring 2024 – University of Virginia 12© Praphamontripong

DBMS and Transaction
By default, DBMS automatically treats each SQL statement as its
own transaction

[SQL statements]

BEGIN TRANSACTION

COMMIT -- finalizes execution

[SQL statements]

BEGIN TRANSACTION

ROLLBACK -- undo everything

Spring 2024 – University of Virginia 13© Praphamontripong

Banking Example (revisit)
Accounts(acctNo, balance)

These two updates must be done atomically
(either all operations are performed or none are)

COMMIT (end successfully)
or ROLLBACK (abort)

BEGIN TRANSACTION
(start the transaction)

Note: different DBMS may have different SQL syntax (e.g., BEGIN vs. START)

Withdraw $100 from
saving account

Deposit $100 into
checking account

T = transfer $100 from saving to checking account

Begin
transaction

End
transaction

step1 step2

UPDATE Accounts
SET balance = balance + 100
WHERE acctNo = 456;

UPDATE Accounts
SET balance = balance - 100
WHERE acctNo = 123;

Spring 2024 – University of Virginia 14© Praphamontripong

Common Problem: Dirty Read
While a user is reading the availability of a certain seat, that seat is
being booked / released by the execution of some other program.

The user might get the answer “available” or “occupied,” depending on
microscopic differences in the time at which the query is executed.

User1 finds
seat empty

User1 sets seat
21A occupied

User2 finds
seat empty

User2 sets seat
??? occupied

time

BEGIN TRANSACTION

SET TRANSACTION READ ONLY
BEGIN TRANSACTION

COMMIT or ROLLBACK
Reservedà Confirmed

Occupied
Reservedà Not confirmed

Available
“dirty read”

Write-Read Conflict

Spring 2024 – University of Virginia 15© Praphamontripong

Common Problem: Unrepeatable Read
An employee is checking the company inventories while another
program automatically update the inventories.

The employee might get different numbers of items in the inventories,
depending on microscopic differences in the time at which the query is
executed.

SELECT SUM(inventory)
FROM product

SELECT category, SUM(inventory)
FROM product
GROUP BY category

UPDATE product
SET inventory = 0
WHERE pid = 111

time employee program

Read-Write Conflict

Spring 2024 – University of Virginia 16© Praphamontripong

ACID Properties
Four properties of transactions that a DBMS follows to handle
concurrent access while maintaining consistency

A C I D

Atomicity
• All or nothing

Consistency
• Start with

consistent
state, ends
with
consistent
state

Isolation
• Concurrent

transactions
are isolated,
executed
without
interference

Durability
• Committed

transaction is
persistent –
recoverable if
the system
fails

Atomicity, isolation, and durability enforce consistency

Ideally, a DBMS follows these principles;
however, sacrificing them for performance gain is common

Spring 2024 – University of Virginia 17© Praphamontripong

Example: Transaction and ACID
Withdraw $100 from

saving account
Deposit $100 into
checking account

T = transfer $100 from saving to checking account

Begin
transaction

End
transaction

T: read(saving);
saving = saving – 100;
write(saving);
read(checking);
checking = checking + 100;
write(checking);

Atomicity:
• If a failure occurs that

prevents T from completing
its execution successfully,
reverse all changes so far

• Responsibility of DBMS
(recovery system)

Transaction encapsulation, no partial completion

2nd most important aspect
& need for programming

Spring 2024 – University of Virginia 18© Praphamontripong

Example: Transaction and ACID
Withdraw $100 from

saving account
Deposit $100 into
checking account

T = transfer $100 from saving to checking account

Begin
transaction

End
transaction

T: read(saving);
saving = saving – 100;
write(saving);
read(checking);
checking = checking + 100;
write(checking);

Consistency:
• Consistent state

• No gain, no loose money

• Usually responsible by the
application (programmer who
codes the transaction)

• Constraints are given by client

Integrity constraints and application specification

Spring 2024 – University of Virginia 19© Praphamontripong

Example: Transaction and ACID
Withdraw $100 from

saving account
Deposit $100 into
checking account

T = transfer $100 from saving to checking account

Begin
transaction

End
transaction

T: read(saving);
saving = saving – 100;
write(saving);
read(checking);
checking = checking + 100;
write(checking);

Isolation:
• Ensure that when several

transactions are executed
concurrently, their operations
must not interleave and result
in an inconsistent state

• Responsibility of DBMS
(concurrency-control system)

Concurrency management – as if each were the only transaction running

The most important aspect

A & C give us
functional

transactions

Spring 2024 – University of Virginia 20© Praphamontripong

Example: Transaction and ACID
Withdraw $100 from

saving account
Deposit $100 into
checking account

T = transfer $100 from saving to checking account

Begin
transaction

End
transaction

T: read(saving);
saving = saving – 100;
write(saving);
read(checking);
checking = checking + 100;
write(checking);

Durability:
• Once the transaction has been

completed and confirmed, all
updates must be permanent

• If failure occurs, the updates
must be recoverable

• Responsibility of DBMS
(recovery system)

Crash recovery; resistant to hardware failure

Spring 2024 – University of Virginia 21© Praphamontripong

Transaction Safe
• Transaction = sequence of SQL statements meant to follow ACID

• For a transaction to be durable, changes must be written to stable
storage (e.g., duplicate data in several nonvolatile storage media)

• For a transaction to be atomic, log records must be written to stable
storage before any changes are made to the database on disk

• A transaction may not always complete its execution successfully.

• Abort a transaction that does not complete successfully

• To ensure ACID, an aborted transaction must have no effect on the
state of the database

• Undo any changes that the aborted transaction made – “roll back”
the transaction – responsibility of DBMS (recovery system)

• Durability and consistency: If something goes wrong, recover the
original state; recoverable ensures database consistency

Spring 2024 – University of Virginia 22© Praphamontripong

Transaction States

active

partially
committed committed

failed aborted

Initial state
(stays while
executing)

[based in part on Figure 14.1, Silberschatz, Korth, Sudarshan, “Database System Concepts,” 6th Ed., page 634]

Log: (allow “undo” and “redo” to
ensure atomicity, durability,
consistency)
• Identifier of the transaction

performing the modification
• Identifier of the data item

being modified

• Old value (before modification)
• New value (after modification)

After the final statement has
been executed
[actual output are temporarily
residing in main memory]

After successful
completion

After the transaction has
been rolled back and the
DB has been restored to
its state before the start
of the transaction

After the normal
execution can no
longer proceed
(e.g., hardware
or logical errors)

Call commit

Write things
to memory
(persistent)
Cannot be
undone

Read log,
roll back

[terminated]

[terminated]

restart kill

Hardware
or software
errors

Internal
logical error

[new transaction] [fix the program]

Partially committed state
enforces ACID by

evaluating the transaction
– to move to committed
state or failed state and

then aborted state

Spring 2024 – University of Virginia 23© Praphamontripong

Transaction – Atomicity and
Consistency

[based in part on Figure 14.1, Silberschatz, Korth, Sudarshan, “Database System Concepts,” 6th Ed., page 634]

Wait until a commit is called

active

partially
committed committed

failed aborted

If failure occurs, roll back
(undo until the original

consistency is preserved)

Log: (allow “undo” and “redo” to
ensure atomicity, durability,
consistency)

• Identifier of the transaction
performing the modification

• Identifier of the data item
being modified

• Old value (before modification)
• New value (after modification)

Spring 2024 – University of Virginia 24© Praphamontripong

Transaction – Durability

active

partially
committed committed

failed aborted

[based in part on Figure 14.1, Silberschatz, Korth, Sudarshan, “Database System Concepts,” 6th Ed., page 634]

Create a “Shadow copy” of a table being modified
Execute all queries on the shadow copy instead of
the original table

[need extra space, add overhead]

Log: (allow “undo” and “redo” to
ensure atomicity, durability,
consistency)

• Identifier of the transaction
performing the modification

• Identifier of the data item
being modified

• Old value (before modification)
• New value (after modification)

Success – make the shadow
copy a permanent copy

[may add too much overhead
– try to avoid]

Fail – ignore the shadow copy

Spring 2024 – University of Virginia 25© Praphamontripong

Note on Transaction States
• Handling external writes (nonvolatile storage) can be complicated

• The system may fail after the transaction enters the committed
state but before it could complete the external writes

• Solutions:

• DBMS carries out the external writes when the system is restarted

• The application must be designed such that when the DB or system
becomes available, the user can see whether the transaction had
succeeded or not

Spring 2024 – University of Virginia 26© Praphamontripong

Example ACID Compliance
Database and DBMS that does
not follow ACID properties

• NoSQL databases
• Distributed databases
• MyISAM

• Use “auto commit”

Database and DBMS that
follows ACID properties

• Relational databases
• InnoDB
• Turn auto commit off

active

failed aborted

committed

active

partially
committed committed

failed aborted

Spring 2024 – University of Virginia 27© Praphamontripong

Isolation and Concurrency
• Systems usually allow multiple transactions to run concurrently,

allowing multiple users to use a database at the same time

• Why concurrency:
• Improved throughput and resource utilization

• Run multiple transactions in parallel à increase the number of
transactions executed in a given amount of time; increase processor and
disk utilization

• Reduced waiting time
• Allow a mix of transactions running on a system à reduce average

response time (average time for a transaction to be completed after it has
been submitted)

• Allowing multiple transactions to update data concurrently can
cause data inconsistency

• When several transactions run concurrently, the isolation property
may be violated, resulting in inconsistency – thus need
concurrency-control schemes to manage scheduling

Spring 2024 – University of Virginia 28© Praphamontripong

Scheduling – Concurrency Control

Transaction
manager

Scheduler

Read/Write requests

Reads and writes

Buffers

The scheduler takes read/write requests from transactions and
either executes them in buffers or delays them.

Schedules = sequence of interleaved actions from all transactions.

The order in which the instructions appear in each individual
transaction must be preserved.

Spring 2024 – University of Virginia 29© Praphamontripong

Serial Schedules
• A serial schedule = schedule consisting of a sequence of

instructions from various transactions.

• The operations belonging to a single transaction appears together
in the schedule.

• Every transaction appears to run independently
• Leaving an impression that nothing else is running concurrently

• “single-thread, single-execution”

• Can run really slow – average response time for users is very high

Isolation

Use pre-emptive
schedule instead

Spring 2024 – University of Virginia 30© Praphamontripong

Non pre-emptive

• FCFS (First Come First Served)

• SJF (Shortest Job Frist)

Types of Scheduling
Pre-emptive

• SRTF (Shortest Remaining
Time First)

Suppose a system has 3 processes with
the arrival times and CPU (burst) time

Process# Arrival time CPU time
P1 0 6
P2 0 10
P3 2 2

P1 P2 P3
0 6 16 18

P1 P2P3
0 6 8 18

P1 P2P3 P1
0 2 8 184

Average response time is improved

Overall raw time remains the same

Spring 2024 – University of Virginia 31© Praphamontripong

Example: Scheduling
• Suppose two transactions T1 and T2 access saving and checking

accounts.

• T1 transfers $100 from saving to checking

• T2 transfers 10% of the balance from saving to checking

• What order should the instructions be executed in the system?

T1: read(saving);
saving = saving – 100;
write(saving);
read(checking);
checking = checking + 100;
write(checking);
commit

T2: read(saving);
temp = saving * 0.1;
saving = saving – temp;
write(saving);
read(checking);
checking = checking + temp;
write(checking);
commit

Spring 2024 – University of Virginia 32© Praphamontripong

Example: Serial Schedule (1)

[based in part on Figure 14.2, Silberschatz, Korth, Sudarshan, “Database System Concepts,” 6th Ed., page 638]

T1 is followed by T2

T1: read(saving);
saving = saving – 100;
write(saving);
read(checking);
checking = checking + 100;
write(checking);
commit

T2: read(saving);
temp = saving * 0.1;
saving = saving – temp;
write(saving);
read(checking);
checking = checking + temp;
write(checking);
commit

Serial scheduling
200

100
120

220

100

220
90

230

Suppose initially,
saving =200
checking =120

Spring 2024 – University of Virginia 33© Praphamontripong

Example: Serial Schedule (2)

[based in part on Figure 14.3, Silberschatz, Korth, Sudarshan, “Database System Concepts,” 6th Ed., page 638]

T2 is followed by T1

T1: read(saving);
saving = saving – 100;
write(saving);
read(checking);
checking = checking + 100;
write(checking);
commit

T2: read(saving);
temp = saving * 0.1;
saving = saving – temp;
write(saving);
read(checking);
checking = checking + temp;
write(checking);
commit

Serial scheduling 200

180
120

140

180

140
80

240

Suppose initially,
saving =200
checking =120

Spring 2024 – University of Virginia 34© Praphamontripong

Serializable Schedules
• A serial schedule = schedule consisting of a sequence of

instructions from various transactions. The operations belonging
to a single transaction appears together in the schedule.

• Every transaction appears to run independently
• Leaving an impression that nothing else is running concurrently

• “single-thread, single-execution”

• Can run really slow – average response time for users is very high

A schedule is serializable if it is equivalent to a serial schedule

• A serializable schedule = schedule where transactions are
executed with possible interleaving. The executions appear to be
as if they were executed in serial order.

Spring 2024 – University of Virginia 35© Praphamontripong

Example: Serializable Schedule

[based in part on Figure 14.4, Silberschatz, Korth, Sudarshan, “Database System Concepts,” 6th Ed., page 640]

When several transactions are executed concurrently, transactions
may be interleaved – goal: reduce response time

T1: read(saving);
saving = saving – 100;
write(saving);

T2: read(checking);
checking = checking + temp;
write(checking);
commit

T1: read(checking);
checking = checking + 100;
write(checking);
commit

T2: read(saving);
temp = saving * 0.1;
saving = saving – temp;
write(saving);

Final state is consistent

200

100

100

220

90

230

120

220

Suppose initially,
saving =200
checking =120

Spring 2024 – University of Virginia 36© Praphamontripong

Example: Non-Serializable Schedule

[based in part on Figure 14.5, Silberschatz, Korth, Sudarshan, “Database System Concepts,” 6th Ed., page 640]

T1: read(saving);
saving = saving – 100;

T2: checking = checking + temp;
write(checking);
commit

T1: write(saving);
read(checking);
checking = checking + 100;
write(checking);
commit

T2: read(saving);
temp = saving * 0.1;
saving = saving – temp;
write(saving);
read(checking);

Final state is inconsistent

200

100

200

220

140

120

120

180

Suppose initially,
saving =200
checking =120

Spring 2024 – University of Virginia 37© Praphamontripong

Checking Serializability
• How does the DBMS tell if a schedule is serializable?

• Define “conflicts” and check for their interaction in a schedule

• Conflict = A pair of consecutive actions in a schedule such that,
if their order is interchanged, then the behavior of at least on of
the transactions involved can change

Types of conflicts

• Write-Write (WW) conflict – W1(X), W2(X)

• Write-Read (WR) conflict – W1(X), R2(X)

• Read-Write (RW) conflict – R1(X), W2(X)

Lost update

Dirty read

Unrepeatable read

Spring 2024 – University of Virginia 38© Praphamontripong

Pairs of actions that do not conflict (assume transactions T1, T2)

• R1(A); R2(B) is never a conflict, even if A = B

• R1(A); W2(B) is not a conflict, provided A != B

• W1(A); R2(B) is not a conflict if A!=B

• W1(A); W2(B) is not a conflict as long as A!=B

Checking Serializability

Goal:
Swap / interleave nonconflicting operations to create

“conflict serializable schedule”

Compliant with Isolation (ACID)

Spring 2024 – University of Virginia 39© Praphamontripong

Conflict Serializable Schedule
Situations where we may not swap the order of action (assume
transactions T1, T2)

• Two actions of the same transaction; e.g., R1(A); W1(B)

• Two writes of the same database element by different transactions
conflict; e.g., W1(A); W2(B)

• A read and a write of the same database element by different
transactions; e.g., R1(A); W2(A)

We may take any schedule and make as many
nonconflicting swaps as we wish, with the goal of turning

the schedule into a serial schedule.

Spring 2024 – University of Virginia 40© Praphamontripong

Conflict Serializable Schedule
• Since the write(A) instruction of T2 does not conflict with the read(B)

instruction of T1, swap nonconflicting instructions to generate
equivalent schedule

T1: read(A)
write(A)

T2: read(A)
T1: read(B)

T2: read(B)
write(B)

T2: write(A)
T1: write(B)

T1: read(A)
write(A)

T2: read(A)
write(A)

T1: read(B)
write(B)

T2: read(B)
write(B)

A schedule is conflict serializable if it is
conflict equivalent to a serial schedule

Always consider moving nonconflicting operations to makes response time
goes down (faster), leaving the users an impression that he/she has the
DB to him/herself (isolation)

Spring 2024 – University of Virginia 41© Praphamontripong

• Transactions that read and write the same data should not switch
between each other

• No interleaving if operations are conflict

T1: read(A, t)
t := t+100
write(A)

T2: read(A, s)
s := s*2
write(A, s)

T1: read(B, t)
t := t+100
write(B, t)

T2: read(B, s)
s := s*2
write(B, s)

125

125

250

250

A = 25 B = 25

Consistency is
preserved

Start with A = B
End with A = B

“Serializable schedule”

Let read(A, t) be read A and save it in t

Conflict Serializable Schedule

Spring 2024 – University of Virginia 42© Praphamontripong

• Another example

T1: read(A, t)
t := t+100
write(A)
read(B, t)
t := t+100

T2: read(A, s)
s := s*2

T1: write(B, t)

T2: write(A, s)
read(B, s)
s := s*2
write(B, s)

125

125

250

250

A = 25 B = 25

Consistency is
preserved

Start with A = B
End with A = B

“Serializable schedule”

Let read(A, t) be read A and save it in t

Conflict Serializable Schedule

Spring 2024 – University of Virginia 43© Praphamontripong

T1: read(A, t)
t := t+100
write(A)
read(B, t)
t := t+100

T2: read(A, s)
s := s*2
write(A, s)

T1: write(B, t)

T2: read(B, s)
s := s*2
write(B, s)

125

125

250

250

A = 25 B = 25

Consistency is
preserved

Start with A = B
End with A = B

“Serializable schedule”

Let read(A, t) be read A and save it in t

Conflict Serializable Schedule
• Another example

Spring 2024 – University of Virginia 44© Praphamontripong

• What if the operations are interleaved

T1: read(A, t)
t := t+100

T2: read(A, s)
s := s*2
write(A, s)

T1: write(A)
read(B, t)
t := t+100
write(B, t)

T2: read(B, s)
s := s*2
write(B, s)

50

125

125

250

A = 25 B = 25

Consistency is
not preserved

Start with A = B
End with A ≠ B

Let read(A, t) be read A and save it in t

Non Conflict Serializable Schedule
Lost update

Spring 2024 – University of Virginia 45© Praphamontripong

• What if we have a schedule that is not serializable nor conflict
serializable -- different results depending on whether add or
multiply is executed first

T1: read(A, t)
t := t+100
write(A)

T2: read(A, s)
s := s*2
write(A, s)
read(B, s)
s := s*2
write(B, s)

T1: read(B, t)
t := t+100
write(B, t)

125

50

250

150

A = 25 B = 25

Consistency is
not preserved

Start with A = B
End with A ≠ B

Let read(A, t) be read A and save it in t

Non Conflict Serializable Schedule

Spring 2024 – University of Virginia 46© Praphamontripong

• DB changes during transactions. It is possible that as a
transaction executes, it make changes to the DB.

• If the transaction aborts, it is possible that these changes were
seen by some other transactions. The most common solution is
to lock the changed item until COMMIT or ROLLBACK is chosen,
thus preventing other transaction from seeing the tentative
change.

• Scheduler (concurrency control manager) schedules operations
from transactions as they arrive
• Run the operations right away vs. delay the operations
• Delaying operations may reduce performance
• Parallelism or shared operations may be used to allow performance

gain

Wrap-Up

