
Spring 2024 – University of Virginia 1© Praphamontripong© Praphamontripong

[Pattamsetti, “Distributed Computing in Java 9,” Ch. 6]
[Silberschatz, Korth, Sudarshan, “Database System Concepts,” 7th Edition, Ch. 21]

Distributed Database

CS 4750
Database Systems

[Ricardo and Urban, “Databases illuminated,” 3rd ed., Ch. 10]



Spring 2024 – University of Virginia 2© Praphamontripong

Distributed Database (DDB)
• A collection of multiple, logically interconnected databases that 

are physically distributed over a computer network on different 
sites

• Data are physically stored across multiple sites, managed by a 
DBMS that is independent of the other site

• Data at any site available to users at other sites

• Sites may be far apart, linked by some forms of 
telecommunication lines (secure lines or Internet)

• Sites that are close together may be linked by a local area 
network (LAN)

Distributed databases – focus on database 
storage and location transparency



Spring 2024 – University of Virginia 3© Praphamontripong

Distributed Database Management 
System (DDBMS)

• A centralized software system that manages the DDB 

• Synchronizes the databases periodically 

• Provides an access mechanism that makes the distribution 
transparent to the users (as if it were all stored in a single 
location)

• Ensures that the data modified at any remote site is universally 
updated

• Supports a huge number of users simultaneously

• Maintains data integrity of the databases



Spring 2024 – University of Virginia 4© Praphamontripong

Distributed Database Architecture

[Ref: Pattamsetti, “Distributed Computing in Java 9,” p. 168]



Spring 2024 – University of Virginia 5© Praphamontripong

Challenges
• Security: due to the Internet usage

• Consistency issues: databases must be synchronized periodically 
to ensure data integrity

• Increased storage requirements: due to replication of databases

• Multiple location access: transactions may access data at one or 
more sites



Spring 2024 – University of Virginia 6© Praphamontripong

Distributed Strategies
Based on the organizational needs and information split and 
exchange requirements, the distributed database environment can 
be designed in two ways: 

• Homogeneous
• Use the same DBMS for all database nodes that take part in the 

distribution

• Heterogeneous
• May use a diverse DBMS for some of the nodes that take part in 

the distribution



Spring 2024 – University of Virginia 7© Praphamontripong

Homogeneous Distributed DB
• Information is distributed 

between all the nodes

• The same DBMS and schema 
are used across all the 
databases

• The distributed DBMS controls 
all information

• Every global user must access 
the information from the same 
global schema controlled by 
the distributed DBMS

• A combination of all the 
individual DB schemas makes 
the global schema

[Ref: Pattamsetti, “Distributed Computing in Java 9,” p. 161]



Spring 2024 – University of Virginia 8© Praphamontripong

Heterogeneous Distributed DB

[Ref: Pattamsetti, “Distributed Computing in Java 9,” p. 163]

• Information is distributed 
between all the nodes

• Different DBMS and schemas 
may be used across the 
databases

• Local users (interacting with 
one of the individual 
database) can access the 
corresponding DBMS and 
schema

• Users who want to access the 
global information can 
communicate with the 
distributed DBMS, which has 
a global schema (a 
combination of all the 
individual DB schemas)



Spring 2024 – University of Virginia 9© Praphamontripong

Distributed DB Setup Method
• The process of setting up the distributed DB environment 

involves a thorough analysis and design

• Ongoing and future information maintenance must be determined

• Synchronous: information across all nodes should be kept in sync all 
the time

• Asynchronous: information is replicated at multiple nodes to make it 
available for other nodes

• Once the analysis for a specific distributed DB environment is 
made, the setup can be performed in one of the following ways: 

• Replication 
• Fragmentation/partitioning (horizontal or vertical)
• Hybrid setup



Spring 2024 – University of Virginia 10© Praphamontripong

Replication
• Maintain multiple copies of the database instances, stored in 

different sites

• Easy and minimum risk process as the information is copied from 
one instance to another without a logical separation

• Each individual node has the complete information 

• Efficient in accessing the information without having network 
traversals and reduces the risk of network security

• Fast retrieval

• Increase fault tolerance

• Require more storage space

• Take longer to synchronize all the nodes when the information 
across all the nodes needs to be updated



Spring 2024 – University of Virginia 11© Praphamontripong

Fragmentation (or Partition)
• One copy of each data item, distributed across nodes

• Split a database into disjoint fragments (or parts)

• Fragments can be 

• Vertical table subsets (formed by RA projection)
• Horizontal subsets (formed by RA selection)



Spring 2024 – University of Virginia 12© Praphamontripong

Horizontal Fragmentation
• Splitting the rows of a table (or a relation between two or more 

nodes, containing databases) to form a distributed database –
“split by region”

• Each individual database has a set of rows that belong to the 
table or relation that belongs to the specific database 

PK A B

… … …

PK A B

PK A B

PK A B

…

N nodes

R1, -inf < PK <= v1

R2, v1 < PK <= v2

RN, vN < PK < inf



Spring 2024 – University of Virginia 13© Praphamontripong

Example: Horizontal Fragmentation

stuId lastName firstName major credits
S1001 Smith Tom History 90
S1002 Chin Ann Math 36
S1005 Lee Perry History 3
S1010 Burns Edward Art 63
S1013 McCarthy Owen Math 0
S1015 Jones Mary Math 42
S1020 Rivera Jane CSC 15
… … … … …

stuId lastName firstName major credits
S1002 Chin Ann Math 36
S1013 McCarthy Owen Math 0
S1015 Jones Mary Math 42
… … … … …

stuId lastName firstName major credits
S1001 Smith Tom History 90
S1005 Lee Perry History 3
… … … … …

stuId lastName firstName major credits
S1010 Burns Edward Art 63
… … … … …

stuId lastName firstName major credits
S1020 Rivera Jane CSC 15
… … … … …

…

σmajor=“Math” (students)

σmajor=“History” (students)

σmajor=“Art” (students)

σmajor=“CSC” (students)

[Example adapted from Ricardo and Urban, “Databases Illuminated,” fragmentation example, p. 452] – this example has been simplified 



Spring 2024 – University of Virginia 14© Praphamontripong

Horizontal Fragmentation
• The information access is efficient

• Best if partitions are uniform

• Optimal performance as the local data are only stored in a 
specific database 

• Allow parallel processing on fragments 

• More secure as the information belonging to the other location is 
not stored in the database

• If a user wants to access some of the other nodes or a 
combination of node information, the access latency varies. 

• If there is a problem with a node or a network, the information 
related to that node becomes inaccessible to the users



Spring 2024 – University of Virginia 15© Praphamontripong

Vertical Fragmentation
• (aka normalization process in distributed database setup)

• Splitting the columns of a table (or a relation between two or 
more nodes, containing databases) to form a distributed 
database while keeping a copy of the base column (primary key) 
to uniquely identifying each record – “split by purpose”

PK A B C D E F G … X

… … … … … … … … … …

PK A B

… … …

PK C D E F G

… … … … … …

PK X

… …

…

N nodes
Each node contains 
all rows of a table

Projection must 
be lossless

~Normalization for 
distributed databases



Spring 2024 – University of Virginia 16© Praphamontripong

Example: Vertical Fragmentation
stuId lastName firstName major credits …
S1001 Smith Tom History 90 …
S1002 Chin Ann Math 36 …
S1005 Lee Perry History 3 …
S1010 Burns Edward Art 63 …
S1013 McCarthy Owen Math 0 …
S1015 Jones Mary Math 42 …
S1020 Rivera Jane CSC 15 …
… … … … … …

…

stuId lastName firstName
S1001 Smith Tom
S1002 Chin Ann
S1005 Lee Perry
S1010 Burns Edward
S1013 McCarthy Owen
S1015 Jones Mary
S1020 Rivera Jane
… … …

stuId major
S1001 History
S1002 Math
S1005 History
S1010 Art
S1013 Math
S1015 Math
S1020 CSC
… …

stuId credits
S1001 90
S1002 36
S1005 3
S1010 63
S1013 0
S1015 42
S1020 15
… …

[Example adapted from Ricardo and Urban, “Databases Illuminated,” fragmentation example, p. 452] – this example has been simplified 

πstuId, lastName, firstName(students) πstuId, credits (students)πstuId, major(students)

Notice stuId in 
all fragments



Spring 2024 – University of Virginia 17© Praphamontripong

Vertical Fragmentation
• Appropriate if each of the organizational units located in different 

geographies have separate operations

• Partition based on behavior and function that each node performs

• Best if partitions are uniform

• Part of the tuple is stored where it is most frequently accessed

• Allow parallel processing on fragments 

• Poorly chosen columns to split can lead to node bottleneck

• The aggregation of the data involves complex queries with joins 
across the location database, as no replication is made for non-
primary keys



Spring 2024 – University of Virginia 18© Praphamontripong

Correctness of Fragmentation
• Completeness

• Decomposition of a relation R into R1, R2, …, Rn is complete if 
and only if each data item in R can also be found in some Ri

• Reconstruction

• If a relation R is decomposed into R1, R2, …, Rn, 
reconstructing R1, R2, …, Rn should result in the original R

• Disjointness

• If a relation R is decomposed into R1, R2, …, Rn and data item 
d is in Ri, then d should not be in any other fragment Rj
where i <> j



Spring 2024 – University of Virginia 19© Praphamontripong

Hybrid Setup
• Involve a combination of replication and fragmentation

• Relation is partitioned into several fragments

• Some information is replicated across the database nodes

• Data administrators play a crucial role to choose the right 
combination to ensure data integrity and security



Spring 2024 – University of Virginia 20© Praphamontripong

RDBMS and ACID Properties
Four properties of transactions that a DBMS follows to handle 
concurrent access while maintaining consistency 

ACID work in a centralized database system, 
not in a distributed database system

revisit



Spring 2024 – University of Virginia 21© Praphamontripong

Threats on ACID Properties
• While distributed database system has many advantages, it 

imposes a threat on ACID properties

• Consistency in database (ACID)

• Database relies on a set of integrity constraints

• DBMS executes each transaction to ensure Atomicity and Isolation and 
thus maintaining a consistent state

• Consistency in distributed database system with replication
• Strong consistency: 

• Weak consistency: (several forms)

Final state from a schedule with 
read and write operations on a 
replicated object

Final state from a schedule on 
a single copy of the object with 
order of operations from a 
single site preserved

=



Spring 2024 – University of Virginia 22© Praphamontripong

CAP Theorem
• Consistency -- All copies (across nodes) have the same value

• Availability -- System can still function even if some nodes fail

• Partition tolerance -- System can function even if communication 
between nodes (the partitions reside) fails

• Network can break into two or more parts, each with active systems 
that communicate with the other parts 

• Must have exactly two of the three properties for any system

• Very large system will partition by default, thus choose one of 
consistency or availability
• Traditional database – choose consistency 

• Most web apps – choose availability (except some specific/important 
parts such as order/payment processing)



Spring 2024 – University of Virginia 23© Praphamontripong

CAP: Example Combination
• Consistency/Partition tolerance

• Queries are executed on one site. Then they are passed to all 
other sites, which then execute the queries.

[Ref: Pattamsetti, “Distributed Computing in Java 9,” p. 168]



Spring 2024 – University of Virginia 24© Praphamontripong

CAP: Example Combination
• Availability/Partition tolerance

• Each site provides services independently. No impact if a network 
goes down or other sites fail. – resulting in inconsistent DBs

[Ref: Pattamsetti, “Distributed Computing in Java 9,” p. 168]



Spring 2024 – University of Virginia 25© Praphamontripong

CAP: Example Combination
• Consistency/Availability

• Each site provides services independently as its own system. 

[Ref: Pattamsetti, “Distributed Computing in Java 9,” p. 168]



Spring 2024 – University of Virginia 26© Praphamontripong

Threats on CAP
• Only two of the three properties are guarantees: 

• Consistency – every read receives the most recent write or an error
• Availability – every request must respond with a non-error
• Partition tolerance – continued operation in presence of dropped or 

delayed message

• Distributed RDBMS – partition tolerance + consistency

• NoSQL systems – partition tolerance + availability

With the growth of data à achieving CAP is very difficult. Instead 
of using ACID or CAP, use BASE (a more relaxed set of properties)

Intended to be highly consistent – but may 
sacrifice some consistency to boost availability

Intended to be highly available – but may 
sacrifice some availability to boost consistency



Spring 2024 – University of Virginia 27© Praphamontripong

BASE Consistency Model
• With the enormous growth in data, achieving ACID or CAP 

becomes very difficult. 

• A more relaxed set of properties is BASE

• Basically Available, Soft state, Eventually consistent

• Key idea: 

• Databases may not all be in the same state at the same time 
(“soft state”)

• After synchronization is complete, the state will be consistent 

Most failures do not 
cause a complete 
system outage

System is not always 
write-consistent

Data will eventually 
converge to agreed 

values



Spring 2024 – University of Virginia 28© Praphamontripong

Wrap-Up
• Distributed Database Systems à database scaling

Replication
• Multiple copies of each 

database partition
• Improves fault tolerance

• Read performance ok
• Write performance suffers

Fragmentation
• Multiple machines to 

distribute data
• Write performance ok

• Read performance suffers



Spring 2024 – University of Virginia 29© Praphamontripong

Wrap-Up (2)

• Fragmentation: need to coordinate operations across fragments
• Replication: need to synch to prevent inconsistent version
• Achieving ACID is challenging à use CAP in distributed DB

ACID work in a centralized database system, 
not in a distributed database system

[Ref: images from Pattamsetti, “Distributed Computing in Java 9”]



Spring 2024 – University of Virginia 30© Praphamontripong

Wrap-Up (3)
• RDBMS – intended to be highly consistent (boost availability by 

sacrificing some consistency)

• NoSQL – intended to be highly available (boost consistency by 
sacrificing some availability) 

• Relational database systems – ACID 
• Distributed database systems – CAP
• NoSQL systems – BASE 

• Most applications compromise, depending business logic
• Consistency / availability
• Scalability
• Usability
• Analysis requirements

No silver-bullet !!


