
TBD, VOL. X, NO. Y, MONTH YEAR 1

Measuring Code Quality to Improve
Specification Mining

Claire Le Goues, Westley Weimer

Abstract—Formal specifications can help with program testing, optimization, refactoring, documentation, and, most importantly,
debugging and repair. However, they are difficult to write manually, and automatic mining techniques suffer from 90–99% false positive
rates. To address this problem, we propose to augment a temporal-property miner by incorporating code quality metrics. We measure
code quality by extracting additional information from the software engineering process, and using information from code that is more
likely to be correct as well as code that is less likely to be correct. When used as a preprocessing step for an existing specification
miner, our technique identifies which input is most indicative of correct program behavior, which allows off-the-shelf techniques to learn
the same number of specifications using only 45% of their original input. As a novel inference technique, our approach has few false
positives in practice (63% when balancing precision and recall, 3% when focused on precision), while still finding useful specifications
(e.g., those that find many bugs) on over 1.5 million lines of code.

Index Terms—specification mining, machine learning, software engineering, code metrics, program understanding

�

1 INTRODUCTION

Incorrect and buggy behavior in deployed software costs
up to $70 billion each year in the US [46], [53]. Thus
debugging, testing, maintaining, optimizing, refactoring,
and documenting software, while time-consuming, re-
main critically important. Such maintenance is reported
to consume up to 90% of the total cost of software
projects [49]. A key maintenance concern is incomplete
documentation [15]: up to 60% of maintenance time
is spent studying existing software (e.g., [47]).Human
processes and especially tool support for finding and
fixing errors in deployed software often require formal
specifications of correct program behavior (e.g., [43]); it is
difficult to repair a coding error without a clear notion of
what “correct” program behavior entails. Unfortunately,
while low-level program annotations are becoming more
and more prevalent [14], comprehensive formal specifi-
cations remain rare.

Many large, preexisting software projects are not yet
formally specified [14]. Formal program specifications
are difficult for humans to construct [11], and incorrect
specifications are difficult for humans to debug and
modify [4]. Accordingly, researchers have developed
techniques to automatically infer specifications from
program source code or execution traces [2], [3], [20],
[25], [51], [60], [61]. These techniques typically produce
specifications in the form of finite state machines that
describe legal sequences of program behaviors.

Unfortunately, these existing mining techniques are
insufficiently precise in practice. Some miners produce
large but approximate specifications that must be cor-

• Le Goues and Weimer are with the Department of Computer Science at
The Universiy of Virginia, Charlottesville, VA 22904.
E-mail: {legoues, weimer}@cs.virginia.edu

rected manually (e.g. [4]). As these large specifications
are imprecise and difficult to debug, this article focuses
on a second class of techniques that produce a larger
set of smaller and more precise candidate specifications
that may be easier to evaluate for correctness. These
specifications typically take the form of two-state finite
state machines that describe temporal properties, e.g.
“if event a happens during program execution, event
b must eventually happen during that execution.” Two-
state specifications are limited in their expressive power;
comprehensive API specifications cannot always be ex-
pressed as a collection of smaller machines [25].

Despite this limitation, two-state machines are useful
in both industrial and research practice [14], [31], and
previous research efforts have developed techniques for
mining them automatically [20], [59]. Such techniques
typically produce a large set of candidate specifications,
often in a ranked list (e.g. [20]). A programmer must still
evaluate this ranked list of candidate specifications to
separate the true specifications from the false positive spec-
ifications. In this context, a false positive is a candidate
specification that does not describe required behavior:
a program trace may violate such a “specification” and
still be considered correct. A true specification describes
behavior that may not be violated on any program trace,
or the program contains an error. Unfortunately, tech-
niques that produce this type of ranked list of smaller
candidates suffer from prohibitively high false positives
rates (90–99%) [59], limiting their practical utility.

This article develops an automatic specification miner
that balances true positives – as required behaviors –
with false positives – non-required behaviors. We claim
that one important reason that previous miners have
high false positive rates is that they falsely assume that
all code is equally likely to be correct. For example,
consider an execution trace through a recently mod-

Digital Object Indentifier 10.1109/TSE.2011.5 0098-5589/11/$26.00 © 2011 IEEE

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

TBD, VOL. X, NO. Y, MONTH YEAR 2

ified, rarely-executed piece of code that was copied-
and-pasted by an inexperienced developer. We believe
that such a trace is a poor guide to correct behavior,
especially when compared with a well-tested, stable, and
commonly-executed piece of code. Patterns of specifica-
tion adherence may also be useful to a miner: a candidate
that is violated in the high quality code but adhered
to in the low quality code is less likely to represent
required behavior than one that is adhered to on the high
quality code but violated in the low quality code. We
assert that a combination of lightweight, automatically-
collected quality metrics over source code can usefully
provide both positive and negative feedback to a miner
attempting to distinguish between true and false speci-
fication candidates. 1

The main contributions of this article are:2

• We identify and describe lightweight, automatically-
collected software features that approximate source
code quality for the purpose of mining specifi-
cations, and we evaluate their relative predictive
powers.

• We explain how to lift code quality metrics to met-
rics on traces, and empirically measure the utility of
our lifted quality metrics when applied to previous
static specification mining techniques. Existing off-
the-shelf specification miners can learn just as many
specifications using only the 44% highest-quality
traces, refuting previous claims that more traces are
neccessarily better for mining [57].

• We propose two novel specification mining tech-
niques that use our automated quality metrics to
learn temporal safety specifications while avoiding
false positives. We compare our approaches to two
previous approaches, evaluating on over 1.5 million
lines of code. Our basic mining technique balances
true and false specifications. It learns specifications
that locate more safety-policy violations than pre-
vious miners (884 vs. 663) with a lower rate of
false positives (63% vs. 89%). Our second technique
focuses on precision. It obtains a 3% false posi-
tive rate (1 false candidate), an order-of-magnitude
improvement on previous work. The specifications
it finds identify 355 violations. To our knowledge,
these are the first scalable specification miners that
produce multiple two-state candidate specifications
with false positive rates under 89%.

The rest of this paper is organized as follows. In
Section 2, we describe temporal safety specifications and
highlight uses, and give a brief overview of specification

1. Enumerating all true specifications for a project is undecideable,
and the number of possible true positives is usually unknown. We
adopt the domain practice of using “all true specifications identified
to date” as a proxy for “all true specifications” for a given program.
Statistical techniques such as capture, recapture analyses do not apply
because the underlying distribution of specifications in source code is
unknown and cannot be assumed to be random.

2. Some of these points were previously presented [38], [59]; a
detailed comparison between the previous work and this article is
provided in Section 6.

mining. Section 3 presents an example that motivates
the insight formalized in our mining approach. Section 4
describes our approach to specification mining, includ-
ing the quality metrics used. In Section 5, we present
experiments supporting our claims and evaluating the
effectiveness of our miner. We discuss related work in
Section 6. We conclude in Section 7.

2 BACKGROUND

In this section, we present background on temporal
safety specifications and how they may be mined au-
tomatically from source code.

2.1 Temporal Safety Specifications
A partial-correctness temporal safety property is a formal
specification of an aspect of required or correct program
behavior [37]; they often describe how to manipulate
important program resources. We refer to such proper-
ties as “specifications” for the remainder of this article.
Such specifications can be represented as a finite-state
machine that encodes valid sequences of events. Figure 1
shows source code and a specification relating to SQL
injection attacks [40]. In this example, one potential
event involves reading untrusted data from the network,
another sanitizes input data, and a third performs a
database query. Typically, each important resource is
tracked with a separate finite state machine [16] that
encodes the specification that applies to its manipulation.
A program execution adheres to a given specification if
and only if it terminates with the corresponding state
machine in an accepting state (where the machine starts
in its start state at program initialization). Otherwise, the
program violates the specification and contains an error.

This type of partial correctness specification is dis-
tinct from, and complementary to, full formal behav-
ior specifications. They can be used to describe de-
scribe many important correctness properties, including
resource management [59], locking [13], security [40],
high-level invariants [23], memory safety [31], and more
specialized properties such as the correct handling of
setuid [11] or asynchronous I/O request packets [5].
Such specifications are used by almost all existing defect-
finding tools (e.g., [5], [13], [14], [23]). Additionally, for-
mal specifications are instrumental in program optimiza-
tion [39], testing [6], refactoring [34], documentation [8],
and repair [56].

In this article, we focus on the simplest and most
common type of temporal specification: a two-state finite
state machine [20], [38], [59]. A two-state specification
states that an event a must always eventually be fol-
lowed by event b. This corresponds to the regular expres-
sion (ab)∗, which we write 〈a,b〉. We focus on this type of
property because mining FSM specifications with more
than two states is historically imprecise, and debugging
such specifications manually is difficult [4]. While two-
state temporal properties are by definition more limited
in their expressive power [25], [61], they can be used to

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

TBD, VOL. X, NO. Y, MONTH YEAR 3

void bad(Socket s, Conn c) {
string message = s.read();
string query = "select * " +

"from emp where name = " +
message;

c.submit(query);
s.write("result = " +

c.result());
}

void good(Socket s, Conn c) {
string message = s.read();
c.prepare("select * from "

+ " emp where name = ?",
message);

c.exec();
s.write("result = " +

c.result());
}

s0 s1

s2

s3

err s4
sanitize su

bm
it exec

read prepare

exec

Fig. 1. Pseudocode and specification for an networked program that receives untrusted data via sockets. The bad method
passes unsafe data to the database; good works correctly. Important events are italicized. The partial-correctness temporal
safety specification shown on the right governs database interactions.

describe important properties such as those controlling
resource allocation/deallocation or invariant restoration
(examples include 〈open,close〉, 〈malloc,free〉, and
〈lock,unlock〉). These examples, and similar such spec-
ifications, are prevalent in practice [14].

2.2 Specification Mining

Specification mining seeks to construct formal specifica-
tions of correct program behavior by analyzing actual
program behavior. Program behavior is typically de-
scribed in terms of sequences of function calls or other
important events. Examples of program behavior may
be collected statically from source code (e.g., [20]) or
dynamically from instrumented executions on indicative
workloads (e.g., [60]). A specification miner examines
such traces and produces candidate specifications, which
must be verified by a human programmer. Some miners
produce a single finite automaton policy with many
states [2], [3], [60]. Others produce many small automata
of a fixed form [20], [25], [59], [61]. As large automata
are more difficult to verify or debug [4], we choose to
focus on the latter, as described above.

Mining even these simple two-state specification re-
mains difficult [25]. Given the large number of candidate
〈a,b〉 pairs generated by even a restricted set of program
traces, determining which pairs constitute valid policies
is non-obvious. Most pairs, even those that frequently oc-
cur together (such as 〈print,print〉 or, more insidiously,
〈hasNext,getNext〉), do not represent required pairings:
a program may legitimately call hasNext without ever
calling getNext. Miners can also be led astray by policy
violations, as they seek to discern correct behavior from
code that may be incorrect.

Engler et al. note that programmer errors can be
inferred by assuming that the programmer is usually
correct [20]. In other words, common behavior implies
correct behavior, while uncommon behavior may sug-
gest a policy violation (a principle that similarly under-
lies modern intrusion detection, e.g. [24]). Intuitively, a
candidate specification that is followed on 10 traces and
violated on another 10 is unlikely to encode required
behavior, since programmers rarely make mistakes a full
50% of the time. However, a candidate that is adhered to
in 90% of relevant traces more likely represents required
behavior. Engler et al.’s miner operates on this principle

by counting the number of times a and b appear together
and the number of times that a appears without b. It
uses the z-statistic for comparing proportions to rank the
likelihood that the correlation is deliberate, ultimately
presenting a ranked list of candidate specifications for
programmer review. Unfortunately, without additional
human guidance, this technique is prone to a very high
rate of false positives. On one million lines of Java code,
only 13 of 2808 positively-ranked specifications gener-
ated by ECC were real: a 99.5% false positive rate [59].

We observed in previous work that programmers often
make mistakes in error handling code [59]. We used an
additional bit per trace — whether it passed through
a catch block — when evaluating candidate pairs (i.e.,
event a must be followed by event b on at least one non-
error trace and not followed by b on at least one error
trace). Additionally, we required that the events a and
b in a candidate pair come from the same package or
library, assuming that independent libraries are unlikely
to depend on one another for API-level correctness.
These insights led to the WN mining algorithm, which
improved mining accuracy by an order of magnitude.
On the same million lines of Java code, WN generated
only 649 candidate specifications, of which 69 were real,
for an 89% false positive rate. However, this rate is
still too high for automatic applications or industrial
practice, as candidates must still be hand-validated. This
article proposes a new specification mining approach
that lowers this false positive rate.

3 MOTIVATING EXAMPLE
In this section, we motivate our quality-based mining
technique by showing that we can use measurements of
code quality to distinguish between a true and a false
positive candidate specification.

Traces containing a and b in the appropriate order
adhere to a candidate specification 〈a,b〉, while traces that
only contain a violate it. Figure 2 shows two candidates,
one true and one false, mined from ptolemy2, an open
source Java project for design modeling by Engler et
al.’s z-score technique [20], described in Section 2.2.
Unfortunately, ranking candidates by their z-scores does
not sufficiently distinguish them. The two candidates
shown, as well as more obvious false positives such as
〈print,print〉, appear near one other on the z-ranked
list of 655 candidates.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

TBD, VOL. X, NO. Y, MONTH YEAR 4

Candidate Specification Correctness
〈Workspace.getReadAccess(), Workspace.doneReading()〉) Valid Specification
〈ASTPtRootNode.isConstant(), ASTPtRootNode.isEvaluated()〉 False Positive

Fig. 2. Two of the 655 candidate specifications mined by ECC on ptolemy2. The first candidate is a true specification:
getReadAccess must always eventually be followed by doneReading along all program paths. The second candidate is a false
specification: a program path may include isConstant but not isEvaluated and still be considered correct.

We hypothesize that high quality code is a better
guide to required behavior than low quality code, and
thus should be given more weight when counting fre-
quencies for mining. Taken from the other side, code
that adheres to a true specification should generally
be of higher quality than code that violates it (such
violating code contains an error, by definition). Code
traces adhering to or violating a false candidate should
not differ dramatically in quality since, with respect to
the spurious candidate, neither trace is more correct than
the other. Bearing these patterns in mind, code quality
can provide both positive and negative feedback to an
automatic specification miner. We propose to identify
quality metrics that distinguish between good and bad
code, and thus the candidates presented in Figure 2. We
briefly describe only a few metrics here for the purposes
of illustration; Section 4.1 presents a complete list of
metrics used.

Our previous work suggested that programmers make
mistakes in error-handling code [59], perhaps because
programmers do not reason properly about uncomm-
mon code paths (such as those through catch blocks).
We surmise that a candidate that is adhered to on
common paths but violated on uncommon paths is thus
more likely a true specification, as the violations are
more likely to be bugs. We use a research tool [10]
that statically predicts the likelihood that a path will
be executed when its enclosing method is called (its
predicted frequency). We observe that the hypothesized
pattern holds for the adhering and violating traces of
the candidates in Figure 2. Traces that adhere to the
true candidate have an average predicted frequency of
39%; those that violate it, only 4%. By contrast, the false
candidate’s adhering traces are predicted to be run less
frequently than its violating traces (31% vs 58%)!

Other research presented a human-defined code read-
ability metric; more readable code is correlated with
fewer errors [9]. Reapplying the logic from above, we
hypothesize that the true specification’s adhering traces
are more readable than its violating traces (containing an
error), and that such a distinction might not hold for the
false candidate; we use the research tool described in [9]
to measure normalized code readability. The true speci-
fication’s traces have quite different maximum readabil-
ities: 0.98 for adhering traces vs. 0.59 for violating traces.
By contrast, the false candidate’s traces again follow the
opposite pattern: adhering traces are less readable than
violating traces (0.05 vs 0.31), suggesting that violations
of the false positive candidate are not really errors.

Finally, previous research suggests that recently or
frequently edited code is correlated with policy viola-

tions [45]; code that has been stable for a long time
is more likely to be correct. A project’s source control
management logs admit measurement of churn along
any given trace, and the code for the two candidates
in Figure 2 follows that pattern. The true specification’s
adhering traces were last changed much earlier in the
development process on average (revision 15387 out of
29324 total revisions) than the violating traces (revision
20884). The adhering traces have been stable for a longer
period of time; they are more likely to be correct. The
false candidate’s traces again follow the anti-pattern: the
adhering traces were last changed more recently than the
violating ones (25189 vs. 19238).

The candidates in Figure 2 are difficult to distinguish
by looking only at the proportion of traces on which they
are followed or violated (i.e., their z-rank). However, the
code from which they are mined is not of equivalent
quality, and measurable features may follow patterns
that can help us distinguish two otherwise very similar
candidates. The rest of this article formalizes this notion
and presents an empirical evaluation of its validity.

4 OUR APPROACH

We present a new specification miner that works in
three stages. First, it statically estimates the quality of
source code fragments. Second, it lifts those quality
judgments to traces by considering all code visited along
a trace. Finally, it weights each trace by its quality when
counting event frequencies for specification mining.

Code quality information may be gathered either from
the source code itself or from related artifacts, such as
version control history. By augmenting the trace lan-
guage to include information from the software engi-
neering process, we can evaluate the quality of every
piece of information supporting a candidate specification
(traces that adhere to a candidate as well as those that vi-
olate it and both high and low quality code) on which it
is followed and more accurately evaluate the likelihood
that it is valid. Section 4.1 provides a detailed description
of the set of features we have chosen to approximate the
quality of code; Section 4.2 details our mining algorithm.

4.1 Quality Metrics
We define and evaluate two sets of metrics. The first set
consists of seven metrics chosen to approximate code
quality. This list should not be taken as exhaustive, nor
are the quality metrics intended to individually or per-
fectly measure quality. Indeed, a primary thesis of this
article is that lightweight and imperfect metrics, when
used in combination, can usefully approximate quality

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

TBD, VOL. X, NO. Y, MONTH YEAR 5

for the purposes of improved specification mining. Thus,
we focus on selecting metrics that can be quickly and
automatically computed using commonly-available soft-
ware artifacts, such as the source code or version control
histories. We looked particularly to previous work for
code features that correlate with fault-proneness or ob-
served faults. In the interest of automation, we exclude
metrics that require manual annotation or any other form
of human guidance.

The second set of metrics consists of previously-
proposed measures of code complexity. We use these
primarily as baselines for our analysis of metric power
in Section 5; this evaluation may also be independently
useful given their persistent use in practice [48].

The metrics in the first set (“quality metrics”) are:
Code Churn. Previous research has shown that fre-

quently or recently modified code is more likely to
contain errors [45], perhaps because changing code to fix
one defect introduces another, or because code stability
suggests tested correctness. We hypothesize that churned
code is also less likely to adhere to specifications. We use
version control repositories to record the time between
the current revision and the last revision for each line of
code in wall clock hours. We also track the total number
of revisions to each line. Such metrics can be normalized
or given as absolute ranges.

Author Rank. We hypothesize that the author of a
piece of code influences its quality. A senior developer
who is very familiar with the project and has performed
many edits may be more familiar with the project’s
invariants than a less experienced developer. Source
control histories track the author of each change. The
rank of an author is defined as the percentage of all
changes to the repository ever committed by that author.
We record the rank of the last author to touch each line
of code. While author rank may be led astray by certain
methodologies (e.g., some projects may have a small
set of committers that commit on behalf of more than
one author [18]; others may assign more difficult and
thus error-prone tasks to more senior developers), we
note that it may be automatically collected from version
control histories and is a proxy for expertise, which is
otherwise challenging to approximate automatically.

Code Clones. We hypothesize that code that has been
duplicated from an another location may be more error-
prone because it has not necessarily been specialized
to its new context (e.g., copy-paste code), and because
patches to the original code may not have propagated
to the duplicate. Research has shown that cloned code is
changed consistently a mere 45–55% of the time [36].
While not all code cloning is harmful [32], perhaps
because common code clones may be more comprehen-
sively tested, we further hypothesize that duplicated
code does not represent an independent correctness
argument: if print follows hasNext in 20 duplicated
code fragments, it is not necessarily 20 times as likely
that 〈hasNext,print〉 is a true specification. As it is
impossible to automatically and retroactively distinguish

between coincidental and deliberate code clones, we ap-
proximate this metric using clone detection techniques.
We use the open-source PMD toolkit’s clone detector to
track likely copy-paste repetition. The detector is based
on the Karp-Rabin string matching algorithm [33]. We
express the measure of code cloing for a given code frag-
ment as the product of the length of the code segment
and the number of times it has been copied.

Code Readability. Buse et al. developed a code metric
trained on human perceptions of readability or under-
standability [9]. The metric uses textual source code
features — such as number of characters, length of
variable names, or number of comments — to predict
how humans would judge the code’s readability. Read-
ability is defined on a scale from 0 to 1, inclusive,
with 1 describing code that is highly readable. More
readable code is less likely to contain errors. We therefore
hypothesize that more readable code is also more likely
to adhere to specifications. We use the research prototype
developed by Buse et al. to measure the readability of
source code [9].

Path Feasibility. Our specification mining technique
operates on statically enumerated traces, which can be
acquired without indicative workloads or program in-
strumentation. Infeasible paths are an unfortunate arti-
fact of static trace enumeration, and we claim that they
do not encode programmer intentions. Merely discount-
ing provably infeasible paths may confer some benefit to
the mining process. However, infeasible paths may sug-
gest pairs that are not specifications: a programmer may
have made it impossible for b to follow a along a path,
suggesting that 〈a,b〉 is not required behavior. We prefer
static paths for our purposes first because they are both
easier to obtain and more complete than dynamic paths.
In addition, we hypothesize that static paths combined
with symbolic execution can provide additional useful
information about behavior the programmer believes
should be impossible. We measure the feasibility of a
path using symbolic execution; a path is infeasible if a
theorem prover reports that its symbolic branch guards
are inconsistent. Path feasibility is expressed as one of
{0, 0.5, 1}; 0 denotes an infeasible path, 1 a required
path, and 0.5 a path that may or may not be feasible
or required.

Path Frequency. We theorize that common paths that
are frequently executed by indicative workloads and test
cases are more likely to be correct. First, the programmer
may reason more thoroughly about the “common case”,
and second, highly-tested code is less likely to contain
errors. We use a research tool that statically estimates
the relative runtime frequency of a path through a
method [10], normalized as a real number.

Path Density. We hypothesize that a method with
more possible static paths is less likely to be correct
because there are more corner cases and possibilities for
error. We define “path density” as the number of traces
it is possible to enumerate in each method, in each class,
and over the entire project. A low path density for traces

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

TBD, VOL. X, NO. Y, MONTH YEAR 6

containing paired events ab and a high path density for
traces that contain only a suggest that 〈a,b〉 is a likely
specification. Path density is expressed in whole num-
bers and can be normalized to the maximum number of
enumerated paths (30/method, in our experiments).

Metrics in the second class (“complexity metrics”) are:
Cyclomatic Complexity. McCabe defined cyclomatic

complexity [44] to quantify the decision logic in a piece
of software. A method’s complexity is defined as M =
E − N + 2P , where E is the number of edges in the
method’s control flow graph, N is the number of nodes,
and P is the number of connected components. There
is no theoretical upper bound on the complexity of a
method. The complexity of an intraprocedural trace is
the complexity of its enclosing method. Previous work
suggests that Cyclomatic complexity correlates strongly
with the length of a function and does not correlate well
with errors in code [22], [50]. Despite this, Cyclomatic
complexity remains in industrial use [48]. We hypothe-
size that complexity will not helpfully contribute to our
specification mining model.

CK Metrics. Chidamber and Kemerer proposed a
suite of theoretically-grounded metrics to approximate
the complexity of an object-oriented design [12]. The
following six metrics apply to a particular class (i.e., a
set of methods and instance variables):

• Weighted Methods per Class (WMC): number of
methods in a class, weighted by a user-specified
complexity metric. Common weights selected in
practice are 1, the method length, or the method’s
Cyclomatic complexity. The experiments in this ar-
ticle weight all methods equally (weight = 1).

• Depth of Inheritance Tree (DIT): maximal length
from the class to the root of the type inheritance
tree.

• Number of Children (NOC): number of classes that
directly extend this class.

• Coupling Between Objects (CBO): number of other
objects to which the class is coupled. Class A is
coupled to Class B if one of them calls methods or
references an instance variable defined in the other.

• Response for a Class (RFC): size of the response
set, defined as the union of all methods defined by
the class and all methods called by all methods in
the class.

• Lack of Cohesion in Methods (LOCM): Methods
in a class may reference instance variables in that
class. P is the set of methods in a class that share
in common at least one instance variable with at
least one other class method. Q is the set of methods
that do not reference instance variables in common.
LOCM is |P − Q| if |P − Q| > 0 and 0 otherwise.

The CK metrics are also sometimes used in industry
to measure design or system complexity. Research on
their utility has yielded mixed results — studies have
correlated subsets of the metrics with fault-proneness,
though they do not tend to agree on which subsets are
predictive [7], [52], [54].

Na = |{t | a ∈ t ∧ ¬Error(t)}|
Nab = |{t | a . . . b ∈ t ∧ ¬Error(t)}|
Ea = |{t | a ∈ t ∧ Error(t)}|
Eab = |{t | a . . . b ∈ t ∧ Error(t)}|
z = ECC z-score
SPab = 1 if a and b are in the same package,

0 otherwise
DF ab = 1 if every value in b also occurs in a,

0 otherwise
Mia = Mi({t | a ∈ t})
Miab = Mi({t | a . . . b ∈ t})

Fig. 3. Features used by our miner to evaluate a candidate
specification 〈a,b〉. Mi is a quality metric lifted to sets of traces.

4.2 Mining Algorithm Details

Our mining algorithm extends our previous WN
miner [38], [59], notably by including quality metrics
from Section 4.1. Our miner takes as input:

1) The program source code P . The variable � ranges
over source code locations. The variable l repre-
sents a set of locations.

2) A set of quality metrics M1 . . . Mq. Quality metrics
may map either individual locations � to measure-
ments, with Mi(�) ∈ R (e.g., code churn) or entire
traces to measurements, where Mi(l) ∈ R (e.g., path
feasibility).

3) A set of important events Σ, generally taken to be
all of the function calls in P . We use the variables
a, b, etc., to range over Σ.

Our miner produces as output a set of candidate
specifications C = { 〈a,b〉 | a should be followed by b}.
We manually evaluate candidate specification validity.

Our algorithm first statically enumerates a finite set
of intra-procedural traces in P . Because any non-trivial
program contains infinite number of traces, this process
requires an enumeration strategy. We perform a breadth-
first traversal of paths for each method m in P . We emit
the first k such paths, where k is specified by the pro-
grammer. Larger values of k provide more information
to the mining analysis with a corresponding slowdown.
Experimentally, we find that very large k provide dimin-
ishing returns in the tradeoff between correctness and
time/space. Typical values are 10 ≤ k ≤ 30. To gather
information about loops and exceptions while ensuring
termination, we pass through loops no more than once,
and assume that branches can be either taken or not and
that an invoked method can either terminate normally or
raise any of its declared exceptions. Thus, a path through
a loop represents all paths that take the loop at least once,
a non-exceptional path represents all non-exceptional
paths through that method, etc. This approach is consis-
tent with other researchers’ path enumeration strategies,
including those used by some of our metric-collection
techniques [10]. We find that the level of detail provided
by this strategy is adequate for our purposes, but note

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

TBD, VOL. X, NO. Y, MONTH YEAR 7

that it is possible to collect additional detail, such as by
increasing the number of loop iterations.

This process produces a set of traces T . A trace t is a
sequence of events over Σ; each event corresponds to a
location �. We write a ∈ t if event a occurs in trace t and
a . . . b ∈ t if event a occurs and is followed by event b in
that trace. We note whether a trace involves exceptional
control flow; this judgment is written Error(t).

Next, our miner lifts quality metrics from individ-
ual locations to traces, where necessary. This lifting
is parametric with respect to an aggregation function
A : P(R) → R. We use the functions max, min, span
and average to summarize quality information over a set
of locations l. MA denotes a quality metric M lifted to
traces: MA(t) = A({M(�) | � ∈ t}) (metrics that operate
over sets of locations do not need to be aggregated;
MA(t) = M(l) where l is the set of locations in t). M
denotes the metric lifted again to work on sets of traces:
M(T) = A({MA(t) | t ∈ T}).

Finally, we consider all possible candidate specifica-
tions. For each a and b in Σ, we collect a number of
features. Figure 3 shows the set of features our miner uses
to evaluate a candidate specification 〈a,b〉. Nab denotes
the number of times b follows a in a non-error trace. Na

denotes the number of times a occurs in a normal trace,
with or without b. We similarly write Eab and Ea for
these counts in error traces. SPab = 1 when a and b are
in the same package. DF ab = 1 when dataflow relates a
and b: when every value and receiver object expression
in b also occurs in a [59, Section 3.1]. z is the statistic
for comparing proportions used by the ECC miner to
rank candidate specifications. The set of features further
includes the aggregate quality for each lifted metric MA.
We write Miab (respectively Mia) for the aggregate
metric values on the set of traces that contain a followed
by b (resp. contain a). As we have multiple aggregation
functions and metrics, Mia actually corresponds to over
a dozen individual features.

When combined with the aformentioned statistical
measurements and frequency counts, each pair 〈a,b〉 is
described by over 30 total features fi. We avoid assert-
ing an a priori relationship between these features and
whether a pair represents a true specification. Instead,
we will build a classifier that examines a candidate
specification and, based on learned a linear combination
of its feature values, determine whether it should be
emitted as a candidate specification. A training stage,
detailed in Section 5, is required to learn an appropriate
classifier relating features to specification likelihood.

5 EXPERIMENTS

In this section, we empirically evaluate our approach.
We begin by explaining how we build a model relating
code quality metrics to the likelihood that a candidate
is a true specification, and how this model can be used
as a specification miner. We use this model to evaluate
several research questions:

Program Version LOC Description
hibernate2 2.0b4 57k Object persistence
axion 1.0m2 65k Database
hsqldb 1.7.1 71k Database
freecol 0.4.0 73k Game
cayenne 1.0b4 86k Object persistence
jboss 3.0.6 107k Middleware
mckoi-sql 1.0.2 118k Database
tvbrowser 2.2.5 130k TV Guide
jedit 4.0 140k Text editor
jasperreports 1.2.0 153k Dynamic content
jfreechart 1.0.13 316k Data reporting
ptolemy2 3.0.2 362k Design modeling
Total 1.5M

Fig. 4. Open-source Java benchmark set.

1) Our first set of experiments evaluates the predictive
power and statistical independence of the code
quality metrics.

2) Our second experiment provides evidence that our
metrics improve existing techniques for automatic
specification mining.

3) Our final experiment measures the efficacy of our
new specification miner in terms of mined specifi-
cation utility and false positive rate, using previous
techniques as a baseline.

We perform our evaluation on the 12 open-source Java
benchmarks shown in Figure 4. Several of these pro-
grams allow a direct comparison with previously pub-
lished results [25], [38], [57], [59], [61]: hibernate, axion,
hsqldb, cayenne, jboss, mckoi-sql and ptolemy2. We
do not need source code implementing a particular in-
terface; instead, we generate traces from the client code
that uses that interface (as in [3], [19], [25], [61]); we
thus mine both specifications specific to a particular
benchmark as well as library-level API requirements. We
restrict attention to programs with CVS or SVN source-
control repositories, since such information is necessary
for certain metrics. For the purposes of consistent data
collection, we use the cvssuck utility to convert CVS
repositories to SVN repositories. We used the blame com-
mand in SVN to collect author information, and info to
collect churn information. We statically enumerated up
to 30 traces per method per benchmark.

Our technique is relatively efficient. The most ex-
pensive operation is computing path feasibility, as it
requires multiple calls to a theorem prover (we use
simplify [17]). Computing feasibility on the mckoi-sql,
our median benchmark, took 25 seconds on a 3 GHz
Intel Xeon machine. Enumerating all static traces for
mckoi-sql, with a maximum of 30 traces per method,
took 912 seconds in total; this happens once per program.
Collecting the other metrics for mckoi-sql is relatively
inexpensive (e.g., 6 seconds for readability, 7 seconds for
path frequency). The actual mining process (i.e., consid-
ering the features for every pair of events in mckoi-sql
against the cutoff) took 555 seconds. The total time for
our technique was about 30 minutes per 100,000 lines of

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

TBD, VOL. X, NO. Y, MONTH YEAR 8

code.

5.1 Learning a Model
First, we construct a linear model that, given a set of
features associated with a potential 〈a,b〉 pair, determines
whether it should be output as a candidate specification.
We use linear regression to learn the coefficients ci and a
cutoff , such that our miner outputs 〈a,b〉 as a candidate
specification iff

∑
i cifi > cutoff . In other words, a

specification is emitted if the linear combination of its
features weighted by the coefficients exceeds the cutoff.
A notable weakness of linear regression is that we do
not know a priori if the proposed features are related
linearly; it is possible for the features to have a non-
parametric relationship. Accordingly, we add the log,
absolute value, square, and square root of each feature
vector to the testing and training sets.3

Linear regression requires annotated answers (in our
case, a set of known-valid and known-invalid specifica-
tions). Our training set consists of valid and invalid spec-
ifications mined and described in previous work [57],
[59] and manually annotated specifications from the new
benchmarks. We used the source code of a and b, sur-
rounding comments, source code in which a and b was
either adhered to or violated, and related documentation
(such as the Hibernate APIT documentation) to evaluate
whether a candidate specification represented a true or
false positive. A potential threat to the validity of the
model is over-fitting by testing and training on the same
data. We must therefore verify that our miner is not
biased with respect to our training data. We mitigate this
threat with 10-fold cross validation [35]. We randomly
partition the data into 10 sets of equal size. We test
on each set in turn, training on the other nine; in this
way we never test and train on the same data. Bias
is suspected if the average results of cross-validation
(over many random partitionings) are different from the
original results. The difference was less than 0.01% for
our miner, indicating little or no bias.4

We evaluate potential models with recall and precision.
Recall measures the probability that a given real spec-
ification is returned by the algorithm, expressed as the
fraction of real specifications returned out of all known
real specifications. Precision measures the probability
that a returned candidate specification is a true specifica-
tion, expressed as the fraction of candidate specifications
that are true positives. A high recall indicates that the
miner is doing useful work (i.e., returning real speci-
fications), but without a corresponding high precision,

3. A logistic model, which fits features to a probability range be-
tween 0 and 1, would also naturally fit our task. However, such a
model still requires a training phase to produce a binary classifier. As
the same work is required to employ either type of model, we prefer a
linear model because it admits straightforward statistical analyses and,
in practice, is sufficiently accurate.

4. We perform cross validation in lieu of partitioning our dataset
because it allows us to evaluate on more benchmarks, lines of code,
and specifications, supporting the generality of our technique, while
still establishing that the technique is not biased by over-fitting.

Metric F p

Code Churn 44.2 <0.0001
Path Frequency 26.4 <0.0001
Readability 19.9 <0.0001
Author Rank 17.4 <0.0001
Path Feasibility 11.9 0.0006
Path Density 9.3 0.0379
Code Clones 8.2 0.0039
Cyclomatic Complexity 1.0 0.2498
CK Metric RFC 21.1 <0.0001
CK Metric DIT 9.1 0.0026
CK Metric NOC 7.3 0.0067
CK Metric WMC 7.4 0.0064
CK Metric CBO 6.9 0.0085
CK Metric LOCM 5.1 0.0235
Exceptional Path 31.8 <0.0001
One Error 28.2 <0.0001
Same Package 2.9 0.0890
Dataflow 1.9 0.1679

Fig. 5. Analysis of variance of features in our model. The F
column displays a feature’s F -ratio: the square of the variance
in the model explained by a feature over the variance not
explained. The p column shows the probability that the feature
does not affect the miner. F values approaching 1 indicate lack
of predictive power; p ≤ 0.05 indicates statistical significance.
The bottom four features are present in the WN miner [59].

real specifications drown in a sea of false positives. An
information retrieval task can trivially maximize either
precision or recall be returning nothing (all returned ele-
ments are true positives) or everything (all true positives
are returned along with everything else). Accordingly,
information retrieval tasks may measure the harmonic
mean of precision and recall, known as the f-measure.
Given the set of coefficients, we perform a linear search
to find a cutoff that maximizes one of these functions.
Our normal miner maximizes f-measure; our precise miner
maximizes precision (yielding very few false positives).
We do not build a miner to maximize recall because our
dominant concern is reducing false positives.

5.2 Predictive Power of Quality Metrics
In this section, we evaluate the coefficients of the linear
model to understand the overall predictive power of
each of our proposed quality metrics, compare the utility
of the metrics on different benchmarks and qualitatively
analyze observed differences, and establish the indepen-
dence of many of the quality metrics.

5.2.1 Quality Metrics Across All Benchmarks
Our first experiment evaluates the relative importance
of our quality metrics. We perform a per-feature analysis
of variance on the linear model; the results are shown in
Figure 5. All of the quality metrics defined in Section 4.1
except Cyclomatic complexity had a significant main
effect (p ≤ 0.05). The code churn metric, encoding how
frequently and recently a line of code has been changed
in the source control repository, was our most important

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

TBD, VOL. X, NO. Y, MONTH YEAR 9

feature. Path feasibility is of moderate predictive power;
it is, to our knowledge, the only feature that had been
previously investigated in the context of mining [2].

The author rank metric is significantly predictive in
this analysis, overturning previous observations [38] that
it has little predictive power. These experiments involve
a much larger benchmark set (1.5 M vs. 0.8 M LOC).
In addition, we enumerate 30 traces per method; in
previous work we enumerated 10. These differences
appear to account for the change: on these benchmarks,
author rank increases in importance by 50% for every
10 additional traces per method generated between 10
and 30. The previous set of benchmarks may have
been insufficiently varied, and the previous set of traces
insufficiently deep, resulting in an imprecise model.

We also evaluated the predictive power of traditional
complexity metrics: Cyclomatic complexity and the six
CK metrics for object-oriented design complexity (recall
that we weight all methods equally for the purposes of
the WMC metric). Our analysis of variance shows that
Cyclomatic complexity has no significant effect on the
model, and is not predictive for whether code conforms
to specifications for correct behavior. This is consistent
with previous research suggesting that Cyclomatic com-
plexity is not predictive for code faults [22], [50]. The six
CK metrics, however, vary in predictive power, though
all have a significant main effect. With the exception
of response for a class (RFC), which is meant to ap-
proximate the interconnectedness of the design, the CK
metrics are less predictive the other proposed quality
metrics. Thes results suggest that the CK metrics may
indeed capture an element of code quality or complexity,
though they vary in their ability to do so.

In our previous work that examined the relationship
between error traces and specification false positive
rates [59], we used used several criteria to select can-
didate pairs: every event b in an event pair must occur
at least once in exception cleanup code (“Exceptional
Path”), there must be at least one error trace with
a but without b (“One Error”), both events must be
declared in the same package (“Same Package”), and
every value and receiver object expression in b must
also be in a (“Dataflow”). We included these features
in our model to determine their predictive power. The
results are shown in the lower section of Figure 5. The
“Exceptional Path” and “One Error” conditions affect
the model quite strongly, while the “Same Package” and
“Dataflow” conditions are less significant. They are not
as predictive as Code Churn, our most predictive metric.

5.2.2 Quality Metrics Between Benchmarks
The previous experiment analyzed the relative impor-
tance of the quality metrics across all twelve bench-
marks. This section qualitatively explores factors that
affect the predictiveness of our features by comparing
the predictive power of the metrics on each benchmark.
We present a non-exhaustive set of observations about
benchmark features that appear to relate to metric power.

This analysis provides insight into factors that may affect
the metrics’ predictive power, such as a particular devel-
opment methodology. The purpose of this discussion is
to explore the circumstances under which the proposed
technique is useful, and under which it may be misled.

To explore this area, we built individual specification
mining models for each of our benchmarks using the
technique described in Section 5.1, and perform analyses
of variance on each model, noting outliers. We omit the
full results in the interest of brevity. Several interesting
patterns emerge, however.

First, benchmark size appears to influence the unifor-
mity of our results. axion, one of our smaller bench-
marks, is an outlier on several of our metrics. ptolemy,
our largest benchmark, displays the most uniform be-
havior, displaying no outlier behavior with any metric.
This is encouraging: we expect that the largest, most
well-established programs are the most general and thus
the least likely to contain anomalous behavior for a
predictive model, a trend that generally holds here.

The presence of explicit testing code (e.g., JUnit unit
tests) appears to influence the relative predictive strength
of Frequency, Author Rank, and Path Density. Unit
testing code tends to be straightforward (in our bench-
marks, unit test classes are shorter than 100 lines each, on
average), follows implicit specifications, and is designed
to check correct program behavior, and is therefore likely
to probe and assert that correct behavior. Paths through
testing classes are therefore both likely to be correct
and also to be executed with high frequency relative to
their enclosing methods, A notable outlier on these three
metrics is axion, which ships with a comprehensive unit
test suite that comprises a full 48% of the codebase.
Frequency is more predictive on axion than several of
the other metrics (F = 22.8, p = 0.001), as is Author
Rank (F = 10.1, p = 0.015), likely because the entire
test suite appears to have been written by one author.
This author likely wrote correct code, and thus that one
programmer’s rank is the most likely factor in the high
predictive power of author rank on the axion bench-
mark. Path density is strongly predictive on the axion
(F = 22.8, p < 0.0001) and jboss (F = 21.3, p < 0.0001)
benchmarks. jboss also ships with a large number of
JUnit unit tests. As unit testing methods are very sim-
ple, in general, they also have low density, and thus low
density is predictive of specification validity.

The predictive power of code clones appears related
to the amount of code that is marked as copied in a
benchmark: in the limit, if a project contains no du-
plicate code, the metric is uniformly zero and has no
predictive power. The metric is very strongly predictive
on hibernate (F = 81.8, p < 0.0001). The PMD toolkit
marks 0.8% of hibernate’s code as cut-and-paste. This
figure is twice as high as that of the benchmark with
the next highest percentage, jboss (on which the metric
is also strongly predictive). This metric is not predictive
on mckoi-sql (F = 0.6, p = 0.424), which has the lowest
percentage of copied and posted code (0.03%).

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

TBD, VOL. X, NO. Y, MONTH YEAR 10

The predictive power of code churn appears similarly
correlated with the total number of revisions on a given
benchmark — that is, it improves with the granularity
of code churn judgments and cannot help for projects
that contain only one revision. The hsqldb 1.7.1 re-
lease contained 72 revisions in the svn repository, while
mckoi-sql had undergone 594 (relatively few compared
to its size); on these benchmarks, this metric is not very
predictive (F = 3.3, p = 0.070 and F = 3.9, p = 0.047,
respectively). Comparatively, tvbrowser had undergone
5706 revisions, jfreechart 2056, and cayenne 1961. Cor-
respondingly, tvbrowser, and jfreechart had F values
of 22.0 and 33.4, respectively, with p values < 0.0001.

The number of conditionals in a program is relevant to
feasibility’s predictive power: a path cannot be marked
infeasible by static analysis if there are no conditional
guards along it. Programs with more conditional guards
potentially contain more paths that can be marked infea-
sible. To gain additional insight, we counted the number
of if or while constructs appearing in our benchmarks’
source code. For ptolemy, on which feasibility is com-
paratively highly predictive (F = 7.3, p = 0.007) contains
approximately seven times as many conditional guards
as axion, on which the metric is not predictive (F = 1.0,
p = 0.311). This ratio of guards to feasibility predictive
power holds for all benchmarks except for mckoi-sql,
which contains fewer conditionals than this hypothesis
predicts. Note that if and while also increase CFG
edges and connected components, which are key parts
of Cyclomatic complexity and some CK metrics, but
feasibility is much more predictive. We hypothesize that,
because an external theorem prover reasons about con-
flicting information, feasibility contains richer semantic
information. Number of edges, connected components,
and Cyclomatic complexity all correlate strongly with
method length; they indicate only which paths contain
many branch points. They do not speak to which paths
are required or impossible, information which brings
more to bear on whether or not a candidate event pair
represents required behavior (as hypothesized in Sec-
tion 4.1, event pairs that must follow one another may
be more likely to represent required behavior; those that
cannot follow one another on a given path are more
likely to not represent required behavior).

We conclude by observing that statically predicted
path frequency and code churn are highly predictive on
all benchmarks. These metrics may apply more univer-
sally because they are independent of local developer
choice (cf. readability). Both code churn and path fre-
quency implicitly take advantage of previous testing and
validation work done by human developers: code that
has not been churned recently is presumably behaving
correctly on the test suite or in deployment, and path
frequency similarly points to code which is likely to
be frequently executed on indicative workloads. Code
that is well-tested, and thus conforms to specifications,
is likely to have low churn values and high frequency
values. Conversely, metrics such as author rank or code

clones are most useful in certain corner cases: not all
development organizations will have relatively novice
programmers or a plethora of duplicate code.

These observations provide insight into the nature of
our metrics, their strengths and weaknesses, and their
variability between software projects.

5.2.3 Correlation Between Quality Metrics
The final part of our first experiment provides empirical
evidence that our quality metrics are distinct. Figure 6
shows the results of performing pair-wise Pearson cor-
relation calculations between all metric pairs across the
entire benchmark set. A correlation coefficient may range
between -1.0 and 1.0, where ±1.0 indicates that the two
variables analyzed are linearly equivalent. A common
heuristic for interpreting the magnitude of a correlation
holds that correlations between 0.0 and ±0.2 are very
small [26].5 All correlations have p < 0.0001 and are
considered significant. According to this heuristic, most
statistically significant quality metric pairs are uncor-
related. Code churn and code clones are very slightly
correlated (0.24); however, it is logical that code cloning
will increase with repository age and size. Readability
and Cyclomatic complexity are weakly correlated (0.38);
both are known to correlate with path length [9], [44].

Several of the CK metrics do correlate with one an-
other. CBO correlates weakly with RFC (0.33), and more
strongly with LOCM (0.56); RFC correlates strongly with
WMC (0.77). The CK metrics were designed together to
approximate the complexity of an object-oriented design
using easily-identifiable features of its type definitions.
Most of the metrics, with the exception of DIT (which
does not correlate with the others) are defined in terms of
number of methods called, defined, or used in the class;
some interdependence is to be expected. WMC and RFC
are the only complexity metrics that correlate notably
with a quality metric: density (as expected, since density
is defined both in terms of the number of paths through
a method as well as the number of paths through a class,
which is influenced by the number of methods defined
in the class). The stronger correlations between the CK
metrics themselves and between the CK metrics and the
quality metrics may partially explain their lesser utility
when actually applied to specification mining, an issue
explored in greater detail in Section 5.4.

A potential threat to the validity of our hypothesis is
that the proposed metrics may be correlated. The results
shown in Figure 6 mitigate this threat by suggesting
that the proposed quality metrics are not linear com-
binations of one another. To corroborate these results,
we performed a Principal Components Analysis (PCA)
on the quality metrics. A PCA can indicate the number
of components in a set of features that contribute to
the overall variance in the system. Given the 7 features
in the set of quality metrics, the PCA revealed that a

5. Some work suggests that ±0.3 signifies no correlation; in general,
cutoffs for interpreting correlations are heuristics.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

TBD, VOL. X, NO. Y, MONTH YEAR 11

Metric R
an

k

C
od

e
C

lo
ne

s

Fe
as

ib
ili

ty

D
en

si
ty

Fr
eq

ue
nc

y

R
ea

da
bi

lit
y

C
om

pl
ex

it
y

W
M

C

D
IT

N
O

C

C
BO

R
FC

LO
C

M

Churn 0.02 0.24 -0.01 0.01 0.02 0.02 -0.01 0.02 -0.01 0.01 -0.03 0.02 -0.01
Rank 1.00 0.04 -0.02 0.00 -0.02 0.01 0.02 -0.01 0.12 -0.01 0.08 0.08 0.05
Code Clones - 1.00 0.01 0.01 0.01 0.02 0.00 0.04 0.01 0.05 -0.02 0.02 -0.01
Feasibility - - 1.00 0.00 -0.03 0.00 0.05 0.03 0.03 0.01 0.06 0.05 0.02
Density - - - 1.00 0.05 0.01 0.03 0.48 0.06 -0.02 0.15 0.57 0.05
Frequency - - - - 1.00 0.13 0.15 0.12 -0.01 0.12 0.08 -0.04 0.06
Readability - - - - - 1.00 0.38 0.23 0.17 0.03 0.12 0.18 0.25
Complexity - - - - - - 1.00 0.10 0.01 0.09 0.07 0.04 0.07
WMC - - - - - - - 1.00 -0.04 0.09 0.18 0.77 0.21
DIT - - - - - - - - 1.00 -0.01 0.15 0.20 -0.02
NOC - - - - - - - - - 1.00 0.02 -0.04 0.01
CBO - - - - - - - - - - 1.00 0.33 0.56
RFC - - - - - - - - - - - 1.00 0.12

Fig. 6. Pearson correlation coefficients r between the different metrics measured across all benchmarks. |r| ≤ 0.2 is considered
low-to-no correlation, 0.2 < |r| ≤ 0.5 is considered a weak correlation [26]. p < 0.0001 for all correlations.

combination of 6 is necessary to account for 99% of
the overall data variance. This result is consistent with
our correlation calculations above. Taken together, the
analyses support our claim first that the metrics we
propose describe independent aspects of code quality,
and second, that, with one exception, the quality metrics
do not strongly correlate with the complexity metrics.
Further study is required to more comprehensively in-
vestigate the relationship between the metrics, and their
relationship to quality in other applications.

5.3 Quality Matters for Specification Mining

Our second experiment presents empirical evidence
that our quality metrics improve an existing technique
for automatic specification mining. For each of our
benchmarks, we run the unmodified WN miner [59] on
multiple input trace sets of varying levels of quality. The
quality of a trace is defined as a linear combination of the
metrics from Section 4.1, with coefficients based on their
relative predictive power for specification mining (the F
column in Figure 5); we use this measurement to sort
the input trace set from highest- to lowest- quality. We
compare WN’s performance on random baseline sets of
static traces to its performance on high quality (and low
quality) subsets of those traces. For generality, we restrict
attention to feasible traces, since other miners such as
JIST already disregard infeasible paths [2].

In total on all of the benchmarks, WN miner produces 86
real specifications. On average, WN finds all of the same
specifications using only the top 45% highest quality
traces: 55% of the traces can be dispensed with while
preserving true positive counts. Since static trace enu-
meration can be expensive and traces are difficult to
obtain [57], reducing the costs of trace gathering by a
factor of two is significant. As a point of comparison,
when a random 55% of the traces are discarded, we

find only 58 true specifications in total (67% of the total
possible set), with a 3% higher rate of false positives.

We next explore the impact that the quality of a trace
set has on mining success by passing proportions of the
total input set (all traces from all benchmarks) to the
WN miner. We perform mining on the top N% of the
traces (the “High Quality” traces), the bottom N% of the
traces (the “Low Quality” traces), and a random N% of
the traces. For the “Random” results, we presented the
average of five runs on different random subsets; error
bars denote one standard deviation in either direction.

Figure 7 presents the results of this experiment by
showing the percentage of the total specification set
mined by WN at each trace set size for sets of high,
random, and low quality traces. We conclude that trace
quality has a strong impact on the success of the miner.
First, the higher-quality traces allow the miner to find
more specifications on smaller input sets than do the ran-
domly selected traces; the low-quality traces consistently
yield far fewer true specifications. To highlight one point
on the graph: on 25% of the input, the high-quality traces
yield 65% of the total possible mined specifications.
By contrast, the random traces yield less than half, at
43%, and the low-quality traces, only 2% (only 2 true
specifications!). By the time the top-quality traces have
yielded all possible true-specifications, the random traces
have found 88%, and the low quality traces, 63%.

This trend holds at all data points except at 10% of the
input, where the random subsets yielded a very slightly
higher percentage of total specifications found. However,
the difference in the number of specifications mined is
very low: only 3 additional true specifications are found
on the random subset. More importantly, the difference
in the false positive rate high quality versus the random
traces is most marked on smaller subsets: at both 5 and
10%, the miner has a false positive rate of 83% on high
quality traces and 89% on random traces. Although false

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

TBD, VOL. X, NO. Y, MONTH YEAR 12

Fig. 7. Performance of the WN specification miner on subsets of the total trace set. “Random” points are an average of five
randomly selected subsets. “High quality” quality are the top N% of the traces when sorted by quality. The y-axis shows the
percentage of the possible true specifications mined. The false positive rate on high quality (85%) is lower than on random (89%).

SF
.o

pe
nS

es
si

on

s0

error
s4 T.commit

T.rollback S.close

S.beginTransaction
error

s3

s2 s1

Fig. 9. A finite state machine describing the Hibernate
Session API, from the Hibernate documentation.

positive rate is not shown in Figure 7, the miner finds
a lower rate of false positives on the high-quality traces
than on the random traces 85% vs. 89%, on average.

Trace generation is often a bottleneck for static spec-
ification mining techniques. We claim that, in general,
high quality traces should be pursued and low quality
traces should be skipped. Our quality metrics could
therefore improve any static trace-based specification
miner (e.g., [20], [25], [61]). These results also have impli-
cations for multi-party techniques to mine specifications
collaboratively by sharing trace information [57]: focus
should be placed on sharing information from high
quality traces. Further, this experiment suggests that our
notion of code quality generalize beyond our particular
mining application/implementation.

5.4 Quality-Based Specification Mining

Our main experiment measures the efficacy of our
new specification miner. The miner uses features from
previous miners and the quality metrics proposed in Sec-
tion 4.1; it excludes complexity metrics. We omit Cyclo-
matic complexity because it is not predictive in the linear
model (Section 5.2). A leave-one-out analysis shows
the including the CK metrics in the model raises both
the true and false positive rate. As our goal is useful
specifications with few false positives, we omit features,

even those that are predictive for true positives, that
increase the false positive rate substantially.

Figure 8 shows the results of applying the new miners
to the benchmarks in Figure 4. For each benchmark, we
report the number of true and false positive candidates
returned (determined by manual verification). Recall the
normal miner minimizes both false positives and nega-
tives, while our precise miner minimizes false positives.
For comparison, we also show results of the WN [59]
and ECC [20] mining techniques. These miners were cho-
sen for comparison because of their comparatively low
false positive rates; other methods produce even more
candidates. On jboss, the Perracotta miner produces
490 candidate two-state properties, which the authors
say “is too many to reasonably inspect by hand.” [61]
Gabel and Su report mining over 13,000 candidates from
hibernate [25]. Finally, as a heuristic for measuring
mined specification utility, we report the number of dis-
tinct methods that violate the valid mined specifications
(i.e., the number of potential policy violations found by
a bug-finding tool using that specification). Each method
is counted only once per specification, even if multiple
paths through that method violate it. See [58, pp.423–
425] for a survey of the bugs found in these benchmarks.

The normal miner finds useful specifications with a
low false positive rate. It improves on the false positive
rate of WN by 26%, while still finding 72% of the same
specifications. It finds 4 times as many true specifications
as ECC. Moreover, the specifications that it finds find
more violations on average than those found by WN: 884
violations, or 13 per valid specification, compared to WN’s
426, or 7 per valid specification.

The precise miner produces only one false positive, on
Hibernate: 〈S.beginTransaction, T.commit〉. Figure 9
shows the relevant API. The candidate behavior is not
required because one can legally call T.rollback instead
of T.commit. However, there are no traces on which the

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

TBD, VOL. X, NO. Y, MONTH YEAR 13

Normal Miner Precise Miner WN ECC
False False False False

Program Sp
ec

s

% Bu
gs

Sp
ec

s

% Bu
gs

Sp
ec

s

% Bu
gs

Sp
ec

s

% Bu
gs

hibernate 7 8 53% 279 5 1 17% 153 9 42 82% 93 3 421 99% 21
axion 7 5 42% 71 4 0 0% 52 8 17 68% 45 0 96 100% 0
hsqldb 3 1 25% 36 1 0 0% 5 7 55 89% 35 0 244 100% 0
freecol 3 0 0% 13 3 0 0% 13 4 10 71% 17 0 316 100% 0
cayenne 5 7 58% 45 3 0 0% 23 5 30 86% 18 3 308 99% 8
jboss 14 75 84% 255 2 0 0% 12 11 103 90% 94 2 442 99% 4
mckoi-sql 7 10 59% 20 2 0 0% 7 19 137 88% 69 2 344 99% 5
tvbrowser 7 4 36% 44 4 0 0% 19 10 68 87% 99 2 412 99% 2
jedit 2 3 60% 14 0 0 0% 0 5 84 94% 57 1 155 99% 3
jasperreports 4 2 33% 19 3 0 0% 14 4 17 81% 20 0 642 100% 0
jfreechart 2 0 0% 44 2 0 0% 44 2 5 71% 44 1 419 99% 4
ptolemy 6 1 14% 44 3 0 0% 13 9 183 95% 72 3 653 99% 12
Total 67 116 63% 884 32 1 3% 355 93 751 89% 663 17 4452 99% 59

Fig. 8. Comparative mining results on 1.5M LOC. “Specs”indicates valid specifications, “False” indicates false positive specifica-
tions. “Bugs” totals, for each valid specification found, the number of distinct methods that violate it. The two left headings give
results for our Normal Miner and our Precise Miner; WN and ECC are previous algorithms.

false candidate is followed on which the true specifica-
tion is not, and very few on which the false candidate is
violated while the true candidate is not. Our technique
therefore cannot distinguish between the two sets of
traces, because their quality measurements are nearly
identical. This example suggests that further study is
needed to help distinguish between extremely common
and required behavior. However, we are encouraged by
the fact that none of the other APIs demonstrated such
behavior, and believe that this implies that our model for
specification form and behavior is reasonable in practice.

The precise miner finds fewer valid specifications than
either the normal miner or the WN miner (it finds almost
twice as many true specifications as the ECC technique),
but its 3% false positive rate approaches levels required
for automatic use. Despite the one false positive and
the fact that it finds 34% as many specifications as WN,
the precise miner still finds 53% of the violations: each
candidate inspected yields 11 violations on average. This
suggests that the candidates found by the precise miner
are among the most useful. Users are often unwilling to
wade through voluminous tool output [20], [31]; with a
3% false positive rate, and more useful specifications, we
claim that our precise miner might be reasonable in both
interactive and automatic settings.

5.5 Threats to Validity
There are several threats to the validity of our results.
First, they may not generalize to the programs built in in-
dustrial practice because our benchmark set may not be
representative, representing a threat to external validity.
We believe that the addition of approximately 650k LOC
of benchmarks compared to previous work mitigates this
threat. Moreover, the additional benchmarks are taken
from a variety of areas, ranging from dynamic content

generation (jedit) to a TV guide (tvbrowser). We feel
that the size and breadth of our benchmarks mitigates
this threat significantly.

The first threat to construct validity is over-fitting of
our model to the training data. We use cross-validation
in Section 5.4 to demonstrate that our results are not
biased by over-fitting. A second such threat lies in our
manual validation of output candidate specifications:
our human annotation process may mislabel the output
used for both training and testing. We mitigated this
threat by using the source code that both defined and
made use of a and b, and related documentation and
comments, as available, to evaluate 〈a,b〉. Specifications
were annotated by more than one researcher over the
course of development. We also re-checked a fraction of
our judgments at random. In addition to spot-checking
specification validity over the course of our experiments,
we performed a systematic check by re-evaluating 120
randomly selected annotated specifications. This set in-
cluded both true and false positive specifications. Our re-
evaluation identified one falsely-labeled candidates, an
error rate of less than 1%.

A final threat lies in our use of “bugs found” as a
proxy for specification utility. First, we do not validate
the veracity of each reported violation and, given the
imprecision of static trace generation, we cannot be
certain that every reported violation represents a true
error. Moreover, while our mined specifications find
more policy violations than those returned by previous
techniques, they may not be as useful for tasks such as
documenting or refactoring. However, this highlights the
fact that the errors identified by a given specification are
not the only measurement of its potential utility. Even if
this measure of success is imprecise at best, specifications
remain important components of the software engineer-

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

TBD, VOL. X, NO. Y, MONTH YEAR 14

ing process, and our focus on a low false positive rate
is an important first step towards industrial practicality
of mining approaches. We leave further investigation of
specification utility for future work.

6 RELATED WORK

Our work is most related to the two distinct fields of
specification mining and software quality metrics.

6.1 Previous Work in Specification Mining
Some of the research presented in this paper were previ-
ously presented [38], [59]. This article expands on those
papers by providing:

• A motivating example that compares similar candi-
date specifications to highlight our insights.

• Additional benchmarks, bringing the size of the
benchmark set from 866K LOC to 1.6 million LOC.

• A more complex statistical analysis of the predictive
power of the metrics. We qualitatively and quanti-
tatively explore factors affecting predictive power,
and situate our work in software metric research.

• A comparison of the utility of these metrics to classic
complexity metrics (Cyclomatic complexity [44] and
the CK-metrics for object-oriented design complex-
ity [12]) and other previously-proposed metrics in
the context of specification mining [59].

• A more detailed study of the effects of trace quality
on an existing mining technique.

This work is closely related to existing specification
mining algorithms, of which there are a considerable
number (see [59] for a survey). Our approach extends
the ECC [20] and WN [59] techniques. Both mine two-state
temporal properties (referred to as specifications in this
article) from static program traces, and use heuristics and
statistical measures to filter true from false positives. WN
improves on the results of ECC by narrowing the criteria
used to select candidate specifications (e.g., the candidate
specification must expose a violation along at least one
exceptional path) and by considering additional source
code and software engineering features (e.g., whether
the events are defined in the same library or package).
We formalize both techniques in Section 4.2. We also
use some of the same benchmarks in our evaluation
to allow explicit comparison, and we incorporate the
features used by the previous miners into our own.

Whaley et al. propose a static miner [60] that produces
a single multi-state specification for library code. The
miner constructs a permissive policy that disallows 〈a,b〉
if function b raises an undersirable exception when an
object field is set to a value that function a sets. The
same work proposes a dynamic miner that produces
a permissive multi-state specification describing all ob-
served behavior in a set of dynamic traces. The JIST [2]
miner refines Whaley et al.’s static approach by using
techniques from software model checking to rule out
infeasible paths. Perracotta [61] mines multiple can-
didate specifications that match a given FSM template.

Gabel and Su [25] extend Perracotta using BDDs, and
show both that two-state mining is NP-complete, and
some specifications cannot be created by composing
two-state specifications. Strauss [3] uses probabilistic
finite state machine learning to learn a single permissive
specification from traces. GK-tail is a technique for
learning a finite state machine with edge constraints,
called extended finite state machine (EFSM) specifica-
tions [42]. EFSMs describe legal sequences of program
events subject to invariants on data values, such as might
be learned by Daikon [21]. Lo et al. use learned temporal
properties, such as those mined in this article, to steer the
learning of finite state machine behavior models [41].
Shoham et al. [51] mine by using abstract interpretation,
where the abstract values are specifications.

Unlike the static miner in Whaley et al., JIST, Strauss
and Shoham et al., we do not require that the user
provide important parts of the specification, such as the
exceptions of interest. Unlike Strauss, the Whaley et al.
dynamic miner, JIST, GK-tail, Lo et al., and Shoham et
al., we produce multiple candidate specifications rather
than a single specification; complex specifications are
difficult to debug and verify [4]. Unlike Perracotta
or Gabel and Su, we cannot mine more complicated
templates (e.g., FSMs with three states), though this is
not intrinsic to our quality-metric-based approach. Like
ECC, WN, Gabel and Su, and others, our miner is scalable.
We do construct more complicated models from mined
temporal properties like Lo et al., however, our miner
is tolerant of buggy input traces. We also evalute the
learned models in terms of externally-verified property
correctness (instead of whether the learned model ac-
cepts all input traces, a common alternative definition
of recall). Notably, we evaluate on precision, which we
feel is important to the eventual adoption of automatic
mining techniques in industrial practice.

The primary difference between our miner and previ-
ous static temporal property miners is that we use code
quality metrics to weight input traces with a goal of
low false positive rates. To our knowledge, no published
miner that produces multiple two-state candidates has a
false positive rate under 89%. We present two mining
prototypes that identify potentially useful specifications
(in terms of the number of identified potential viola-
tions): a normal miner with a rate of 63%, and a precise
miner with a rate of 3%.

6.2 Previous Work in Software Quality Metrics

A full survey of software quality metrics is outside the
scope of this article; instead, we highlight several notable
approaches. Halstead et al. proposed Software Science [29]
(which did not prove accurate in practice [30]), to pro-
vide easily measurable, universal source code attributes.
Function Point Analysis (FPA) [1] estimates value de-
livered to a customer, which can help approximate, for
example, an application’s budget, the productivity of
a software team, the software size or complexity, or

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

TBD, VOL. X, NO. Y, MONTH YEAR 15

the amount of testing necessary. Cyclomatic complexity
estimates the amount of decision logic in a piece of
software, and remains in industrial use to measure code
quality and impose limits on complexity [48]. Chidamber
and Kemerer proposed and evaluated six metrics (re-
ferred to as the CK metrics in this article) to describe
the complexity of an object oriented design [12]; these
metrics appear to correlate with software quality, de-
fined as “absence of defects.” Several researchers have
explored this correlation [7], [52], [54], and others have
used the object-oriented metrics or design patterns to
predict software faults [28], [55].

We go farther than these metrics by examining addi-
tional software engineering artifacts to measure quality.
Unlike FPA, our work does not consider usefulness
of code. Unlike Software Science, our model does not
assume an a priori combination of features. However,
we evaluate the utility of both Cyclomatic complexity
and of the CK metrics in our model (see Section 5.2.1).
We determined that Cyclomatic complexity is not a
useful measure of code quality as applied to specification
mining. This corroborates previous research [22], [50]
that found that certain popular complexity metrics, Cy-
clomatic complexity in particular, do not correlate with
fault density. The CK metrics do have some predictive
strength in a linear model relating quality to specification
likelihood, but we find that including them in a mining
model increases false as well as true positives.

More recently, Nagappan and Ball analyzed the re-
lationship between software dependences, code churn
(roughly, the amount that code has been modified as
measured by source control logs), and post-release fail-
ures in the Windows Server 2003 operating system [45].
They show that relative code churn, or the amount
of churn in one module as compared to a dependent
module, is more predictive of errors than absolute churn
(which we use here). This suggests that more sophisti-
cated measures of churn might be more predictive in our
model. Graves et al. similarly attempt to predict errors
in code by mining source control histories [27].

Like our work, these studies use features independent
of the source code to make predictions. Unlike our work,
they define quality as “absence of defects”, instead of
“adherence to specifications of correct behavior.” This
suggests that our use of detected errors as a proxy for
specification utility may be valid. The previous work
supports our claim that there is a relationship between
code churn, complexity, and quality.

7 CONCLUSION

Formal specifications have a variety of applications,
including testing, maintenance, optimization, refactor-
ing, documentation, and program repair. However, such
specifications are difficult for human programmers to
produce and verify manually, and existing automatic
specification miners that discover two-state temporal
properties have prohibitively high false positive rates.

An important problem with these techniques is that
they treat all parts of a program as equally indicative
of correct behavior. We instead measure code quality to
distinguish between true and false candidate specifica-
tions. Our metrics include predicted execution frequency,
code clone detection, code churn, readability and path
feasibility, among others. We also evaluate well-known
complexity metrics when used in specification mining.

Our approach improves the performance of existing
trace-based miners by focusing on high-quality traces.
Compared to previous work, we obtain equivalent re-
sults using only 45% of the input and with a slightly,
but consistently, lower rate of false positives. Our tech-
nique can also be used alone: we propose two new
specification miners and compare them to two previous
approaches. Our basic miner learns more specifications
and identifies hundreds more violations than previous
miners while presenting hundreds fewer false positive
candidates, with a false positive rate of 63% (versus the
89% rate of previous work). When focused on precision,
our technique obtains a 3% false positive rate, an order-
of-magnitude improvement on previous work, and finds
specifications that locate hundreds of violations. To our
knowledge, this is the first miner of two-state temporal
properties to maintain a false positive rate under 89%.

A combination of independent, imperfect code quality
metrics may prove useful to other automatic static anal-
yses that look at source code to draw conclusions about
code or predict faults. We believe that our technique is
an important first step towards real-world utility of au-
tomated specification mining, as well as to the increased
use of quality metrics in other analyses.

REFERENCES
[1] A. J. Albrecht, “Measuring application development productiv-

ity,” in IBM Application Development Symposium, 1979, pp. 83–92.
[2] R. Alur, P. Cerny, P. Madhusudan, and W. Nam, “Synthesis of

interface specifications for Java classes,” in POPL, 2005.
[3] G. Ammons, R. Bodik, and J. R. Larus, “Mining specifications,”

in Principles of Programming Languages, 2002, pp. 4–16.
[4] G. Ammons, D. Mandelin, R. Bodı́k, and J. R. Larus, “Debugging

temporal specifications with concept analysis,” in Programming
Language Design and Implementation, 2003, pp. 182–195.

[5] T. Ball, E. Bounimova, B. Cook, V. Levin, J. Lichtenberg, C. Mc-
Garvey, B. Ondrusek, S. K. Rajamani, and A. Ustuner, “Thorough
static analysis of device drivers,” in EuroSys, 2006, pp. 103–122.

[6] T. Ball, “A theory of predicate-complete test coverage and gener-
ation,” in FMCO, 2004, pp. 1–22.

[7] V. R. Basili, L. C. Briand, and W. L. Melo, “A validation of object-
oriented design metrics as quality indicators,” IEEE Trans. Softw.
Eng., vol. 22, no. 10, pp. 751–761, 1996.

[8] R. P. L. Buse and W. Weimer, “Automatic documentation inference
for exceptions,” in ISSTA, 2008, pp. 273–282.

[9] ——, “A metric for software readability,” in International Sympo-
sium on Software Testing and Analysis, 2008, pp. 121–130.

[10] ——, “The road not taken: Estimating path execution frequency
statically,” in ICSE, 2009, pp. 144–154.

[11] H. Chen, D. Wagner, and D. Dean, “Setuid demystified,” in
USENIX Security Symposium, 2002, pp. 171–190.

[12] S. R. Chidamber and C. F. Kemerer, “A metrics suite for object
oriented design,” IEEE Trans. Softw. Eng., vol. 20, no. 6, pp. 476–
493, 1994.

[13] J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach, C. Pasareanu,
Robby, and H. Zheng, “Bandera: extracting finite-state models
from Java source code,” in ICSE, 2000, pp. 762–765.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

TBD, VOL. X, NO. Y, MONTH YEAR 16

[14] M. Das, “Formal specifications on industrial-strength code —
from myth to reality,” in Computer-Aided Verification, 2006, p. 1.

[15] S. C. B. de Souza, N. Anquetil, and K. M. de Oliveira, “A
study of the documentation essential to software maintenance,”
in SIGDOC, 2005, pp. 68–75.

[16] R. DeLine and M. Fähndrich, “Enforcing high-level protocols in
low-level software,” in PLDI, 2001, pp. 59–69.

[17] D. Detlefs, G. Nelson, and J. B. Saxe, “Simplify: a theorem prover
for program checking,” J. ACM, vol. 52, no. 3, pp. 365–473, 2005.

[18] M. Di Penta and D. M. German, “Who are source code contribu-
tors and how do they change?” in Working Conference on Reverse
Engineering. IEEE Computer Society, 2009, pp. 11–20.

[19] D. Engler, B. Chelf, A. Chou, and S. Hallem, “Checking system
rules using system-specific, programmer-written compiler exten-
sions,” in OSDI, 2000.

[20] D. R. Engler, D. Y. Chen, and A. Chou, “Bugs as inconsistent
behavior: A general approach to inferring errors in systems code,”
in Symposium on Operating System Principles, 2001, pp. 57–72.

[21] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco,
M. S. Tschantz, and C. Xiao, “The daikon system for dynamic
detection of likely invariants,” Sci. Comput. Program., vol. 69, no.
1-3, pp. 35–45, 2007.

[22] N. E. Fenton and N. Ohlsson, “Quantitative analysis of faults and
failures in a complex software system,” IEEE Trans. Softw. Eng.,
vol. 26, no. 8, pp. 797–814, 2000.

[23] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe,
and R. Stata, “Extended static checking for Java,” in Programming
Language Design and Implementation, 2002, pp. 234–245.

[24] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A. Longstaff, “A
sense of self for Unix processes,” in IEEE Symposium on Security
and Privacy, 1996, p. 120.

[25] M. Gabel and Z. Su, “Symbolic mining of temporal specifica-
tions,” in ICSE, 2008, pp. 51–60.

[26] L. L. Giventer, Statistical Analysis in Public Administration. Jones
and Bartlett, 2007.

[27] T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy, “Predicting fault
incidence using software change history,” IEEE Trans. Softw. Eng.,
vol. 26, no. 7, pp. 653–661, 2000.

[28] T. Gyimothy, R. Ferenc, and I. Siket, “Empirical validation of
object-oriented metrics on open source software for fault predic-
tion,” IEEE Trans. Softw. Eng., vol. 31, no. 10, pp. 897–910, 2005.

[29] M. Halstead, Elements of Software Science. New York: Elsevier,
1977.

[30] P. G. Hamer and G. D. Frewin, “M.H. Halstead’s Software Science
- a critical examination,” in ICSE, 1982, pp. 197–206.

[31] D. Hovemeyer and W. Pugh, “Finding bugs is easy,” in OOPSLA
Companion, 2004, pp. 132–136.

[32] C. Kapser and M. W. Godfrey, “”Cloning Considered Harmful”
considered harmful,” in WCRE, 2006, pp. 19–28.

[33] R. M. Karp and M. O. Rabin, “Efficient randomized pattern-
matching algorithms,” IBM J. Res. Dev., vol. 31, no. 2, pp. 249–260,
1987.

[34] Y. Kataoka, M. Ernst, W. Griswold, and D. Notkin, “Automated
support for program refactoring using invariants,” International
Conference on Software Maintenance, pp. 736–743, 2001.

[35] R. Kohavi, “A study of cross-validation and bootstrap for accu-
racy estimation and model selection,” IJCAI, pp. 1137–1145, 1995.

[36] J. Krinke, “A study of consistent and inconsistent changes to code
clones,” in WCRE. IEEE Computer Society, 2007, pp. 170–178.

[37] O. Kupferman and R. Lampert, “On the construction of finite
automata for safety properties,” in ATVA, 2006, pp. 110–124.

[38] C. Le Goues and W. Weimer, “Specification mining with few false
positives.” in TACAS, 2009, pp. 292–306.

[39] S. Lerner, T. Millstein, E. Rice, and C. Chambers, “Automated
soundness proofs for dataflow analyses and transformations via
local rules,” SIGPLAN Not., vol. 40, no. 1, pp. 364–377, 2005.

[40] V. B. Livshits and M. S. Lam, “Finding security errors in Java
programs with static analysis,” in USENIX Security Symposium,
Aug. 2005, pp. 271–286.

[41] D. Lo, L. Mariani, and M. Pezzè, “Automatic Steering of Behav-
ioral Model Inference,” in FSE. ACM, 2009, pp. 345–354.

[42] D. Lorenzoli, L. Mariani, and M. Pezzè, “Automatic Generation
of Software Behavioral Models,” in ICSE, 2008, pp. 501–510.

[43] D. Malayeri and J. Aldrich, “Practical exception specifications.”
in Advanced Topics in Exception Handling Techniques, 2006, pp. 200–
220.

[44] T. J. McCabe, “A complexity measure,” IEEE Trans. Software Eng.,
vol. 2, no. 4, pp. 308–320, 1976.

[45] N. Nagappan and T. Ball, “Using software dependencies and
churn metrics to predict field failures: An empirical case study,”
in ESEM, 2007, pp. 364–373.

[46] National Institute of Standards and Technology, “The economic
impacts of inadequate infrastructure for software testing,” Tech.
Rep. 02-3, May 2002.

[47] S. L. Pfleeger, Software Engineering: Theory and Practice. Upper
Saddle River, NJ, USA: Prentice Hall PTR, 2001.

[48] J. C. Sanchez, L. Williams, and E. M. Maximilien, “On the Sus-
tained Use of a Test-Driven Development Practice at IBM,” in
Agile 2007. IEEE Computer Society, August 2007, pp. 5–14.

[49] R. C. Seacord, D. Plakosh, and G. A. Lewis, Modernizing Legacy
Systems: Software Technologies, Engineering Process and Business
Practices, 2003.

[50] M. Shepperd, “A critique of cyclomatic complexity as a software
metric,” Softw. Eng. J., vol. 3, no. 2, pp. 30–36, 1988.

[51] S. Shoham, E. Yahav, S. Fink, and M. Pistoia, “Static specifica-
tion mining using automata-based abstractions,” in International
Symposium on Software Testing and Analysis, 2007, pp. 174–184.

[52] R. Subramanyam and M. S. Krishnan, “Empirical analysis of ck
metrics for object-oriented design complexity: Implications for
software defects,” IEEE Trans. Softw. Eng., vol. 29, no. 4, pp. 297–
310, 2003.

[53] J. Sutherland, “Business objects in corporate information sys-
tems,” ACM Comput. Surv., vol. 27, no. 2, pp. 274–276, 1995.

[54] M.-H. Tang, M.-H. Kao, and M.-H. Chen, “An empirical study on
object-oriented metrics,” in METRICS, 1999, p. 242.

[55] M. Vokac, “Defect frequency and design patterns: An empirical
study of industrial code,” IEEE Trans. Softw. Eng., vol. 30, no. 12,
pp. 904–917, 2004.

[56] W. Weimer, “Patches as better bug reports,” in Generative Program-
ming and Component Engineering, 2006, pp. 181–190.

[57] W. Weimer and N. Mishra, “Privately finding specifications,” IEEE
Trans. Software Eng., vol. 34, no. 1, pp. 21–32, 2008.

[58] W. Weimer and G. C. Necula, “Finding and preventing run-time
error handling mistakes.” in OOPSLA, 2004, pp. 419–431.

[59] ——, “Mining temporal specifications for error detection,” in
TACAS, 2005, pp. 461–476.

[60] J. Whaley, M. C. Martin, and M. S. Lam, “Automatic extraction
of object-oriented component interfaces,” in ISSTA, 2002.

[61] J. Yang, D. Evans, D. Bhardwaj, T. Bhat, and M. Das, “Perracotta:
mining temporal API rules from imperfect traces,” in International
Conference on Software Engineering, 2006, pp. 282–291.

PLACE
PHOTO
HERE

Claire Le Goues received the BA degree in
computer science from Harvard University and
the MS degree from the University of Virginia,
where she is currently a graduate student. Her
main research interests lie in combining static
and dynamic analyses to prevent, locate, and
repair errors in programs.

PLACE
PHOTO
HERE

Westley Weimer received the BA degree in
computer science and mathematics from Cornell
University and the MS and PhD degrees from
the University of California, Berkeley. He is cur-
rently an assistant professor at the University
of Virginia. His main research interests include
static and dynamic analyses to improve software
quality and fix defects.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

