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Proteins




Protein Structure & Function

* Function: involved in almost everything

e Function depends on structure

o 3-D structure

twisted, folded, coiled into unique shape

hemoglobin




Motivation

e Very time-consuming and expensive to measure
protein structures experimentally

e Protein structure (right) is largely determined by
primary sequence (left), but we don't know how!



Task: A Sequence to Sequence per-
position classification task

= Input X: Primary sequence (a string of amino acids -AA)

XNVLALDTSQRIRIG LRKGEDLFEISYTGEKKHAEILPV ... X

1

Secondary structures [IBBBBBBLHHHBBBBBBBHHBBBBBBBBHLHHHHHHHHH ... Y
Solvent accessibility BBABABABABBBBBAABBBBAAAAAAABBBBBBBBBABB ... Y2
----- LEEEEEELSSSEEEEEEETTEEEEEEEESLGGGGGHHHH ... Y3

= Output Y: Structure Properties (a string of labels)
= Secondary structure

= Solvent accessibility Multiple Output

Targets:



Previous techniques:

e Create sliding “windows”, predict per-
position output one at a time with MLP
> PSIPred, |Pred, bioinfo-oriented projects

Window of Input Protein Sequence

Amino "M F K AY..
Acid | |
X1 Xy Xz Xy Xg.

labels | Y1 Yo Y3 Ya ¥s

Labeling each amino acid (AA) using its context windows



Drawbacks

* Takes long time to train MLP- MultiLayer
Perceptron (due to millions of labeled AA
positions)

e Can not model long-range structured
dependencies



This paper

* Beat state of the art performance

* Fast training and testing, simple and
scalable algorithm

* Generic enough to be applicable on other
per-position labeling problems
o H.g., NLP tagging tasks like part-of-
speech tagging, name entity recognition
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Proposed Solution: MUST-CNN

* Previous Drawbacks: e Proposed:

> Long time to train o Convolution

(due to millions of -:» architecture +
labeled AAs) GPU
> Can not model long- I» > Deeper models

range structured
dependencies




Convolutional Neural Network (CNN)
for Sequence Input and Output

Sequence

|
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Features

| NN

Input Shift and Padded Convolved Maxpooled

Not directly applicable !'!!

CNN’s pooling step leads to a decreased output resolution.




CNN for Sequence Input and
output : (toy case)

Input feature size =1, kernel size=2, pooling size =2

- Sequence

_________ Only half
q output resolution

-
-~
--~
-~
~~~
L]
-~
---
~--
~~-
-

Convolution Max pooling
(kernel size = 2) over time

(stride = I) (pooling size 2)
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First Issue: Boundary Positions

Sequence

Input feature
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(kernel size = 2)
(stride = I)

size =1, kernel size=2, pooling size =2
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over time
(pooling size 2)
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Second Issue: Per-position sequence
to sequence classification

Label

\ ~ Sequence output

Sequence

How to revise Deep CNN ?

To get prediction for each-position
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~ Solution: Shift and Stitch (toy example)

Input feature size =1, kernel size=2, pooling size =2

Sequence
,,,,,, Input
P Two half
shifted
Outputs

pooling

<€

Overcomplete
representation AAAI-I6 16



Generalize to Multilayer =»
MUItilayer Shift and sTitch (MUST)
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Input Shift and Convolution Pooling Stitch Output
Pad

« MUST allows us to tag every element of
an input with multilayer CNN all at once
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Features

MUST-CNN

* New sequence is a stratified version of
previous sequence

e Simply view the output matrix in a

different order to stitch sequence back

together

Sequence

Input

Shift and Padded

f

L[]

Convolved

Maxpooled



Advantages

» All operations are implemented easily.

o Shift and pad is just duplication, zero padding, and
concatenation

o Stitching is just a vector reshape

* Fast, batched computations

o Shift and stitch allows us to run batches of
convolutions

> CNN is highly parallelizable, easy to utilize
parallel architecture like GPU

> Output predictions for all-positions at once



Summary: End-to-End architecture

Multitask Linear Layers
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Connect to previous methods

* Conditional Neural Field (Wang, 201 |)

o Conditional Random Field with a NN feature extractor

> Windowed, difficult to deal with long term dependencies,
shallow

Generative Stochastic Network (Zhou, 2014)
> Trained similar as Restricted Boltzmann Machine

> Slower convergence

OverFeat (Sermanet et al. 2013)
° Introduced shift-and-stitch, on per-pixel scene labeling

> Not an end-to-end shift-stitch process (due to huge
computational cost for 2D )

LSTM (e.g., for machine translation, language model)
Protein sequences have no innate direction
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Implementation Details

* Each convolution layer also includes a
nonlinearity.

> ReLU Nonlinearity (Glorot, Bordes, and
Bengio 201 1)

> PReLU nonlinearity (He et al. 2015)

* Pooling

> Maxpooling does better than subsampling
(Scherer, Muller, and Behnke 2010)



Implementation Details

* Dropout =» randomized

mask of outputs ——

(Srivastava et al. 2014) =

- Randomly zeros out nodes (2 ®® ¢ @999
of the network with S o .‘".) 2500 6
probability during training /4

> Act as a regularizer, and . c;; | :
prevents overfitting




Implementation Details

* Stochastic gradient descent for
optimization
> (Y. LeCun et al. 1998. Efficient BackProp.)

e Hardware:

o All training and testing uses a Tesla C2050
GPU unit.

 Feature input of each amino acid
> (AA embedding + PSIBlast)



Implementation Details

» Hyperparameter cescsces .o
tuning (Snoek |5) EEEEEEEEQ..
> Grid search = sececcee *.

Sampling eeccecee °

> Bayesian optimization

® M u Iti -tas k Lea- rn i ng XNVLALDTSQRIRIGLRKGEDLFEISYTGEKKHAEILPV ...

> negative log-likelihood @

summi ng over al I tas I(S LBBBBBBLHHHBBBBBBBHHBBBBBBBBHLHHHHHHHHH ...

an d a-l I € I eme nts i n th S BBABABABABBBBBAABBBBAAAAAAABBBBBBBBBABB ...

sequences

’ LEEEEEELSSSEEEEEEETTEEEEEEEESLGGGGGHHHH ...




Two large-scale Datasets

Data Name | Reference Train Size Validate Test
(Num.AA)

(from Qi et al.

4prot Wi .50 0.51 0.51

million million million

(from Zhou and

CullPDB  {romZrouand 0 95 024 85k
2014.) Train with il il
CPDE T million million
CB513

e Each dataset includes four labeled tasks
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First Data: 4prot

Four Tasks Qi. Et al (%) Our final
(num. out) model (%)

Dssp (8) 68.2 76.7
Ssp (3) 81.7 89.6
Sar (2) 81.1 84.9
Saa (2) 82.6 86.1
Test Time 596k* 1597

* Q C accuracy (C-class per-position accuracy )
* Test time given in milliseconds per million AA

 Baseline (Qi et al): window-based deep MLP (CPU)



Second Data: CullPDB

CNF (Wang et al. 201 1) 64.9
GSN (Zhou and Troyanskaya 66.4
2014)

LSTM (Kaae Senderby and 67.4
Winther 2014)

MUST-CNN (Ours) 68.4

e Our model is extremely simpler than three compared
* Trained on CullPDB, Tested on CB51 3.
e All models used the same data and same train-test splits.



Conclusion & Discussion

e Robustness: Same model does well on two
different large datasets.

» Speed is key - predictions for half million
samples in under two seconds.

 Fast and large Convnets outperform
“fancier” complex approaches

e MUST-CNN is extendable as long as input
and output sequence lengths match up



THANKS !




