This page does not represent the most current semester of this course; it is present merely as an archive.

1 Equivalences

Two expressions are equivalent if they have the same truth valuation regardless of

1.1 Simplifications

Simplifications have the property that they make expressions smaller, with fewer operators and propositions. They are equivalences so they also work backwards (i.e. making expressions larger), a process sometimes called introduction, as in we can introduce a double negation

The first five are big and worth memorizing

long simplified Name of rule
¬¬P\lnot \lnot P PP double negation
PP \land \bot \bot
PP \land \top PP
PP \lor \bot PP
PP \lor \top \top

and the rest are either less commonly useful or can be derived from the five above rules

simplified \rightarrow \leftrightarrow \oplus \land \lor
PP P\top \rightarrow P
¬PP\lnot P \rightarrow P
P\top \leftrightarrow P P\bot \oplus P P\top \land P
PPP \land P
P\bot \lor P
PPP \lor P
¬P\lnot P PP \rightarrow \bot
P¬PP \rightarrow \lnot P
P\bot \leftrightarrow P P\top \oplus P
\top P\bot \rightarrow P
PP \rightarrow \top
PPP \rightarrow P
PPP \leftrightarrow P P¬PP \oplus \lnot P P\top \lor P
P¬PP \lor \lnot P
\bot P¬PP \leftrightarrow \lnot P PPP \oplus P P\bot \land P
P¬PP \land \lnot P

1.2 Other equivalences

The following operators are both associative (you can add and remove parentheses around them) and commutative (you can swap their operands’ position): \land, \lor, \oplus

The following operator is commutative but not associative: \leftrightarrow

Of the other rules here, the first several are worth memorizing

form 1 form 2 Name of rule
ABA \rightarrow B ¬AB\lnot A \lor B
A(BC)A \land (B \lor C) (AB)(AC)(A \land B) \lor (A \land C) Distributive law
A(BC)A \lor (B \land C) (AB)(AC)(A \lor B) \land (A \lor C) Distributive law
¬(AB)\lnot (A \land B) (¬A)(¬B)(\lnot A) \lor (\lnot B) De Morgan’s law
¬(AB)\lnot (A \lor B) (¬A)(¬B)(\lnot A) \land (\lnot B) De Morgan’s law
(AB)(A \leftrightarrow B) (AB)(BA)(A \rightarrow B) \land (B \rightarrow A)
(AB)(A \oplus B) (AB)¬(AB)(A \lor B) \land \lnot (A \land B)

and the rest are either less commonly useful or can be derived easily from other worth-memorizing rules

form 1 form 2 Name of rule
ABA \oplus B ¬(AB)\lnot (A \leftrightarrow B)
ABA \leftrightarrow B ¬(AB)\lnot (A \oplus B) xnor
P(AQ)P \rightarrow (A \lor Q) (P¬A)Q(P \land \lnot A) \rightarrow Q

2 Entailments

2.1 Set entailment

Given Entails
P(x)P(x) and xSx \in S xS  .  P(x)\exists x \in S \;.\; P(x)
xS  .  P(x)\forall x \in S \;.\; P(x) and TST \subseteq S xT  .  P(x)\forall x \in T \;.\; P(x)
xS  .  P(x)\exists x \in S \;.\; P(x) and TST \supseteq S xT  .  P(x)\exists x \in T \;.\; P(x)
xS  .  P(x)\forall x \in S \;.\; P(x) and SS \neq \emptyset xS  .  P(x)\exists x \in S \;.\; P(x)
ST|S| \neq |T| STS \neq T
S<T|S| < |T| S⊉TS \not \supseteq T
xS  .  P(x)\exists x \in S \;.\; P(x) PP \neq \emptyset

2.2 Qualified entailments

Given Entails Names
xS  .  P(x)\forall x \in S \;.\; P(x) P(s)P(s), for any sSs \in S we care to pick universal instantiation
xS  .  P(x)\exists x \in S \;.\; P(x) sSP(s)s \in S \land P(s) where ss is an otherwise-undefined new variable existential instantiation
sSP(s)s \in S \vdash P(s) xS  .  P(x)\forall x \in S \;.\; P(x) universal generalization
P(s)sSP(s) \land s \in S xS  .  P(x)\exists x \in S \;.\; P(x) existential generalization

These also all have versions that use a defined domain instead of set membership. Universal generalization is sometimes called skolemization.

2.3 Logical entailment

Given Entails Name
\bot x{x}
{\top}
A¬A{A \lor \lnot A} excluded middle
ABA \land B A{A}
AA and BB AB{A \land B}
AA AB{A \lor B}
ABA \lor B and ¬B\lnot B A{A} disjuctive syllogism
ABA \rightarrow B and BCB \rightarrow C AC{A \rightarrow C} hypothetical syllogism; transitivity of implication
ABA \rightarrow B and AA B{B} modus ponens
ABA \rightarrow B and ¬B\lnot B ¬A{\lnot A} modus tolens
ABA \leftrightarrow B AB{A \rightarrow B}
AC{A \rightarrow C}, BB{B \rightarrow B}, and AB{A \lor B} C{C}
AB{A \rightarrow B}, CD{C \rightarrow D}, and AC{A \lor C} BD{B \lor D}
ABA \rightarrow B A(AB){A \rightarrow (A \land B)}
¬(AB)\lnot(A \land B), AA ¬B{\lnot B}

2.4 Assume-and-prove entailment

A proof that assumes AA and derives BB entails that ABA \rightarrow B. This is commonly used in the inductive step of a proof by contradiction.

A proof that assumes AA and derives \bot entails that ¬A\lnot A. This is called proof by contradiction or indirect proof.

3 Mathematical Identities

The following are all true for all real numbers where both sides of the equals sign are defined:

  • loga(ax)=x\displaystyle \log_a(a^x) = x
  • aloga(x)=x\displaystyle a^{\log_a(x)} = x
  • loga(xy)=loga(x)+loga(y)\displaystyle \log_a(x y) = \log_a(x) + \log_a(y)
  • loga(xy)=loga(x)loga(y)\displaystyle \log_a\left(\frac{x}{y}\right) = \log_a(x) - \log_a(y)
  • loga(xy)=yloga(x)\displaystyle \log_a(x^y) = y \log_a(x)
  • loga(x)=logb(x)logb(a)\displaystyle \log_a(x) = \frac{\log_b(x)}{\log_b(a)}
  • logab(x)=b1loga(x)\displaystyle \log_{a^b}(x) = b^{-1}\log_a(x)

The following are also true:

  • (aZ)(a>1)(a(a \in \mathbb Z) \land (a > 1) \vDash (a has at least two factors))
  • (aZ)(a>1)(a(a \in \mathbb Z) \land (a > 1) \land (a has exactly two factors)(a) \equiv (a is prime))
  • Each integer greater than 1 has exactly one prime factorization