This page does not represent the most current semester of this course; it is present merely as an archive.

Assume the following definitions:

notation meaning
Z\mathbb{Z} The integers
Z+\mathbb{Z}^{+} The positive integers; i.e., {x    xZx>0}\big\{ x \; \big| \; x \in \mathbb{Z} \land x > 0 \big\}
N\mathbb{N} The natural numbers; i.e., {x    xZx0}\big\{ x \; \big| \; x \in \mathbb{Z} \land x \geq 0 \big\}
Z\mathbb{Z}^{-} The negative integers; i.e., {x    xZx<0}\big\{ x \; \big| \; x \in \mathbb{Z} \land x < 0 \big\}
R\mathbb{R} The real numbers
Q\mathbb{Q} The rational numbers; i.e., {xy    xZyZ+}\Big\{ \frac{x}{y} \; \Big| \; x \in \mathbb{Z} \land y \in \mathbb{Z}^{+} \Big\}
π\pi The ratio of the circumference of a circle to its diameter; 3.1415926535…

Assume that Q+\mathbb Q^{+}, Q\mathbb Q^{-}, R+\mathbb R^{+}, and R\mathbb R^{-} are defined similarly to Z+\mathbb Z^{+} and Z\mathbb Z^{-}.

1 Membership

1.1 Simple membership

Each of the following is either true or false; which one?

  • 3Z3 \in \mathbb Z1

  • 3.5Z3.5 \in \mathbb Z2

  • πZ\pi \in \mathbb Z3

  • 3Q3 \in \mathbb Q4

  • 3.5Q3.5 \in \mathbb Q5

  • πQ\pi \in \mathbb Q6

  • 3R3 \in \mathbb R7

  • 3.5R3.5 \in \mathbb R8

  • πR\pi \in \mathbb R9

  • 3{x+y    x,yZ+x>y}3 \in \big\{x + y \;\big|\; x,y \in \mathbb{Z}^{+} \land x > y \big\}10

  • 3.5{x+y    xZ+yR+}3.5 \in \big\{x + y \;\big|\; x \in \mathbb{Z}^{+} \land y \in \mathbb{R}^{+} \big\}11

  • 0{x+y    x,yZ+x>y}0 \in \big\{x + y \;\big|\; x,y \in \mathbb{Z}^{+} \land x > y \big\}12

  • 0{xy    x,yRx>y}0 \in \big\{x - y \;\big|\; x,y \in \mathbb{R} \land x > y \big\}13

  • 3{{1},{2,3},{4,5,6}}3 \in \{\{1\}, \{2, 3\}, \{4, 5, 6\}\}14

  • {3}{{1},{2,3},{4,5,6}}\{3\} \in \{\{1\}, \{2, 3\}, \{4, 5, 6\}\}15

  • {2,3}{{1},{2,3},{4,5,6}}\{2, 3\} \in \{\{1\}, \{2, 3\}, \{4, 5, 6\}\}16

  • {2,3}P({2,3})\{2, 3\} \in \mathcal{P}\big(\{2, 3\}\big)17

  • {2,3}{2,3}|\{2, 3\}| \in \{2, 3\}18

  • {2,3}P({2,3})|\{2, 3\}| \in \mathcal{P}\big(\{2, 3\}\big)19

  • R\infty \in \mathbb R20

1.2 Qualified membership

Each of the following is either true or false; which one?

  • xR  .  xQ\forall x \in \mathbb R \;.\; x \in \mathbb Q21
  • xQ  .  xR\forall x \in \mathbb Q \;.\; x \in \mathbb R22
  • xZ+  .  yZ  .  x+y=0\forall x \in \mathbb Z^{+} \;.\; \exists y \in \mathbb Z^{-} \;.\; x + y = 023
  • xR+  .  yZ+  .  1xy2\forall x \in \mathbb R^{+} \;.\; \exists y \in \mathbb Z^{+} \;.\; 1 \leq \frac{x}{y} \leq 224
  • xR  .  xN\exists x \in \mathbb R \;.\; x \in \mathbb N25
  • xR+  .  xQ+\exists x \in \mathbb R^{+} \;.\; x \notin \mathbb Q^{+}26
  • x,y(RN)  .  (xy)((xy)N)\exists x,y \in (\mathbb R \setminus \mathbb N) \;.\; (x \neq y) \land \big((x - y) \in \mathbb N\big)27
  • xR  .  (xN)(xZ)\forall x \in \mathbb R \;.\; (x \in \mathbb N) \rightarrow (x \in \mathbb Z)28
  • xZ  .  (xZ+)(xZ)\forall x \in \mathbb Z \;.\; (x \in \mathbb Z^{+}) \lor (x \in \mathbb Z^{-})29
  • xN  .  (x<0)\forall x \in \mathbb N \;.\; (x < 0) \rightarrow \bot30
  • xN  .  x{y    yR+}\forall x \in \mathbb N \;.\; x \in \big\{ \lfloor y \rfloor \;\big|\; y \in \mathbb R^{+} \big\}31
  • xN  .  x+1N\forall x \in \mathbb N \;.\; x + 1 \in \mathbb N32
  • S{Z,Q,R}  .  xS  .  x+1S\forall S \in \{\mathbb Z, \mathbb Q, \mathbb R\}\;.\; \forall x \in S \;.\; x + 1 \in S33
  • x{3,1,4,5}  .  xx{0,1,4,27,256,3125,46656}\forall x \in \{3, 1, 4, 5\} \;.\; x^{x} \in \{0, 1, 4, 27, 256, 3125, 46656\}34
  • 0{x    yZ  .  yy=x}0 \in \big\{x \;\big|\; \exists y \in \mathbb Z \;.\; y^{y} = x \big\}35
  • {x    (xR)(yN  .  x>y)}{0,1,2}\Big|\big\{ x \;\big|\; (x \in \mathbb R) \land (\forall y \in \mathbb N \;.\; x > y) \big\}\Big| \in \{0,1,2\}36
  • 8{x3    yZ  .  y2=x}8 \in \big\{x^3 \;\big|\; \exists y \in \mathbb Z \;.\; y^2 = x \big\}37
  • 1{x3    yZ  .  y2=x}1 \in \big\{x^3 \;\big|\; \exists y \in \mathbb Z \;.\; y^2 = x \big\}38
  • 64{x3    yZ  .  y2=x}64 \in \big\{x^3 \;\big|\; \exists y \in \mathbb Z \;.\; y^2 = x \big\}39

A set is said to be closed over an operation if applying that operation to members of the set always results in another member of that set.

  • Which (if any, or all) of the following operators is Z\mathbb Z closed over?
    • addition (++)40
    • subtraction (-)41
    • multiplication (×\times)42
    • division (÷\div)43
    • modulo (mod  \mod{} in math, % in code)44
    • root extraction (\sqrt{})45
  • Which (if any, or all) of the following operators is N\mathbb N closed over?
    • addition (++)46
    • subtraction (-)47
    • multiplication (×\times)48
    • division (÷\div)49
    • modulo (mod  \mod{} in math, % in code)50
    • root extraction (\sqrt{})51
  • Which (if any, or all) of the following operators is R\mathbb R^{-} closed over?
    • addition (++)52
    • subtraction (-)53
    • multiplication (×\times)54
    • division (÷\div)55
    • modulo (mod  \mod{} in math, % in code)56
    • root extraction (\sqrt{})57
  • Which (if any, or all) of the following operators is Q\mathbb Q closed over?
    • addition (++)58
    • subtraction (-)59
    • multiplication (×\times)60
    • division (÷\div)61
    • modulo (mod  \mod{} in math, % in code)62
    • root extraction (\sqrt{})63
  • Which (if any, or all) of the following operators is Q{0}\mathbb Q \setminus \{0\} closed over?
    • addition (++)64
    • subtraction (-)65
    • multiplication (×\times)66
    • division (÷\div)67
    • modulo (mod  \mod{} in math, % in code)68
    • root extraction (\sqrt{})69
  • Which (if any, or all) of the following operators is R\mathbb R closed over?
    • addition (++)70
    • subtraction (-)71
    • multiplication (×\times)72
    • division (÷\div)73
    • modulo (mod  \mod{} in math, % in code)74
    • root extraction (\sqrt{})75

2 Comparison

For each of the following, fill in the blank with the first element of the following list that applies:

  • == if the two are identical; otherwise
  • \subset or \supset if those are true; otherwise
  • \subseteq or \supseteq if those are true; otherwise
  • disjoint if the intersection of the two is \emptyset; otherwise
  • \neq
Set 1   Set 2
R\mathbb R 76 Q\mathbb Q
N\mathbb N 77 Z+\mathbb Z^{+}
even numbers 78 odd numbers
prime numbers 79 odd numbers
{1,3,5}\{1, 3, 5\} 80 {{1},{3},{5}}\{\{1\}, \{3\}, \{5\}\}
{1,3,5}\{1, 3, 5\} 81 {5,3,1}\{5, 3, 1\}
{1,3,5}\{1, 3, 5\} 82 {5,3}\{5, 3\}
{0,1}\{0, 1\} 83 {x    xRx2=x}\big\{ x \;\big|\; x \in \mathbb{R} \land x^2 = x\big\}
N\mathbb{N} 84 {x    xR+(xx=0)}\Big\{ x \;\Big|\; x \in \mathbb{R}^{+} \land \big(x - \lfloor x \rfloor = 0\big)\Big\}
even numbers 85 {x    yZ  .  2y=x}\big\{x \;\big|\; \exists y \in \mathbb Z \;.\; 2y = x\big\}
RZ\mathbb R \setminus \mathbb Z 86 {x    (xR)(yZ  .  xy)}\Big\{ x \;\Big|\; (x \in \mathbb R) \land \big(\forall y \in \mathbb Z \;.\; x \neq y\big) \Big\}
RZ\mathbb R \setminus \mathbb Z 87 RQ\mathbb R \setminus \mathbb Q
QZ\mathbb Q \setminus \mathbb Z 88 {1,2,4}\{1, 2, 4\}
\emptyset 89 P()\mathcal{P}(\emptyset)
{1}\{1\} 90 P({1})\mathcal{P}(\{1\})
R+{0}R^{+} \cup \{0\} 91 {x    xRx2=x}\big\{ x \;\big|\; x \in \mathbb R \land \sqrt{x^2} = x \big\}

3 Listing members and cardinality

For each of the following, list the members of the set:

  • {xy    x{0,1,2}y{1,2,4}}\big\{\frac{x}{y} \;\big|\; x\in\{0,1,2\} \land y\in\{1,2,4\} \big\}92
  • P(P())\mathcal P \big(\mathcal P(\emptyset)\big)93
  • P(P(P()))\mathcal P \Big(\mathcal P \big(\mathcal P(\emptyset)\big)\Big)94
  • {x+y    (x,yZ)(1<x<y<10)\Big\{ x + y \;\Big|\; (x,y \in \mathbb Z) \land (1 < x < y < 10) \land (wZ+{1}  .  (xw0xmod  w)(yw0ymod  w))}\big(\forall w \in \mathbb Z^{+} \setminus \{1\} \;.\; (x \neq w \rightarrow 0 \neq x \mod{w}) \land (y \neq w \rightarrow 0 \neq y \mod{w}) \big) \Big\}95
  • Assume that A={1,2,3,4,5}A = \{1,2,3,4,5\} and B={2,3,5,7}B = \{2,3,5,7\}; {x    (xA)(xB)}\big\{ x \;\big|\; (x \in A) \oplus (x \in B) \big\}96
  • Assume that A={25,0,1}A = \{25,0,1\}; AP(A)A \cup \mathcal P(A)97
  • Assume that AA is the set of all 2-digit numbers; P(A)|\mathcal{P}(A)|98
  • Assume that AA is the set of all 2-digit numbers; P(A)A|\mathcal{P}(A) \cap A|99
  • Assume that AA is the set of all 2-digit numbers; P(A)A|\mathcal{P}(A) \cup A|100

  1. true↩︎

  2. false↩︎

  3. false↩︎

  4. true↩︎

  5. true↩︎

  6. false↩︎

  7. true↩︎

  8. true↩︎

  9. true↩︎

  10. true↩︎

  11. true↩︎

  12. false↩︎

  13. false↩︎

  14. false↩︎

  15. false↩︎

  16. true↩︎

  17. true↩︎

  18. true↩︎

  19. false↩︎

  20. false↩︎

  21. false↩︎

  22. true↩︎

  23. true↩︎

  24. false (consider 0.00001)↩︎

  25. true↩︎

  26. true↩︎

  27. true↩︎

  28. true↩︎

  29. false↩︎

  30. true↩︎

  31. true↩︎

  32. true↩︎

  33. true↩︎

  34. true↩︎

  35. false↩︎

  36. true↩︎

  37. false↩︎

  38. true↩︎

  39. true↩︎

  40. true↩︎

  41. true↩︎

  42. true↩︎

  43. false↩︎

  44. mostly true, except for 0 divisors↩︎

  45. false↩︎

  46. true↩︎

  47. false↩︎

  48. true↩︎

  49. false↩︎

  50. mostly true, except for 0 divisors↩︎

  51. false↩︎

  52. true↩︎

  53. false↩︎

  54. false↩︎

  55. false↩︎

  56. false↩︎

  57. false↩︎

  58. true↩︎

  59. true↩︎

  60. true↩︎

  61. mostly true, except for 0 divisors↩︎

  62. mostly true, except for 0 divisors↩︎

  63. false↩︎

  64. false↩︎

  65. false↩︎

  66. true↩︎

  67. true↩︎

  68. false↩︎

  69. false↩︎

  70. true↩︎

  71. true↩︎

  72. true↩︎

  73. mostly true, except for 0 divisors↩︎

  74. mostly true, except for 0 divisors↩︎

  75. false because R\mathbb R contains negative numbers↩︎

  76. \supset↩︎

  77. \supset↩︎

  78. disjoint↩︎

  79. \neq↩︎

  80. disjoint↩︎

  81. =↩︎

  82. \supset↩︎

  83. =↩︎

  84. \supset (would be = if Z+\mathbb Z^{+} instead of N\mathbb N↩︎

  85. =↩︎

  86. =↩︎

  87. \supset↩︎

  88. disjoint↩︎

  89. \subset↩︎

  90. disjoint↩︎

  91. =↩︎

  92. {0,14,12,1,2}\big\{0, \frac{1}{4}, \frac{1}{2}, 1, 2\big\}↩︎

  93. {{},{{}}}\Big\{ \{\}, \big\{\{\}\big\} \Big\}↩︎

  94. {{},{{}},{{{}}},{{},{{}}}}\bigg\{ \{\}, \big\{\{\}\big\}, \Big\{\big\{\{\}\big\}\Big\}, \Big\{\{\}, \big\{\{\}\big\}\Big\} \bigg\}↩︎

  95. {5,7,8,9,10,12}\{5,7,8,9,10,12\}↩︎

  96. {1, 4, 7}↩︎

  97. {25, 0, 1, , {25}, {0}, {1}, {25,0}, {25,1}, {25,0,1}}↩︎

  98. 2902^{90} which is 1,237,940,039,285,380,274,899,124,224↩︎

  99. 00↩︎

  100. 290+902^{90}+90 which is 1,237,940,039,285,380,274,899,124,314↩︎